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Abstract

Active contours are used in the image processing application including edge detection,
shape modeling, medical image-analysis, detectable object boundaries, etc. Shape is
one of the important features for describing an object of interest. Even though it is
easy to understand the concept of 2D shape, it is very difficult to represent, define and
describe it. In this paper, we propose a new method to implement an active contour
model using Daubechies complex wavelet transform combined with B-Spline based on
context aware. To show the superiority of the proposed method, we have compared
the results with other recent methods such as the method based on simple discrete
wavelet transform, Daubechies complex wavelet transform and Daubechies complex
wavelet transform combined with B-Spline.
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Introduction
Contours are used extensively in image processing applications. Active contours can

be classified according to several different criteria. One of the classifications is based

on the flexibility of the active contour and is proposed in a slightly modified form by

Jain [1]. The active contour models can be accordingly partitioned in two classes: free

form of active contour models and limited form of active contour models.

The free form of active contour models constrained by local continuity and smooth-

ness constraints [2–7]. Its limit uses a priori information about the geometrical shape

directly. This information is available in the form of a sketch or a parameter vector

that encodes the shape of interest. The geometric shape of the contour is adjusted by

varying the parameters [8–13]. They cannot take any arbitrary shapes.

The snake has found wide acceptance and has proven extremely useful in the appli-

cations for medical analysis, feature tracking in the video sequences, three-dimensional

object recognition [14], and stereo matching [15]. To take active contour, there are

many methods to take it.

In the past, many algorithms have been built to find object contour. The dual-tree

Complex Wavelet Transform (DTCWT) was proposed by Kingsbury [16]. In DTCWT,

he used two trees of real filters for the real and imaginary parts of the wavelet coeffi-

cients. Recently, Bharath [17] has presented a framework for the construction of steer-

able complex wavelet.
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This transform also avoids the shortcomings of discrete wavelet transform, but it uses

a non-separable and highly redundant implementation. The redundancy of this trans-

form is even higher than that of DTCWT.

In the entire complex transforms above, use of real filters make them not a true com-

plex wavelet transform and due to the presence of redundancy, they are computationally

costly. Lawton [18] and Lina [19] used an approximate shift-invariant Daubechies com-

plex wavelet transform for avoiding redundancy and providing phase information. Shensa

[20] and Ansari [21] use Lagrange filters, Akansu [22] uses binomial filters. Shen [22] used

the Daubechies filter roots. Goodman [23] considered them as the roots of a Laurent

polynomial. Temme [24] described the asymptotic of the roots in terms of a representa-

tion of the incomplete beta function. Almost of that method related Daubechies filters.

The wavelet transform for contour has serious disadvantages, such as shift-sensitivity

[25] and poor directionality [26]. Several researchers have provided solutions for min-

imizing these disadvantages. Some of them have suggested the other method such as:

local binary fitting [27, 28], local region descriptors [29], local region [30], local region

based [31], local intensity clustering method. There exist some drawbacks with local re-

gions. In [32], the problem is how to define the degree of overlap.

The local region based method has two drawbacks: (i) the Dirac functional is re-

stricted to a neighborhood around the zero level set. (ii) Region descriptors only based

on regions mean information without considering region variance [33].

Use of complex-valued wavelet can minimize these disadvantages. The DCWT uses

complex filters and can be made symmetric, thus leading to symmetric DCWT, and it

is more useful for image contour.

In this paper, we propose a new method to implement an active contour model using

Daubechies complex wavelet transform combined with B-Spline based on context-aware

(DCWTBCA). To show the superiority of the proposed method, we have compared the

results with the other recent methods such as the method based on simple discrete wave-

let transform (DWT), Daubechies complex wavelet transform (DCWT) and Daubechies

complex wavelet transform combined with B-Spline (DCWTB). The rest of the paper is

organized as follows: in section 2, we described the basic concepts of Daubechies complex

wavelet transform. Details of the proposed algorithm have been given in section 3. In sec-

tion 4, the results of the proposed method for contour have been shown and compared

with other methods. Finally in section 5, we presented our conclusions.

Background
In this section, we present the theory related to the work such as: Complex Daubechies

Wavelet and advantages of B-Spline for Snakes.

Construction of complex Daubechies wavelet

The basic equation of multiresolution theory [34-37,38] is the scaling equation:

φ xð Þ ¼ 2
X
k

ak φ 2x−kð Þ ð2:1Þ

where, ak are the coefficients. The ak can be real as well as complex valued and ∑ ak = 1.

Daubechies wavelet bases {ψj,k(t)} in one dimension are defined through the above scaling

function and multiresolution analysis of L2(R) [37].
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For φ(x) to be Daubechies scaling function the following conditions must be satisfied

[39, 40]:

(i) Compactness of the support of φ: It requires that φ (and consequently ψ) has a

compact support inside the interval [−J, J + 1] for the integer J, that is, ak ≠ 0 for

k = −J, −J + 1,…., J, J + 1

(ii) Orthogonality of the φ(x-k): This condition defines in a large sense the Daubechies

wavelets. Defining the polynomial

F zð Þ ¼
XJþ1

n¼−J

an z
n ; with F 1ð Þ ¼ 1; zj j ¼ 1 ð2:2Þ

where z is on the unit circle, the orthonormality of the set {φ0,k(x), k∈ Z} can be stated

through the following identity

P zð Þ−P −zð Þ ¼ z ð2:3Þ

where the polynomial P(z) is defined as

P zð Þ ¼ zF zð ÞF zð Þ ð2:4Þ

(iii)Accuracy of the approximation: To maximize the regularity of the functions
generated by the scaling function φ, we require the vanishing of the first J moments

of the wavelet in terms of the polynomial Eq. (2.2)

F 0 −1ð Þ ¼ F} −1ð Þ ¼ :::::: ¼ F Jð Þ −1ð Þ ¼ 0 ð2:5Þ

(iv) Symmetry: This condition amounts to have ak = a1-k and can be written as
F zð Þ ¼ zF z−1
� � ð2:6Þ

As anticipated by Lawton [18], only complex-valued solutions of φ and ψ, under the
four constraints above, can exist and for even J only. The first solutions (from J = 0 to

J = 8) were described in [32] by using the parameterized solutions of Eq. (2.3), (2.5)

and (2.6). The solutions have also been investigated in the spirit of the original

Daubechies approach, i.e. by inspection of the roots of a so-called “valid polynomial” that

satisfies Eq. (2.4). Such a polynomial is defined as

PJ zð Þ ¼ 1þ z
2

� �2Jþ2

pJ z−1
� � ð2:7Þ

where

pJ zð Þ ¼
X2J
j¼0

rj z þ 1ð Þ2J−j z−1ð Þj

with

r2j ¼ −1ð Þj2−2J 2J þ 1
j

� �
r2jþ1 ¼ 0

; j ¼ 0; 1; ::::; J

8<
: ð2:8Þ

Straightforward algebra shows that PJ(z) does satisfy Eq. (2.3).
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The 2J roots of pJ(z) display obvious symmetries: the conjugate and the inverse of a

root are also roots; furthermore, no root is of unit modulus. If we denote by xk (k =

1,2,…….J), the roots inside the unit circle (|xk| < 1) then

pJ zð Þ ¼
YJ
k¼1

z−xk
1−xk

� �
�
YJ
k¼1

z−�xk−1

1−�xk−1

� �
ð2:9Þ

and the low-pass filter F(z) can be written as:

F zð Þ ¼ 1þ z
2

� �1þJ

p z−1
� �

With

p zð Þ ¼
Y
m∈R

z−xm
1−xm

� �Y
n∈R0

z−�x−1n
1−�x−1n

� �
ð2:10Þ

where R, R’ are two arbitrary subsets of {1, 2, 3,…,J}. The spectral factorization of

P zð Þ ¼ zF zð Þ�F zð Þ implies pJ zð Þ ¼ zJp z−1ð Þ �p zð Þ which leads to the following con-

straint on R and R’:

k ∈ R⇔ k ∉ R0 ð2:11Þ

This selection of root fulfills the conditions (i), (ii) and (iii). The addition of the sym-
metry condition (iv) defines a subset of solutions of Eq. (2.11). It corresponds to the

constraint

k ∈ R⇔ J − k þ 1 ∈ R0 and k ∉ R0

For any even value of J, this defines a subset of 2J/2 complex solution in the original
set of “Daubechies wavelets”. A complex conjugate of a solution is also a solution.

Properties of Daubechies complex wavelet

Daubechies Complex Wavelet has important properties [26, 39]:

(i) Symmetry and linear phase property:
The nonlinear phase distortion was precluded by the linear phase response of the

filter. It keeps the shape of the signal. This is very important in image processing.

(ii) Relationships between real and imaginary components of the scaling and the

wavelet functions.

(iii)Multiscale edge Information

With Daubechies complex wavelet transforms, we can act as local edge detectors. In

here, the imaginary components represent strong edges, and the real components rep-

resent only some of the stronger edges.
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Advantages of B-Spline for snakes

In computer graphics, there are two splines which usually used: B-Splines and

Bezier Splines. However, B-Splines have two advantages over Bezier Splines [41]:

the number of control points can be set independently to the degree of a B-Spline

polynomial and B-Splines allow local control over the shape of a Spline curve.

From the advantages above of B-Splines, we choose B-Splines for our proposed

method.

The important of constructing a snake is convenient to choose a set of control points

on the image than to connect the point with straight lines. The B-Spline basis for

snakes on the following:

(i) B-splines are piecewise polynomial that makes them very flexible.

(ii) B-splines can be make smooth curve.

(iii) B-splines preserve the shape that a spline has the same shape as its control

polygon or more precisely.

Advantages of DCWT for active contour

In the past, many algorithms have been built to process image by DWT. DWT

has three serious disadvantages [26]: shift sensitivity, poor directionality and lack

of phase information. We can use DCWT to reduce these disadvantages. On the

basis of Daubechies complex wavelet, we have the following advantages for the ac-

tive contour:

(i) Symmetric and linear phase property of DCWT can keeps the shape of the signal

and carries strong edge information. The linear phase response of the filter

precludes the nonlinear phase distortion and keeps the shape of the signal and it

reduces the misleading and deformed shape of objects.

(ii) DCWT can act as the local edge detectors. The imaginary and real components

represent strong edges. This helps in preserving the edges and implementation of

edge-sensitive contour methods.

(iii) DCWT has reduced shift sensitivity. DCWT reconstructs all local shifts and

orientations in the same manner. So, it is clear that it can quickly find the

boundary of objects.

The proposed method for image contour
This section describes the proposed method for contour objects. The term ‘context-aware’

[42] refers to context as locations, identities of nearby people and objects, and changes to

those objects.

Most of previous definitions of context are available in literature [43] that context-

aware looks at who’s, where’s, when’s and what’s of entities and uses this information to

determine why the situation is occurring. Here, our definition of context is:

“Context is any information that can be used to characterize the situation of an

image such as: pixel, noise, strong edge, and weak edge in a medical image that is

considered relevant to the interaction between pixels and pixels, including noise,

weak and strong edge themselves.”
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In image processing, if a piece of information can be used to characterize the situ-

ation of a participant in an interaction, then that information is context. Contextual

information can be stored in feature maps on themselves. Contextual information is

collected over a large part of the image. These maps can encode high-level semantic

features or low-level image features. The low-level features are image gradients, texture

descriptors and shape descriptors information [42, 44].

The proposed algorithm is of three steps: preprocessing of images, Daubechies com-

plex wavelet filter bank and context- aware closed contour with boundary information.

The goal of the second step is to detect the dominant edge points so that the resulting

image will be composed of textures separated by the edges. We use Daubechies com-

plex wavelet transform for edge detection that can act as the local edge detectors. The

imaginary components of complex wavelet coefficients represent strong edges. Using a

threshold parameter weak edges is wiped out. It works as a structure preserving noise

removal process as well. Since we need to find the coordinates of the edges after this

process, we use contour lines for that purpose since they provide closed edge curves

which will ease the process when computing in the wavelet domain. Here, we use

B-Spline contour lines. Steps of the proposed method are as follows in Fig. 1:

Firstly, preprocessing of images. The collected images are scale normalized to 256 ×

256 pixel, 512 × 512 pixel dimensions in order to reduce complexity.

Secondly, Daubechies complex wavelet filter bank. For Daubechies complex filter

bank computation in the proposed method, Daubechies decomposition proceeds through

two main periods: reconstruction of the signal from the coefficients and energy formula-

tion to define strong point.

Finally, context- aware closed contour with boundary information. Here, we use B-

Spline contour lines, which covers the object.

Reconstruction of the signal from the coefficients

According to the multi-resolution analysis with tensor product bases, an image f(x, y) is

projected onto some “approximation” spaces generated by the dyadic translations of

the scaled function φ(x) and φ(y) (at the resolution scale jmax of the original image). If

we denote the complex projection coefficients by

cjmax
x;y ¼ hjmax

x;y þ igjmax
x;y ð3:1Þ

then we can estimate hjmax
x;y and gjmax

x;y with the following steps of the iterative procedure:

1. Start from the usual approximation:

hjmax
x;y ¼ I x; yð Þ ð3:2Þ
Input 
image

Filter to find 
strong point

B-Spline 
contour lines

Image contour

Daubechies 
complex wavelet

Context-aware

Fig. 1 Flow diagram



Binh Human-centric Computing and Information Sciences  (2015) 5:14 Page 7 of 17
2. Evaluate hjmaxþ1
x;y using a one-level synthesis operation with the real part of the

inverse symmetric Daubechies wavelet kernel only.

3. Make a one-level complex wavelet transform. The result is a quite accurate

estimation of the real and imaginary parts of the projection coefficient cjmax
x;y . In the

first approximation,

hjmax
x;y ≅ I x; yð Þ ð3:3Þ

and gjmax
x;y is proportional to the Laplacian of the f(x, y).

A N-level wavelet transform W can be represented as

cjmax
x;y

n o
→

W
cjmax−N
x;y ; djmax−N

x;y ; :::: djmax−1
x;y

n o
ð3:4Þ

where the quantities djmax−k
x;y represent the set of coefficients for the three wavelet sec-

tors. The complex scaling wavelet coefficients cjmax−N
x;y result from the nested actions of

the complex low-pass filter.

To solve the snake problem numerically, we express its cubic Spline solution using

the standard B-Spline expansion

s� xð Þ ¼
X
k∈Z

c kð Þβ3 x−kð Þ ð3:5Þ

where c(k) are the B-Spline coefficients, and the generating function is the cubic B-

Spline given by

β3 xð Þ ¼
2=3þ xj j3=2−x2; 0≤ xj j < 1
2− xj jð Þ3=6; 1≤ xj j < 2
0; 2≤ xj j

8<
: ð3:6Þ

Using the basic convolution and differentiation rules of Splines [45], we obtain the
explicit formula

ξ sð Þ ¼
X
k∈Z

V k; b31 � c
� �

kð Þ� �þ λ
X
k∈Z

b31 � d 2ð Þ � c
� �

kð Þ d 2ð Þ � c
� �

kð Þ ð3:7Þ

where * denotes the discrete convolution operator and the kernels b13(discrete cubic

B-spline) and d(2) (second difference) are defined by their z-transform as follows [45]:

B3
1 zð Þ ¼ z þ 4þ z−1ð Þ=6 and D(2)(z) = z − 2 + z− 1 (3.8)

We have now replaced the integral in the second term by a sum, which is much more

computationally tractable. The task is then to minimize Eq. (3.7), which is typically

achieved by differentiation with respect to c(k).

The Spline snake Eq. (3.5) has as many degrees of freedom (B-Spline coefficients) as

there are discrete contour points, i.e., one per integer grid point. In Eq. (3.7), if λ is suf-

ficiently small, then the Spline will interpolate exactly. Conversely, the use of larger

values of λ will have the effect of stiffening the Spline and smoothing out the discon-

tinuities of the unconstrained contour curve f(x). It is also necessary to mention that λ

can eventually be dropped by using a variable size knot spacing, which still assures

smoothness.
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The argument is essentially the same for more general curves in the plane, which are

described using two Splines instead of one. Specifically, we represent a general B-Spline

snake as follows:

sh tð Þ ¼ sx tð Þ; sy tð Þ� � ¼ X
k∈Z

c kð Þ:βn t
h
−k

� �
0≤t≤tmax ¼ hN ð3:9Þ

where sx(t) and sy(t) are the x and y Spline components, respectively; these are both

parameterized by the curvilinear variable. The exact value of tmax, which marks the

end of the curve, is dictated by the desired resolution of the final discrete curve; by

convention, we do only render the curve points for t integer. This 2D Spline snake is

characterized by its vector-sequence of B-Spline coefficients c(k) = (cx(k), cy(k)). Note

that there are only N = tmax/h primary coefficient vectors, each corresponding to a

Spline knot on the curve; the other coefficient values are deduced using some pre-

scribed boundary conditions. Clearly, if we specify N, the above automatically defines

the knot spacing h and therefore the smoothness constraint for the curve.

Assuming a curve representation by M = tmax discrete points, we obtain h =M/

N. The freedom of the Spline curve has been reduced by the same amount, result-

ing in a smoothing and stiffening of the curve. Increasing the number N of node

points will reduce the knot spacing, and consequently it will reduce the smoothing

effect of the curve.

Energy formulation

The external potential function is typically given by a smoothed version of the gradient

of the input data [45, 46]

g x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂
∂x

φ � f
� �2

þ ∂
∂y

φ � f
� �2

s
ð3:10Þ

where f denotes the input image and φ is a smoothing kernel; for example, a Gaussian.

Our cost function is the summation of the gradient (external force) over the path of

the curve s(x) sampled at M consecutive points

ξ c kð Þð Þ ¼
XM−1

i¼0

−g s ið Þð Þ ð3:11Þ

For the cost function to be a good approximation of the curvilinear integral, we typic-
ally select M sufficiently large so that the curve points are connected (i.e., within a dis-

tance of one pixel of each other). However, we note that the exact value of M is not

critical; a less dense sampling may be used to increase optimization speed. The negative

sign in Eq. (3.11) is used because we employ a minimization technique for the

optimization.

The problem consists in evaluating Eq. (3.9) at M discrete points. Such an evaluation

is necessary for the computation of the energy function Eq. (3.11) and for the display of

the curve (where M may typically be chosen larger). Therefore, the continuous variable

t is replaced by a discrete variable i, 0 ≤ i < M. The value of M and the number N of

given node point directly determines the knot spacing h. The discrete B-spline snake

with N node points and curve points is given as
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s ið Þ ¼
X
k∈Z

c kð Þ:βn i
h
−k

� �
; h ¼ M

N
ð3:12Þ

Below, we present two different ways for fast curve rendering by digital filtering.

(i) Interpolation: The most straightforward way is interpolation. The B-Spline func-

tion is evaluated at every position (i/h - k) multiplied by the corresponding B-Spline co-

efficient and summation. B-Splines are of compact support, and therefore, the

summing needs only to be carried out over a subset of all coefficients. To interpolate

the curve at a point i, only the coefficients c(k)

i
h
−
nþ 1
2

	 

≤ k ≤

i
h
þ nþ 1

2

	 

ð3:13Þ

need to be included in the sum ( [.] denotes integer truncation).

The main computational drawback of this procedure is that the function Eq. (3.6)

needs to be evaluated for each term in the sum.

(ii) Digital Filtering: The above described algorithm works for any combination of

values of M and N. If we can impose M such that h is an integer value, a much more

efficient algorithm can be described. In general, this requirement is easily met, it is not

critical and can be loosely chosen. The simplification is based on a convolution prop-

erty for B-Splines [45]. It states that any Spline of degree n and knot spacing h (integer)

can be represented as the convolution of n + 1 moving average filters of size h followed by

a Spline of knot spacing one. Hence, three successive steps can obtain the curve points:

� Up-sampling of the B-Spline coefficients;

� Averaging by (n + 1) moving average filters of size h;

� Filtering by a unit B-Spline kernel of degree n.

This algorithm can be implemented with as few as two multiplications and two addi-

tions per node point plus (2n) additions per computed contour coordinate. Generally,

it is faster and also at least a factor of two better than the Oslo knot insertion algorithm

commonly used in the computer graphics.

Border conditions

Appropriate boundary conditions are necessary for the computation of Eq. (3.9) and

Eq. (3.10) [45]. In the following, we distinguish the cases of a close snake and an open

snake.

(i) Close Snake Curve: For a set of node points n(k), k = 0,1,…., N-1 we require that

n(N) = n(0) and n(−1) = n(N-1). The corresponding boundary conditions are periodic.

The extended signal ns(k) of infinite length can be described as

ns kð Þ ¼ n kmodNð Þ ð3:14Þ

(ii) Open Snake Curve: Different choices can be implemented for the open snake such

as mirror or anti-mirror boundary conditions. In this application, the anti-mirror

conditions with a pivot at the boundary value are the most suitable choice because they

allow us to lock the end points of the curve.
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These anti-mirror conditions are such that

n k0 þ kð Þ−n k0ð Þð Þ ¼ n k0ð Þ−n k0−kð Þð Þ ð3:15Þ

where k0 Є {0, N-1}. Since the extended signal has a center of anti-symmetry at the

boundary value, this value will be preserved exactly whenever the filter applied is sym-

metric, which turns out to be the case here. However, a new boundary value cannot be

defined as the lookup of an existing signal value, which makes the implementation

slightly more complicated.

From Fig. 2 and many cases of the other image tests, we observed that the proposed

method accurately detects contour.

Experiments and results
To demonstrate the validity of the proposed method, we have tested on many images.

We have compared the results with the other recent methods such as the method

based on simple discrete wavelet transform (DWT), and the Daubechies complex wave-

let transform (DCWT), the Daubechies complex wavelet transform combined with B-

Spline (DCWTB) and the proposed method using the Daubechies complex wavelet

transform combined with B-spline based on context aware. These methods were imple-

mented on our matlab program and comparison has been made on the same images

and on the similar scale. In our approach, we have taken dataset images for testing.

This data set has 600 images. The proposed method was tested on different cases.
(a) (b) 

(c) (d) 
Fig. 2 Result of the proposed method with Lena’s face image. (a) Lena original image (b) Selected Lena
face. (c) Lena face at 200 iterations (d) Lena face at 300 iterations
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To test our algorithm, many images of different sizes have been used. We compare

the proposed method on two cases: strong objects and weak objects. The strong object

is defined as an object whose boundaries are clear and the weak object is defined as an

object whose boundaries are blurred. We have experimented on several images and

here we report on some selected images.

As shown in Fig. 3, for the Cameraman image, we select an object. In this case, the

object is Cameraman body (strong object) as Fig. 3(b). The results of DWT, DCWT

and DWTB method are shown in Fig. 3(c), (d) and (e). The result of the proposed method

is shown in Fig. 3(f). Here it can be observed that the result in Fig. 3(f) is better than the

result in Fig. 3(c), (d), (e) at the same number of iterations (600 iterations).
(a) (b)

(c) (d)

(e) (f)
Fig. 3 Performance of the proposed method on Cameraman image, compared to the DWT based method
with the strong objects. (a) Cameraman original image. (b) Selected Cameraman body. (c) With DWT
method at 600 iterations (d) With DCWT method at 600 iterations. (e) With DWTB method at 600 iterations
(f) With proposed method at 600 iterations
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Similarly, as shown in Fig. 4, for the Lena image, we select an object. In this case, the

object is Lena’s hat (strong object) as Fig. 4(b). The results of DWT, DCWT and DWTB

method are shown in Fig. 4(c), (d) and (e). The result of the proposed method is shown

in Fig. 4(f ). Here it can be observed that the result in Fig. 4(f ) is better than the result

in Fig. 4(c), (d), (e) at the same number of iterations (400 iterations).

We tested the proposed method on a set of several images and compared with the

other methods. From Figs. 3, 4 and many other tests, we observed that, in the case of

strong objects, the proposed method is better than the other methods.
(a) (b) 

(c) (d) 

(e) (f)
Fig. 4 Performance of the proposed method on Lena image compared to the DWT based method with
the strong objects. (a) Lena original image (b) Selected Lena hat. (c) With DWT method at 400 iterations
(d) With DCWT method at 400 iterations (e) With DWTB method at 400 iterations (f) With proposed
method at 400 iterations
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We now apply the proposed method with the weak objects cases. The weak objects

are the objects with less clear boundaries. The important edge site is blurred in the ob-

ject; therefore, the boundaries become obscure, thereby misleading the curve deform-

ing. Weak objects have less clear boundaries, the extraction of weak object is not easy

work. As a result, weak object could not be extracted precisely.

In Fig. 5, we select the Cameraman body (weak object) image as Fig. 5(b). The Fig. 5(a)

is Cameraman original image. Heavy blur and noise has been added in this image to

make the object weak. The results of DWT, DCWT and DWTB method are shown in

Fig. 5(c), (d) and (e). The result of the proposed method is shown in Fig. 5(f ). Here it
(a) (b) 

(c) (d)

(e) (f) 
Fig. 5 Performance of the proposed method on Cameraman image compared to the DWT based method
with the weak objects (blurred and noisy). (a) Cameraman original image (b) Selected Cameraman Body
(c) With DWT method at 600 iterations (d) With DCWT method at 600 iterations (e) With DWTB method at
600 iterations (f) With proposed method at 600 iterations
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can be observed that the result in Fig. 5(f) is better than the result in Fig. 5(c), (d), (e) at

the same number of iterations (600 iterations). In contour classification, the goal is to

assign an object into one of a set of predefined set of contour classes. The classification

is performed by using a subset of the sub-band energies that are measured to produce

a feature vector that describes the contour.

Figure 6 also compares the proposed algorithm with other methods on an image that

comprises the object with weak edge (blurred image). The results shown in Fig. 6(f ) is

better than the results shown in Fig. 6(c), (d) and (e) at the same number of 450
(a) (b) 

(c) (d) 

(e) (f) 
Fig. 6 Performance of the proposed method on a blurred medical image, compared to the DWT based
method with the weak objects. (a) Image original (b) Selected weak object (c) With DWT method at 450
iterations (d) With DCWT method at 450 iterations (e) With DWTB method at 450 iterations (f) With
proposed method at 450 iterations



Binh Human-centric Computing and Information Sciences  (2015) 5:14 Page 15 of 17
iterations. Therefore, we can say that the performance of the proposed method is better

than other methods in case of weak objects.

To sum up, from all the above experiments and many other experiments, we ob-

serve that the performance of the proposed method is better than the DWT based

method in the both cases: weak objects and strong objects. However, in the case of

weak objects, they have less clear boundaries, the extraction of weak object is not

easy work.

The symmetry and linear phase property is one of the reasons why the Daubechies

complex wavelet performs better than other methods. The proposed method keeps the

shape of the signal and carries strong edge information. It prevents the deformation of

object boundaries. Therefore, it is helpful to find edges of an object in image. On the

other hand, DCWT has reduced shift sensitivity. As the contour moves through space,

the reconstruction using real valued discrete wavelet transform coefficients changes

erratically, while complex wavelet transform reconstructs all local shifts and orienta-

tions in the same manner. Therefore, it is clear that it can quickly find boundaries of

an object.
Conclusions
In this paper, the image contour model with Daubechies complex wavelet transform

combined with B-Spline based on context-aware is proposed. The proposed technique

allows estimating the contour location of a target object along an image. The contribu-

tion in the use of Daubechies complex wavelet transform for image was discussed.

Mathematical basis of the Daubechies complex wavelet transform and B-Spline proved

that image features based on the wavelet transform coefficients can be used very effi-

ciently for image contour classification.

From the results shown in the above section, we see that the proposed method per-

forms better in case of both strong and weak objects. The proposed method can be ap-

plied on any modality of images. However, in the case of weak objects, the proposed

method finds approximate boundaries. Therefore, if the quality of the image is very bad

due to heavy noise or heavy blur, etc., then the estimation ability is reduced because of

the effect to edge the object. To avoid this problem, we can reduce noise and blur

before applying the proposed method. In the future work, the method is going to be

compared with some other methods to evaluate its results in different cases and the

complexity of them.
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