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Abstract

Position information is an important aspect of a mobile device’s context. While GPS is
widely used to provide location information, it does not work well indoors. Wi-Fi
network infrastructure is found in many public facilities and can be used for indoor
positioning. In addition, the ubiquity of Wi-Fi-capable devices makes this approach
especially cost-effective.
In recent years, “folksonomy”-like systems such as Wikipedia or Delicious Social
Bookmarking have achieved huge successes. User collaboration is the defining
characteristic of such systems. For indoor positioning mechanisms, it is also possible to
incorporate collaboration in order to improve system performance, especially for
fingerprinting-based approaches.
In this article, a robust and efficient model is devised for integrating human-centric
collaborative feedback within a baseline Wi-Fi fingerprinting-based indoor positioning
system. Experiments show that the baseline system performance (i.e., positioning error
and precision) is improved by collecting both positive and negative feedback from
users. Moreover, the feedback model is robust with respect to malicious feedback,
quickly self-correcting based on subsequent helpful feedback from users.

Introduction
After over a decade of research and development, location-aware services have gradually
penetrated into real life. They assist human activities in a wide range of applications, from
productivity and goal fulfillment to social networking and entertainment. Traditionally,
location-aware applications have been confined to outdoor environments. Relatively less
research has explored the potential applicability of similar services for indoor settings.
However, in large indoor environments such as airports, libraries, or shopping centres,
location-awareness can increase the quality of service provided by these facilities.
Large scale deployment of indoor location-awareness is much more difficult due to two

technical challenges. First, GPS can not be deployed for indoor use because GPS sig-
nals can not reach indoor receivers. Second and more importantly, due to complicated
indoor environments such as building geometries, the movement of people, and the ran-
dom effects of signal propagation, triangulation-based approaches are much less effective
[1]. In addition, interference and noise from other devices can also degrade the accu-
racy of positioning. On the other hand, such challenges provide researchers with great
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opportunities for innovative indoor positioning techniques. Some early indoor position-
ing technologies used infrared, laser, and/or ultrasonic range finders, yielding fairly good
system performance in field tests [2]. The disadvantages of such an approach are its size,
complexity, and cost, which render it infeasible for mobile devices.
A number of researchers have been working on using Wi-Fi infrastructure for indoor

positioning, even though it was not specifically designed for this purpose [3]. Due to the
infeasibility of indoor triangulation, most of these systems use a fingerprinting approach
based on the Received Signal Strength (RSS) transmitted by nearby Wi-Fi access points
[3]. Typically, such an approach consists of a training phase and a positioning phase. In
the training phase, each survey position is characterized by location-related Wi-Fi RSS
properties called Wi-Fi RSS fingerprints [4]. During the positioning phase, the position
likelihood is calculated based on the current Wi-Fi RSS measurements.
For Wi-Fi fingerprinting, fine-grained system training is normally required to achieve

high accuracy and resolution. This results in significant costs in terms of initial configura-
tion and ongoing maintenance in order to continuously adapt to environmental changes
and Wi-Fi infrastructure alterations. Such alterations are not uncommon due to system
malfunctions, equipment upgrades, or simply turning on and off Wi-Fi access points con-
trolled by individual users. A great deal of effort has been made by researchers to reduce
such costs. A potentially effective way is to let users provide feedback to facilitate the
construction and continual maintenance of the RSS fingerprints database.
In this article, we propose a Wi-Fi based indoor positioning system that includes an

integrated human-centric collaborative feedback model. In the proposed prototype, we
define an efficient and robust user feedback model, where the initial likelihood distribu-
tion calculated by the positioning system will be compensated before being presented to
the user. Further, the user can participate in how the compensation works in the future by
providing feedback.
The rest of this article is organized as follows. An overview of the related work is pro-

vided in Section ‘Related work’. In Section ‘Baseline Wi-Fi fingerprinting indoor posi-
tioning system’, we describe a baseline Wi-Fi fingerprinting framework. The details of the
proposed user feedback model are explained and discussed in Section ‘Human-Centric
collaborative feedback model’. This user feedback model is tested and evaluated in com-
parison to the baseline method in Section ‘Evaluation’. This article concludes in Section
‘Conclusions and future work’ with a summary of the primary contributions of this work
and an overview of future work.

Related work
The Wi-Fi-based positioning technology has a very promising application prospect
mainly because of the ubiquitous and inexpensive nature of Wi-Fi infrastructure. Also,
Wi-Fi is widely used and integrated in various electronic devices. Thus, the Wi-Fi based
positioning systems can also reuse these mobile devices as tracking targets to locate users,
which is a less intrusive way to provide location-aware services.

Wi-Fi fingerprinting-based indoor positioning

Due to the infeasibility of signal propagation model-based distance estimation, more and
more researchers have employed a Wi-Fi fingerprinting-based approach, which is more
robust, accurate, and cost-effective in real indoor environments. However, its system
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performance is highly dependent upon the elaborate training process and ongoing main-
tenance efforts. Also, in the positioning phase, random propagation effects of signal
propagation introduced by complex indoor environments may result in large RSS fluctua-
tions or access point (AP) loss [5] (i.e., APs which cannot be heard), which could cause the
fingerprints in the database to become inefficient and result in large positioning errors.
These shortcomings not only imply a high system overhead and training cost, but also
vulnerability to environmental alteration. However, if such a system is enhanced with a
self-learning ability adapting it to the environmental changes, such inaccurate positioning
outcomes can be compensated. For mobile devices carried by people, such a self-learning
capability and positioning compensation could come from end users for free. Users could
provide feedback to the positioning service based on their knowledge of the surround-
ings. They may choose to accept, reject, or supply specific information (i.e., their known
location) to modify the system results after being given the estimated position.

Human feedback to fingerprinting-Based positioning process

Active Campus [6] is an early system integrating user feedback. It allows users to update
the training data incrementally for future use. When the system location is incorrect,
users can click on the correct location and suggest new positions. Similarly, Redpin [7]
uses a “folksonomy”-like approach, where many users train the system while using it.
Gallagher at el. [8] focus on the adaptation ofWi-Fi infrastructure alteration. They investi-
gate a new method to utilize user feedback as a way of monitoring changes in the wireless
environment. Users are prompted to send their RSS measurements to a remote position-
ing server. The server can then update the Wi-Fi RSS fingerprints in the database based
on the observations from the users.
Park et al. [9] propose a user promotionmechanism. They argue that in a human-centric

positioning system, it is useful to only prompt users for their location when the system
error is large. They propose a mechanism to convey the system’s spatial confidence in its
prediction based on a Voronoi Diagram, and the system only prompts users whenever
its confidence falls below a threshold. Therefore, the size of the Voronoi cell naturally
represents the spatial uncertainty associated with prediction of the bound space. Once
the size of the current Voronoi cell is beyond a threshold, the system will prompt users to
provide feedback.
The above approaches refine the existing Wi-Fi RSS fingerprint-based positioning sys-

tem with the integration of human-centric feedback. However, a potential pitfall is that
the model constructed during the training phase could also be negatively affected by
unreliable or misleading user feedback. Thus, it is crucial that the feedback from users
should be given proper weight or credibility, rather than blind acceptance or rejection.
Hossain et al. [10] propose a simple credibility rating. In their system, a user’s estimation
is given a higher credibility weight if the suggested position has a small discrepancy with
the system. In fact, according to the observation of our preliminary experiments, the sys-
tem results are mostly close to user’s true position. However, they are occasionally very
far away from the true position due to insufficient Wi-Fi RSS data or large variance. In
that case, if user’s feedback follows the system’s estimation and is assigned a high weight,
it in fact becomes an outlier feedback and could bring large interference to future posi-
tioning queries. Such negative effects from outlier user feedback should be eliminated. A
straightforward solution could be using clustering algorithms to filter outliers [9].
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In this article, we will discuss a more general and efficient framework using a wider
variety of user feedback. Such a framework is endowed with a high degree of system
robustness when a large number of users provide correct feedback. Even when incorrect
feedback is provided, the system is able to quickly recover by incorporating subsequent
corrective feedback.

BaselineWi-Fi fingerprinting indoor positioning system
We start by first introducing a baseline Wi-Fi fingerprinting system. The implementation
of this baseline system is similar in many respects to the systems in the literature [11].
However, it is also refined to be more robust and suitable for integrating and processing
user feedback.

Training phase

The system training is conducted for each survey point in a two-step process. The first
step is to collect multiple Wi-Fi scans in order to stabilize the average of RSS readings
and calculate the variances. The variance is used to detect the environmental interference
level, where a large variance tends to cause unreliable positioning results. The following
step utilizes the information collected by theseWi-Fi scans to generate an RSS fingerprint
for each survey position.

Collect rawWi-Fi RSS data

At each survey position, system administrators use a mobile device to scan for the bea-
con frames transmitted by nearby Wi-Fi APs. In each Wi-Fi scan, beacon frames from
different APs are received and converted to a list of 3-tuples, which contains the MAC
address of an AP, the RSS in dBm, and timestamp. Note that a single scan may not be
able to capture beacon frames from all nearby APs due to the different beacon frame
broadcasting periods or severe signal fading. Also, the collected RSS values have a natu-
ral variation when indoors, which is unavoidable. To compensate the RSS fluctuation and
obtain complete AP information, a sufficiently large number of scans is needed to create
an RSS fingerprint. As a result, in a given period of sampling, the device logs a time series
of RSS vectors. These vectors are then used to construct the Wi-Fi RSS fingerprints for
each measured location in the training grid.

Generate system anchors

The statistics are extracted from the raw Wi-Fi measurement data to generate an Wi-Fi
RSS fingerprint for each survey position.
A Wi-Fi RSS fingerprint is defined as a vector of 5-tuples (i.e., MAC, Timestamp, RSS

Mean, Count, and RSS Variance), describing a set of APs. The definition and explanation
for each field are given as follows.
Given the i-th AP in a Wi-Fi RSS fingerprint, each AP determines one dimension of

such a vector:

• MAC: The MAC field contains its MAC address, denoted asMi.
• Timestamp: The time of creating the fingerprint is stored in the Timestamp field,

denoted as t.
• RSS Mean: The RSS Mean ri is an average of the Wi-Fi RSS over the sampling period.
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• Count: The value of Count is the number of occurrences of the AP during the
sampling period, denoted Ci, which is a very important indicator for the reliability of
this AP. For a fixed number of Wi-Fi scans, a large Count value means that the AP
can be heard for most of the time, indicating that the AP will have a more reliable
estimation of its RSS value.

• RSS Variance: RSS Variance contains the variance of the measured RSS from the AP,
denoted σi. The fluctuation level of the current Wi-Fi environment at a certain
survey position can be estimated by analyzing the Wi-Fi RSS fingerprint. Each AP has
its own mean and variance, which can not provide a global description about the
current Wi-Fi environment. In order to estimate the fluctuation level of the entire
environment, we use the weighted average of RSS Variance for each AP. The
occurrence or the value in the Count field for each AP is utilized as the weight. The
collective RSS variance for this fingerprint is defined as

σFs =
∑

i∈Fs σiCi∑
i∈Fs Ci

,

where Fs is its RSS fingerprint.

At the end of the training phase, each survey position is associated with an RSS finger-
print containing APs that describe the specific location. For each survey position Ps in
the system, we define a system anchor As as

(Ps, Fs)

The system anchors are reference points to determine the positions of mobile devices.
Note that it is quite possible for the RSS measurements to vary throughout the day,

based on cyclical activities such as the number of people within the building, their use of
electronic devices, etc. In order to carefully explore the benefits of the core contribution
of this work (i.e., the inclusion of human-centric feedback within the positioning process),
we found it necessary to simplify the problem domain and assumed that the RSSmeasure-
ments are stable over time. As a result, we conducted all testing and experimentation at a
consistent time of day to avoid temporal-based variances in the RSSmeasurements. A fur-
ther discussion on how to extend this work to the more realistic situations of time-varying
RSS measurement is provided in Section ‘Conclusions and future work’.

Positioning determination phase

In the positioning phase, live Wi-Fi measurements will be collected and used to query
the fingerprint database. Using only a few Wi-Fi scans during the positioning phase may
generate a large error due to lack of informative RSS data. For experimental purposes, the
prototype implementation allows for a variable number of Wi-Fi scans to evaluate system
performance (Figure 1).
Suppose the total Wi-Fi scan number is S and the i-th scan will generate an RSS vector

Ri, i ∈ {1, 2, 3, . . . , S}. Given N system anchors, when the first RSS vector is formed, we
use it to calculate the likelihood Lj, j ∈ {1, 2, 3, . . . ,N} of it matching the fingerprint for
each system anchor. Each subsequent scan should lead to a cumulative estimation result
with a decreasing error. As such, the estimated result will become more and more reliable
as more RSS vectors are used.
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Figure 1 Selection the number of Wi-Fi scan. Select the Wi-Fi scan numbers for generating fingerprints.

Position likelihood distribution

In terms of our baseline system, we use sparse vectors containing all nAPs and a Gaussian
kernel to calculate the likelihood for each system anchor, which is robust and efficient
according to the results of our preliminary experiments.
The Gaussian kernel method was originally used in support vector machines (SVM) to

classify data [12], and has also been found to be very efficient for RSS vectors likelihood
calculation [11,13,14].
Given an RSS live measurement (observation) vector generated at locationP as RPs , the

resulting likelihood estimate between RPs and fingerprint Fi in system anchor Asi is the
sum of n equally weighted density functions

L(RPs , Fi) =
n∑

k=1
KG(rMk ; rFk ),

where rMk is the RSS of k-th AP in the live measurement vector RPs and rFk is the RSS
Mean of k-th AP with the same MAC address in fingerprint Fi. Note that when rMk or
rFk is an impossible value (e.g., -100 dBm), we just ignore this dimension. KG denotes the
Gaussian kernel or radial basis function (Gaussian RBF), whose value depends on the
distance from the centre. It is given as

KG(rMk ; rFk ) = 1√
2πδ

exp
(

− (rMk − rFk )2

2δ2

)
,

where δ is an adjustable parameter that determines the width of the Gaussian kernel and
the centre is rFk .
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In terms of Wi-Fi RSS, whose value domain is [−90dBm,−30dBm], δ less than 0.05
or greater than 0.5 could lead to a weak discrimination ability of Gaussian RBF. In the
particular environment, we have to tune the δ value in order to archive adequate system
performance.
After the likelihood calculation, each system anchor has a likelihood for being the true

position of the device. Instead of just returning a single estimation, the system selects the
top-k system anchors as candidates in order to provide redundant true position informa-
tion. The main reason is that the true position may not always be in the system anchor
with the highest likelihood. The next step is to choose a representative from these top-k
candidates as the system’s estimation of the position.

Position selection

A naïve approach would be to use the weighted mean of the top-k anchors as the estima-
tion for the position. However, if one or more outliers exist, the weighted mean position
could be pulled far away from the cluster formed by other system anchors. As a result,
this mean position could be a meaningless point in the physical space.
Instead, we can use an approach to the vertex p-centres problem [15] to determine the

representative of the top-k anchors. It is a computationally expensive problem for general
k. However, in our case, we only consider the case of p = 1, i.e., the 1-centre problem.
Since the value of k could be very small (less than five), we do not analyze the algorithm
complexity at this point.
In particular, the vertex 1-centre for our positioning system is the system anchor point

that minimizes the maximum distances from itself to the other top-(k− 1) anchor points.
These distances are weighted with the likelihood estimated as above. For two indices i, j =
1, 2, . . . , k, we minimize the following over all values for i

max
j �=i

D(i, j)
Li

,

whereD(i, j) is the Euclidean distance between anchorsASi andASj and Li is the likelihood
of ASi . By choosing the vertex 1-centre, the resulting anchor takes advantages of both its
likelihood and the positioning information shared by other top-k anchors.

Human-Centric collaborative feedbackmodel
Before discussing the user feedback model in detail, it is useful to begin by identify-
ing three types of user input that can be collected within a human-centric collaborative
feedback system:

• Positive feedback is generated when users reject the estimated position and suggest a
location based on their knowledge. In such a case, the system can accept the updated
information from the users. The result is that the system may create new anchors
from the users’ suggestions, called user anchors.

• Negative feedback indicates that the users do not believe the estimated position, and
are unable to make any suggestion as to their current location. In this case, the system
should reduce the positioning likelihood of the returned location in the future.

• Null feedback occurs when users choose not to provide any feedback. The
assumption here is that the estimated position is accurate, and that there is no need
to make any modification to the positioning model.
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Next, we will present the general idea of our user feedback model. Assume that the
model has N (system and user) anchors, and the likelihood of the i-th (i = 1, 2, . . . ,N)
anchor is denoted as Li. Before ranking these anchors based on the likelihood vector L,
our user feedback model compensates each Li with two factors, αi and βi as

L′ =
{

βiLi if Ai is a system anchor, and
αiβiLi if Ai is a user anchor

Due to the temporal or permanent random interfering factors of complex indoor environ-
ments, the reliability of system anchors will be reducing. In order to solve this problem, we
design the β factor to gradually reduce the likelihood of system anchors as negative feed-
back is received. As mentioned before, the system estimation is provided by the vertex-1
centre of top-k anchors. However, if this estimation receives negative user feedback, this
means that the user believes that they are not near this location which is an indication
that the data stored for these top-k anchors may not be accurate. As a result, the model
reduces their likelihood by updating the β factors for these top-k anchors. If more and
more users provide negative feedback on a system anchor, it may never be selected as one
of the top-k anchors. The β factor thus gives the system an ability to forget outdated or
unreliable knowledge.
On the other side, new knowledge (user anchors) will be added into the database via

positive user feedback. However, when a user anchor is first created, its likelihood is
reduced by the discounting effect of the small initial α value. The rational is that the sys-
tem can not assess the reliability or credibility of a newly created user anchor (which may
be from a malicious user). However, as more and more similar user anchors are generated
to confirm it, its α factor will be increased. Once some user anchors become sufficiently
reliable, they may appear to be within the top-k anchors to affect the system estimation.
Also, the β factor could affect user anchors should they receive negative feedback. The
user anchor and α factor enable the system to absorb new knowledge about the Wi-Fi
environment.
As such, future users can take advantage of the knowledge shared by previous users.

Also, they are encouraged to provide feedback to benefit subsequent users. As a result, the
positioningmodel can be consistently updated via the user feedbackmodel thus designed.
Later in this section, we will explain how to calculate the α and β factors in detail.

Positive feedback

Suppose likelihood calculation is finished, and each system anchor Asi , (i ∈ {1 . . .N})
has a likelihood value Li. For positive user feedback, users try to tell the system their
estimations by providing suggestion positions. Note that these estimations could be close
to the true position (accurate feedback) or still far away from it (inaccurate feedback).
Whenever the system receives a user-suggested location associated with its current RSS

measurement, denoted as user fingerprint, the system creates a temporary user anchor
(Au). If this anchor is sufficiently similar to an existing user anchor in the model, it is
merged with it, and the α factor is updated. Otherwise, it becomes a new user anchor,
with the associated α factor set to a very small initial value. It indicates that the newly
create user anchor is not as reliable as system anchors at the beginning.
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Temporary user anchor

Since a user’s suggested position could be arbitrary, saving these suggestions separately
would bloat the model significantly. Therefore, we use discrete locations by dividing the
study area into anm× n grid. That is, any position within a grid cell is represented by the
centre of the cell. This grid-based selection of the position is enabled directly in the user
interface provided to the user (Figure 2).
Note that the resolution of this grid could be different from the resolution as used in

the training phase. We can set smaller grid space because the system training from users
is cost-effective. This helps to efficiently reduce the grid space between system anchors.
Thus, the resolution of entire system could be refined.
Within each grid cell, its geometric centre is used to represent the positions of all

temporary user anchor points falling into it.
We thus define the user anchor Au as:

Au = (Pu, Fu),

where Pu is the grid cell centre that contains the user suggested position and Fu is the
user fingerprint summarized from the current Wi-Fi RSS measurement.

Anchormerge

A newly generated positive feedback could be either converted to a new user anchor point
or merged with an existing user anchor point based on their similarity. As mentioned

Figure 2 User interface, positive feedback. The user interface allows the user to select grid cells for
positive feedback, confirming this choice with a double tap.
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before, we believe that positive feedback represented by a user anchor point should gradu-
ally become reliable if more andmore similar user anchor points are generated to confirm
it. Before we discuss how to update the reliability of user anchors, we define the similarity
between two user anchor points.
Given user anchor pointsAui andAuj i �= j, their similarity is determined by two aspects:

• Wi-Fi RSS fingerprint similarity: A natural measurement mechanism is the cosine
similarity in the range of [ 0, 1]. Thus, the Wi-Fi RSS fingerprint similarity Fu is
given as:

sFu =
{
1 if cos (Fui , Fuj) > a
0 otherwise

,

where Fui and Fuj are Wi-Fi RSS fingerprints of user anchor points Aui and Auj
respectively. They are all sparse vectors of n dimensions; a is the threshold for Wi-Fi
RSS fingerprint similarity.

• Physical position similarity: If two user anchor points share the same geometric
centre of a grid as their position. They are considered as similar in position.

As a result, we claim that two user anchor points are similar if they satisfy both of the two
similarity conditions above.
A temporary user anchor Aui is thus merged with the existing user anchor Auj in the

same cell if their fingerprints are sufficiently similar. If multiple anchors already exist in
the same cell as Aui , we only consider the most similar one, denoted Auj . If the similarity
between Aui and Auj is greater than a threshold, the temporary user anchor is regarded as
the same as the existing one, and therefore is merged with it.

The α factor

Whenever a temporary user anchor is merged with an existing user anchor in the system,
the associated α factor is updated. For user anchor Aui , we define αi as

αi = 1
a + e−x , with x ≥ 0 and 0 < a ≤ 1,

where the variable x has a cumulative effect and a is a parameter controlling the initial
and maximum values of αi. When a user anchor Aui is first created, its original likelihood
will be reduced by a small α. As more positive feedback is provided in support of it, its α

factor gradually increases until it reaches an upper limit.
Thus, the magnification capability of the α factor is a+1

a . The increment of x is defined
as

�x =
T
Ts

+ e−σF

b
with b > 0.

The pace of the increase of x is controlled by a few aspects:

• An independent parameter b, which compensates the increasing velocity of x. When
there are many users (e.g., in a large shopping centre), we may not want to trust their
individual estimation much. Instead, we can reply on the convergence effects of large
amount of users to evolve the mode. However, when there are only a few users (e.g.,
in a depot), we assign each individual feedback a much higher weight.
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• The variance of the current RSS fingerprint, σF . The user feedback generated in the
environment with small RSS variance will have a greater influence on the evolution
speed of the model.

• If T is the number of Wi-Fi scans used in the positioning query and Ts is the number
of Wi-Fi scans used during system training, their ratio T

Ts
also reflects the credibility

of this positive feedback.

As a result, the α factor increases fastest with the first few instances of the user anchor,
becoming stable once a sufficient number of feedback events are received. The rationale
for this design is to allow the system to quickly adapt to new information provided by the
users, but without this feedback overpowering the system.

Negative feedback

Suppose the system delivers a position from the top-k anchors according to their likeli-
hood ranking, but the user believes this location to be incorrect and cannot provide any
further information regarding the actual location (Figure 3). The negative user feedback
to this estimated position can also provide valuable information to the system.
Typically, when a user rejects the position estimated by the system, the reason could be

that the user is nowhere near any of the anchors known by the system. In this case, none
of the top-k anchors would truly represent a good estimate. Therefore, we should try to
decrease their likelihoods simultaneously.

Figure 3 User interface, negative feedback. A red cross will be placed on the system estimation indicating
a negative feedback.
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Given an anchor Ai, we use a negative user feedback factor βi to reduce its likelihood
according to the accumulation of negative feedback received. Similar to the positive feed-
back model, the negative factor model also has fast adaptability. Accordingly, we define
βi as

βi = e−x.

When an anchor is given a negative feedback, we give x in above formula the same
increment �x used in the positive user feedback.
The value of β is inversely related to x, such that β will decrease from the initial value

1 to its limit zero as x increase from zero to infinity. As a result, if more and more users
reject the same set of anchors, they will not be chosen as the top-k due to the small value
of the β factor.

Evaluation
Experimental settings

The system evaluation consisted of two phases. The first phase was to analyze the per-
formance of the baseline system without user feedback in field tests. The accuracy and
precision of the baseline system was calculated. By analyzing these two performance met-
rics, we can determine whether or not our baseline system is suitable for comparison
purposes. During the second phase, we explored how the proposed user feedback model
improved the system performance.
Experiments and evaluations with this feedback model were conducted in an complex

indoor office environment, which is the part of the 2nd floor of the Engineering Building
at Memorial University. The reason we chose this experimental field is that we can fully
control our evaluation process under this environmental setting. The space was divided
into a grid using a 3×3m cell size. 33 positions were selected within the hallways for train-
ing the baseline system (denoted the training area), and an additional 20 positions were
selected as untrained positions for testing purposes (denoted the non-training area). A
diagram of the setting is provided in Figure 4. System anchors were created in the train-
ing area only. Note that the non-training area lacks valid system or user anchors. It can be
treated as an area that is the result of environment alteration, a newWi-Fi coverage area,
or a region that was neglected in the training of the system.
The prototype system was developed for iPhone OS 3.1.2; experiments were conducted

using the Apple iPhone and iPod Touch devices.
The system training was conducted during semester break (April, 2010). Each RSS

fingerprint had been generated by extracting features from 20 Wi-Fi scans, which took
approximately two minutes. The baseline system evaluation was conducted during the
summer semester (May - July, 2010) with much more interference from other people
and their electronic devices. Thus, the RSS data provided by users are more capable of
describing the Wi-Fi characteristics of the current environment.
As mentioned earlier in Section ‘Human-Centric collaborative feedback model’, the

parameters in the feedback model are used to adjust the rate of change of the α and β

factors (i.e., the sensitivity of our user feedback model). In production environments, the
sensitivity of the user feedback model will depend on the number of users and the degree
of trust of those users. For the purpose of evaluation, we increased the sensitivity of the
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Figure 4 Experimental field. The experimental field includes both the training cells (green triangles) as well
as measurements taken outside of the training area (red discs).

user feedback model in order to speed up the rate at which the system is able to learn
from user feedback.
We set the value of parameter α to be 1, which means that the magnification factor of

parameter α is 2. The value of parameter β was set to be 0.6. As such, according to the
design of our user feedback, these parameter setting will weight the first four users much
larger than subsequent users, which grants the system a fast learning ability.

Baseline system evaluation

Since the time that a user is willing to spend waiting for a positioning result influences the
service quality, we have conducted an experiment to investigate the relationship between
time (i.e., the number of Wi-Fi scans) and system performance. We use the baseline sys-
tem to determine the smallest number of Wi-Fi scans (measured at one scan per second)
needed for the system to produce a reasonably accurate result. At the same time, the per-
formance of our baseline system can be evaluated with respect to other similar systems
described in the literature.
In the training area, for each survey point, we have collected 20 scans of the Wi-Fi RSS,

using these incrementally to query the positioning system. The average positioning error
after each scan is plotted as the bottom curve in Figure 5. We can observe that for a small
number of scans, the system has an error between 2 and 4m. As more scanned RSS data
are used (i.e., greater than four), the accuracy stabilizes at around 2m.
The system precision, as another very important metric for system performance, is

plotted in Figure 6. We selected the positioning precision for 9 out of the 20 scans, illus-
trating three phases of Wi-Fi sampling. The early phase consists scans 1, 2, and 3 (red
curves). In this phase, due to insufficient Wi-Fi RSS data, the precision is low. The sec-
ond phase includes scans 5, 10, and 15 (green curves), it is in the middle of the Wi-Fi
sampling and has more Wi-Fi RSS data than the first phase. The last phase is at the end
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Figure 5 Baseline system accuracy, without user feedback. Using the baseline system, the positioning
error becomes relatively stable using just four Wi-Fi scans. Note that the system is significantly more accurate
within the training area.
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Figure 6 Baseline system precision, without user feedback, training area. The precision of first three
scans (red curve) is much lower than later scans (green curves for scan 5,10, and 15 and blue curves for 18, 19,
and 20). However, the blue and green curves are very close to each other, indicating the precision after four
scans is not improved significantly.
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of Wi-Fi sampling (scans 18, 19, and 20), which includes all RSS vectors (blue curves).
From Figure 6, we can see that the green and blue curves are very close to each other,
which means that a scan number greater than four will not generate significant preci-
sion improvement. However, if the Wi-Fi scan number is small (i.e., less than four), the
probability of generating outliers is considerably high.
Similarly, in the non-training area, we also collected 20 scans for each position. We

plotted the positioning accuracy for the number of scans as the top curve in Figure 5
and positioning precision in Figure 7. In this case, the system performance is significantly
lower than in the training area due to the lack of system anchors. However, in both the
training area and non-training area, four scans provide a reasonable trade-off between
performance and positioning time. Therefore, we use this as the number of scans in the
remainder of our experiments.
According to the analysis of our baseline system, the average positioning error is

between 2m and 4m, respectively, depending on the Wi-Fi sampling time. It is in fact
only marginally worse than the 0.7m to 4m average positioning error yielded by the
best-performing but intensively trained Horus system (using 100 Wi-Fi scans and much
smaller grid space of 1.52 m and 2.13 m) [16]. Thus, we believe this baseline system
is qualified to evaluate the value of the proposed human-centric collaborative feedback
model.

Collaborative feedback model evaluation

In order to evaluate the benefits of the collaborative feedback model, we have defined a
number of different scenarios that represent specific types of behaviours of users. While
we do not claim that any of these evaluations represents what would occur in real world
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use, they allow us to examine how the system will react to different types of feedback. Our
future plans for real-world field trials are discussed in Section ‘Conclusions and future
work’.

Knowledgable and helpful feedback

Next, we investigate how the user feedback model improves the system performance.
In this scenario, whenever the system returns a position that does not match the true
position of the user, feedback was provided. We modelled the user as being knowledgable
and helpful; whenever the position was inaccurate, the user suggested positive feedback
80% of the time, and negative feedback 20% of the time. We believe it is a reasonable
choice for situations where users are highly motivated to provide accurate and positive
feedback. In fact, there may be many other users who are providing null feedback (i.e.,
using the system and trusting the results). However, since such types of users do not affect
the evolution of the model, they are not discussed here.
Within the training area, we define a round as a traversal of all grid cells. In a round,

the user stops at each survey position to scan the RSS for nearby APs (using four scans).
If the result is correct, the user moves to the next position. Otherwise, the user provides
feedback before moving on. The average positioning accuracy after nine such rounds of
visiting and testing each position is plotted in Figure 8. In the course of providing this user
feedback, the positioning error within the training area improved from approximately
2.5m to 1.5m after just four rounds. From there, little change was observed. Note that the
baseline system accuracy ranged from 4m to 2m without feedback. At this point, with the
integration of human-centric collaborative feedback, the system performance is further
improved even in the well trained area.
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Figure 8 System accuracy, with knowledgeable and helpful user feedback. The system accuracy is
significantly improved when integrating knowledgeable and helpful user feedback.
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The precision is also improved after four rounds of user-involved positioning within the
training area, as we can see in the green and blue curves which are closer to the y axis than
red curves shown in Figure 9. Furthermore, green and blue curves are close to each other,
which indicates that the model reaches its optimal performance after approximately four
rounds of knowledgeable and helpful feedback.
Within the non-training area, the experiment followed the same procedure as in the

training area, producing the data plotted in Figure 8. Because there was no training data
in these regions, the initial positioning error was rather large. However, after 13 rounds
of collecting user feedback, the error decreased from 9m to 2m. The precision is also
significantly increased as plotted in Figure 10. As a result, the system performance in an
area that had not been previously trained became comparable to the training area.
The reliable user feedback contains information (user fingerprint) that best character-

izes the current Wi-Fi RSS features. Such helpful information can help the system to
improve the performance. At the beginning of the test within the non-training area, the
model contained only system anchors, and therefore could only return the position of a
system anchor (i.e., within the training area) to the user. These positions were often far
from the true position of the user. As a result of the positive feedback, user anchors were
added and the relative weight of these anchors were enhanced by the α factor. Similarly,
with the negative feedback, the weight of the system anchors were reduced by the β fac-
tor. As a result, the positioning accuracy increased as more user anchors become valid
candidate positions.
What this means for indoor positioning systems is that the system training and mainte-

nance costs can be reduced significantly by relying on knowledgable and helpful end users
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curves are close, which indicates that the model is optimally trained after four rounds.
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Figure 10 System precision, with knowledgeable and helpful user feedback, non-training area. In
non-training area, the system precision is significantly increased as more and more knowledgeable user
feedback is integrated.

working on a partially trained system, eventually achieving the same level of accuracy as
a fully trained system. Also, the resolution of the positioning system is improved because
many reliable user anchors fill the gap between system anchors, thus reducing the grid
space or increasing the grid resolution.
At this point, the optimal combination of different types of user feedback is not con-

sidered. To conduct experiments testing each possible combination is impractical within
a limited time period. In fact, this problem can be explored if we could use a simulation
testbed. We can collect a large amount of real Wi-Fi RSS data to simulate theWi-Fi scans.
When the simulated positioning process is finished, virtual user positive or negative feed-
back can be generated to the evolve the model. As such, the system performance with an
arbitrary combination of positive and negative feedback could be estimated.

Mixed feedback

In a real environment, user feedback can be either helpful or malicious. At this point,
we assume that the accuracy of user feedback follows the normal distribution. Thus, the
feedback from malicious users should exist as outliers. We could employ some super-
vised classification algorithms such as logistic regression or SVM to classify the malicious
users. However, the Wi-Fi RSS fingerprinting based positioning is essentially an unsuper-
vised or instances-based approach (similar to KNN). For instance-based learning, we can
cluster different user feedback based on their RSS features and locations, which avoids
labeling whether the user is benign or malicious. As described in the previous section, we
take the grid-based clustering approach with predefined centres. The reliability of each
cluster is compensated by our user feedback model. Furthermore, the performance of
instance-based approaches is in fact highly dependent on whether we will have a large
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dataset or the noise level in training dataset. Thus, if the noise level is very high (e.g.,
all user feedback are from malicious users), the performance of the system will not be
acceptable.
In this experiment, we test the model to determine its ability to recover from incor-

rect feedback. In particular, we model the user feedback as completely malicious at the
beginning and as completely informative thereafter. Such a behaviour is not typical but
it provides a “worst case scenario” study of the system, followed by its ability to recover
from incorrect or malicious feedback.
Our focus here is on the training area only. As seen in the previous experiments, the

non-training area can become nearly as good as the training area with sufficient user
feedback. As such, we expect similar results within the non-training area as the training
area with respect to mixed feedback.
During the initial phase of this experiment, whenever the system returns a correct posi-

tion estimation, themalicious user has a 50% chance of either providing negative feedback
of suggesting a random false position. When the system is incorrect, the malicious user
provides null feedback. Following a similar methodology as the previous experiments,
such malicious feedback was provided for four rounds. Another eight rounds of feedback
from a knowledgeable and helpful user was then collected.
The position errors for this experiment are plotted in Figure 11. We observe that the

system error starts out with around 4m and quickly increases to 14m as a result of the
malicious feedback. At the same time, the system precision is also reduced to an unac-
ceptable level, shown as the red curves in Figure 12. With an error of 14m and extremely
low precision, the system is considered to be fairly disturbed by the malicious users. At
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Figure 12 System precision, providing malicious user feedback. Providing malicious user feedback also
reduces the system precision significantly.

this point, we turn the user into knowledgable and helpful to provide positive feedback
whenever the system is incorrect.
The user behaviour in this case is the same as in the previous subsection. The helpful

feedback quickly corrects the significant positioning errors, recovering to the starting
accuracy after five rounds of feedback, and below 3m after eight rounds. At the same
time, the system precision is stabilized as indicated by the blue curves in Figure 13. As
a result, our system has recovered from the low accurate state by integrating helpful and
knowledgeable feedback.
In real life, helpful and malicious feedback are often mixed together to feed the model.

As such, the phenomena described in this experiment might be rarely observed. How-
ever, it in fact provides the “worst-case”. If the model can eliminate the negative effect
introduced by continuous malicious or unreliable user feedback, then it is reasonable to
deduce that it is robust to malicious user feedback in more moderate or general cases.

Conclusions and future work
In this article, the primary contribution is the presentation and evaluation of a user feed-
back model which receives and processes human-centric collaborative feedback. The
proposed user feedback model adjusts the positioning results via placing a compensation
mask over the likelihood vector (distribution) generated in the positioning phase. The his-
tory of both positive feedback and negative feedback will affect the compensation ability
of such a mask. In general, positive feedback generates user anchors and enhances their
reliability. On the other hand, negative feedback reduces the trustworthiness of an anchor.
All user feedback will be assigned low compensation power when first created and can
be enhanced with multiple similar feedback events. As such, this user feedback model
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Figure 13 System precision, providing knowledgeable and helpful user feedback. Providing malicious
user feedback, followed by knowledgeable and helpful user feedback also recovers the system precision to a
normal level.

should be able to gradually update the system’s knowledge and guide the system to learn
the changes in the Wi-Fi indoor environments. Based on these principles, we have built a
prototype and conducted experiments to evaluate it. Experimental results show the ability
of the model to improve upon the positioning accuracy and precision in both regions that
have been trained, as well as in nearby regions that do not include sufficient anchors. The
model is also shown to be robust with respect to malicious feedback, quickly recovering
based on helpful user feedback.
In general, storing arbitrary user feedback could require very large storage space and the

computational cost of typical clustering algorithms (such as k-means) is high. However,
the anchor merge mechanism proposed in our user feedback model merges all similar
user anchors which avoids the need to store every user anchor. Furthermore, the grid-
based clustering in the user feedback model only needs to cluster each user anchor within
the same grid-cell, which significantly reduces the calculation time. As a result, even with
the addition of the user feedback mechanisms to the positioning system, the resulting
approach remains efficient.
Such a feedback model can be further refined and enhanced in a number of interesting

ways. The first refinement is to use the temporal aspect of user feedback, such that dif-
ferent times (morning, noon, and night) of a day or different dates (weekdays, weekends,
and holidays) is used to generate different RSS data patterns. For example, in a univer-
sity cafeteria, due to the interference from human bodies and electronic devices, the RSS
measurement generated during lunch time could be very different from that in the early
morning. As such, the user feedback generated during lunch time may mislead the posi-
tioning activities at other times of the day. In order to solve this problem, the model
should take advantage of the timestamp within the RSS fingerprint, limiting the candidate
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anchors to those that were created at about the same time of the day. This could increase
the accuracy of the system in environments with time-related changes in human activ-
ities. More complex approaches could be developed that dynamically learn the features
of when the RSS measurements are changing, using this to partition the data to generate
different models for different times of the day. Also, we can introduce a forgetting mech-
anism which could remove user feedback from the system. It could be used to address
situations where malicious feedback has been received but subsequent helpful feedback
is not available.
The second aspect for refinement of this approach is to perform cross platform valida-

tion. In real indoor environments, users could carry different types of mobile devices. Due
to the diversity of manufacture technologies in wireless network interface cards, the RSS
generated by differentWi-Fi chips could also be different. However, our entire implemen-
tation and experiments are conducted on Apple iPhone and iPod Touch, which indicates
its limitation in field validation. At this point, we argue that the system performance could
be improved if the diversity of Wi-Fi chips in different mobile devices is considered. The
simplest but efficient approach is to create individual fingerprints database for each type
of mobile device. It might improve system performance with a large system overhead.
More intelligently, an RSS compensation mechanism can be integrated to automatically
adjust RSS patterns among different mobile devices.
The evaluations of the proposed approach have allowed us to validate the ability of the

system to learn useful information from the collaborative feedback provided by the users.
However, the specific scenarios were somewhat contrived and do not represent realistic
user behaviour. As such, field trials within a real-world positioning domain (e.g., new
students using the system to find their way around a university campus) are currently in
the planning phases.
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