
Implementation of searchable
symmetric encryption for privacy‑preserving
keyword search on cloud storage
Md Iftekhar Salam1, Wei‑Chuen Yau2*, Ji‑Jian Chin2, Swee‑Huay Heng3, Huo‑Chong Ling4, Raphael C‑W Phan2,
Geong Sen Poh5, Syh‑Yuan Tan3 and Wun‑She Yap6

Background
With the rapid development of cloud computing and mobile networking technologies,
users tend to access their stored data from the remote cloud storage with mobile devices.
The main advantage of cloud storage is its ubiquitous user accessibility and also its virtu-
ally unlimited data storage capabilities. Despite such benefits provided by the cloud, the
major challenge that remains is the concern over the confidentiality and privacy of data
while adopting the cloud storage services [1]. For instance, unencrypted user data stored
at the remote cloud server can be vulnerable to external attacks initiated by unauthor-
ized outsiders and internal attacks initiated by the untrustworthy cloud service providers
(CSPs) [2]. There are several reports that confirm data breaches related to cloud servers,
due to malicious attack, theft or internal errors [3]. This raises concern for many users/

Abstract

Ensuring the cloud data security is a major concern for corporate cloud subscribers
and in some cases for the private cloud users. Confidentiality of the stored data can be
managed by encrypting the data at the client side before outsourcing it to the remote
cloud storage server. However, once the data is encrypted, it will limit server’s capabil‑
ity for keyword search since the data is encrypted and server simply cannot make a
plaintext keyword search on encrypted data. But again we need the keyword search
functionality for efficient retrieval of data. To maintain user’s data confidentiality, the
keyword search functionality should be able to perform over encrypted cloud data
and additionally it should not leak any information about the searched keyword or the
retrieved document. This is known as privacy preserving keyword search. This paper
aims to study privacy preserving keyword search over encrypted cloud data. Also, we
present our implementation of a privacy preserving data storage and retrieval system
in cloud computing. For our implementation, we have chosen one of the symmetric
key primitives due to its efficiency in mobile environments. The implemented scheme
enables a user to store data securely in the cloud by encrypting it before outsourcing
and also provides user capability to search over the encrypted data without revealing
any information about the data or the query.

Keywords: Searchable encryption, Data confidentiality, Cloud storage,
Keyword search

Open Access

© 2015 Salam et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19
DOI 10.1186/s13673‑015‑0039‑9

*Correspondence:
wcyau@mmu.edu.my
2 Faculty of Engineering,
Multimedia University,
Cyberjaya, Selangor, Malaysia
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-015-0039-9&domain=pdf

Page 2 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

organizations as the outsourced data might contain very sensitive personal organization/
information.

Several researches have addressed the issue of ensuring confidentiality and privacy
of cloud data without compromising the user functionality. Here, confidentiality refers
to the secrecy of the stored data so that only the client can read the contents of the
stored data. To solve the problem of confidentiality, data encryption schemes can come
in handy to provide the users with some control over the secrecy of their stored data.
This has been adopted by many recent researches which allow users to encrypt their
data before outsourcing to the cloud [4–9]. However, standard encryption schemes will
dampen users’ searching ability over the stored data, since after encryption a user sim-
ply cannot use a plaintext keyword to perform a search anymore and therefore cannot
retrieve the contents in an efficient way.

The keyword search functionality enables the user to search for a certain keyword on
the remote cloud data. Consider a cloud application that consists of a cloud service pro-
vider (CSP), and users who store their data on the cloud storage. The users can use a
traditional encryption scheme to ensure the confidentiality of the contents. The naïve
approach for retrieving encrypted contents related to a certain keyword would require
the user to download all the stored data, and then decrypt and perform the search on the
local machine. However, this solution is infeasible from a practical point of view, as the
user needs to download all the contents rather than the contents containing the searched
keyword. For example, consider a scenario where the cloud storage contains 1 GB of
user’s data, but only 1 MB of data is related to the searched keyword. Using the naïve
solution, it is required to retrieve all the 1 GB data, which is inefficient. Alternatively, the
user can store a plaintext keyword index in the cloud server and use it while retrieving
the data. However, this approach will allow the CSPs to know about the keyword which
is not desirable either. Therefore, to ease the data retrieval from a secure cloud, we need
a scheme which enables user capability to search over encrypted contents.

To provide a secure and efficient retrieval of data, one needs to ensure that the user
can perform a search over the encrypted data without revealing the contents and the
searched keyword to the server. The cryptographic primitive that provides this feature
is widely known as searchable encryption (SE). This research aims to study the search-
able encryption schemes in detail and implements a solution that enables privacy pre-
serving data storage and retrieval system in cloud computing (aka PrivCloud). For our
implementation, we have chosen an existing searchable symmetric key encryption algo-
rithm. To enable the privacy preserving keyword search, this scheme will generate an
encrypted keyword index which will be outsourced to the cloud server along with the
encrypted data set. The encrypted keyword index lists out the encrypted keyword and
pointer to the corresponding document containing that keyword. To search a keyword,
client can simply encrypt the keyword to generate the search token and send it to the
remote cloud server. The server can retrieve pointer to the corresponding document by
matching the search token with the encrypted keyword index table. For our proposed
solution, we have chosen to index all the words from the document instead of a specific
keyword set. This will allow the client to search for any word in the document rather
than any specific keyword. Also, indexing all the words of the document make sure that
the user does not need to maintain a keyword index table at the client side since it can

Page 3 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

search for any words. However, indexing all the words will come with the trade-off of a
slightly larger index size. One of the limitations of the proposed solution is that it does
not support the addition of new files since the index update is static.

Background on searchable encryption
This section provides a detailed background on the searchable encryption scheme.
In particular, we discuss about the architecture, security requirements and design
approaches for searchable encryption scheme.

Searchable encryption: architecture

Searchable encryption (SE) enables the users to generate a search token from the
searched keyword in such way that given a token, the cloud server can retrieve the
encrypted contents containing the searched keyword. Basically, the search token rep-
resents an encrypted query over the encrypted data and can be generated only by users
with the appropriate secret key. Figure 1 shows the basic architecture and working prin-
ciple of a searchable encryption scheme. The architecture comprises mainly four enti-
ties: data owner, data user, cloud service provider and key generator. A brief description
of the entities and their operations are given below.

A. Data owner: The data owner is the entity which generates and encrypts the data and
uploads them to the cloud server. It can be either an organization or an individual. To
use the service, the data owner uses its application which consists of a data processor

Data Owner Data User

Cloud Service Provider

Data Server Service Manager

Encrypted Data Encrypted Query

Data Retrieval

Key ManagementKey Management

Test

Key Generator

Figure 1 Architecture of a searchable encryption scheme. The figure shows the general architecture and
components of a searchable encryption scheme. It describes the workflow of the searchable encryption
scheme.

Page 4 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

for uploading new contents to the cloud. It encrypts the data and metadata with a
cryptographic scheme [1] that enables searching capability.

B. Data user: This entity is also a subscriber to the cloud storage which sends encrypted
queries to the cloud service provider to search for a specific encrypted data. There
may be more than one data user in the system and in some scenario, the data owner
and the data user might be the same entity.

C. Cloud service provider: This entity provides the data storage and retrieval service to
the subscribers. The cloud service provider consists of cloud data server and cloud
service manager. The first entity is used to store the outsourced encrypted data
whereas the latter one is used for data management in the cloud. Upon receiving the
encrypted search queries from the data user, the cloud service provider tests on the
encrypted queries and encrypted metadata in the cloud storage. The encrypted data
that satisfies the search criteria is retrieved and sent back to the data owner upon
completion of the test. The cloud service provider should not learn any information
from the operation.

D. Key generator: This entity is considered to be a trusted third party which is respon-
sible for the generation and management of the encryption/ decryption keys. User
specific keys are generated and distributed during the setup of the system.

Searchable encryption: security requirements

In general, the following requirements should be satisfied when constructing a search-
able encryption scheme.

 • Retrieved data: Server should not be able to distinguish between documents and
determine search contents.

 • Search query: Server should not learn anything about the keyword being searched for.
Given a token, the server can retrieve nothing other than pointers to the encrypted
content that contains the keyword.

 • Query generation: Server should not be able to generate a coded query. The query
can be generated by only those users with the relevant secret key.

 • Search query outcome: Server should not learn anything about the contents of the
search outcome.

 • Access patterns: Server should not learn about the sequences and frequency of docu-
ments accessed by the user.

 • Query patterns: Server should not learn whether two tokens were intended for the
same query.

Searchable encryption: design approaches

Searchable encryption scheme can be built using either a non-keyword based approach
or an index/keyword based approach. In the non-keyword based approach, the scheme
scans the entire document word by word to find out the word W of interest. This pro-
vides the functionality to search any words in the document. However, it takes a long
search time for a large number of document set. On the other hand, index/keyword
based solution builds up an index [10], for each word W of interest and lists out the

Page 5 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

corresponding documents that contain W. This provides a faster search operation when
the document set is large. However, storing and updating the index can be an overhead.

From the viewpoint of cryptographic algorithm selection, the SE scheme can mainly
be modeled using either asymmetric/public key or symmetric/secret key setting. In the
following, we briefly discuss the difference between these two settings.

A. Asymmetric searchable encryption (ASE): In this setting, a user encrypts the data
using asymmetric/public key encryption schemes (e.g. RSA) before outsourcing it to
the cloud server. This setting is appropriate for a scenario where the user searching
over the data is different from the user who generates it. For example, multiple users
can use the public key of a certain user to encrypt and upload the data, however;
only the owner with the corresponding private key can generate the search token and
therefore can perform a search over the encrypted data. The main advantage of ASE
is its functionality whereas the drawback is inefficiency. ASE schemes can be used in
a larger number of settings since the reader and writer can be different for this case.
On the other hand, all known ASE schemes require the evaluation of pairings on
elliptic curves which is a relatively slow and costly operation compared to the hash
functions or block ciphers [1]. Several researches have been conducted in developing
SE scheme using public key cryptography [11–16].

B. Symmetric searchable encryption (SSE): In this setting, a user encrypts the data using
symmetric/private key encryption schemes (e.g. AES) before outsourcing it to the
cloud server. This setting is appropriate when the user that searches over the data
is also the one who generates it. The main advantage of this setting is the efficiency,
but it lacks of functionality as it can only be used for a single user scenario. Moreo-
ver, most of the SSE schemes leaks the access patterns. The encryption is efficient
because most SSE schemes are based on symmetric primitives like block-ciphers and
pseudo-random functions and requires very less computational overhead. The SSE
scheme was first proposed by Song et al. [17] which provides techniques for remote
searching over encrypted data using symmetric key primitives. Later, security
notions of SSE schemes were revisited and stronger security definitions were pro-
vided by Goh [10], Chang et al. [18] and Curtmola et al. [19].

Related work
In this section, we present a brief summary of related works dealing with the searchable
encryption schemes. Searchable encryption scheme can be designed based on either
public key or symmetric key algorithm. The first searchable encryption scheme based
on public key algorithm was proposed by Boneh et al. [11]. This is known as the PEKS
scheme which uses the public key of a user to encrypt and store the data in the server,
and allows an authorized user with the private key to search and decrypt the corre-
sponding content. This is a keyword based scheme ensuring faster search functionality;
however, limiting the search capability. Also, the scheme is computationally expensive
and it reveals the user access pattern. An extension of the PEKS scheme was proposed by
Liu et al. [14]. This also uses the public key primitive to support the keyword searching
on encrypted data. This scheme allows the cloud service provider to participate in the
partial decipherment and claims to have reduced computational overhead on the client

Page 6 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

due to this partial decipherment. Another variant of the PEKS scheme called iPEKS was
proposed by Tseng et al. [15]. This scheme aims to accelerate the search time by looking
into the previously searched keywords. For this, the cloud service provider caches the
previously searched keywords to avoid the search on all the stored ciphertexts. How-
ever, this comes with the tradeoff of large storage overhead. The first searchable encryp-
tion scheme based on symmetric key primitive was proposed by Song et al. [17]. This
provides a non-keyword based solution. However, this scheme can search for only fixed
length words and also the search time is linear in document size, since the it needs to
scan the whole document to complete the search. The scheme is too slow when search-
ing for a large number of documents. Goh [10] addresses some of the issues of the above
scheme by introducing the concept of a secure index. This scheme generates a search
index which can be used to locate the encrypted content. Later, the security notions of
searchable symmetric encryption were revisited and stronger security definitions were
provided by Curtmola et al. [19]. This is a very simple scheme based on keyword index-
ing approach.

Proposed solution
This research aims to design and develop a privacy preserving data storage and retrieval
system in cloud computing. The scopes involve the use of searchable encryption algo-
rithms to search for specific keywords within an encrypted content, i.e., without requir-
ing the user to download the database and decrypt its contents before searching can be
performed. The proposed solution delegates searching on encrypted data to CSP but with
privacy preserved. For the searchable encryption algorithm, we have chosen to imple-
ment the adaptively secure Searchable Symmetric encryption (referred as SSE-2 scheme in
the original paper) scheme proposed by Curtmola et al. [19]. For the rest of the paper, we
will use the term SSE-2 scheme or adaptively secure SSE scheme to refer to the proposed
method by Curtmola et al. The SSE-2 scheme provides a simple but efficient method to
enable searching over encrypted data while preserving the data privacy. The reason behind
selecting a private/symmetric key primitive for our implementation mainly lies in the fact
that it results in significantly lesser computational overhead when compared to its public/
asymmetric key counterpart and therefore will be more suitable for mobile devices.

Adaptively secure searchable symmetric encryption

In this section, we describe the adaptively secure SSE algorithm proposed by Curtmola
et al. [19]. As the name suggests, the scheme is based on the symmetric key encryption
setting and therefore mostly suitable for a single reader/single writer scenario. It uses the
index based approach [10], where user has to pre-process the contents to generate a key-
word index to provide for the search capability. Figure 2 shows the construction of the
adaptively secure searchable symmetric encryption scheme.

As shown in Figure 2, a user U encrypts a set of data D = {D1,D2, · · · ,Dn} and creates
an encrypted index file I which contains a set of m encrypted keywords extracted from
the data set D. In order to conduct a search over the encrypted data, user U outsources
the index I and the encrypted data set D to the cloud server. During a search, U creates
an encrypted query and sends it to the server. Cloud server takes this encrypted query as
input and then uses the encrypted index located at the server to retrieve pointers to the

Page 7 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

document(s) containing the searched keyword. Once the search result is obtained, the
encrypted document(s) containing the searched keyword is returned to the client.

The scheme mainly consists of six functional entities: key generation, document pre-
processing, encryption, search token generation, search and decryption. Functions of
each entity/ block are described as follows:

A. Key generation: It generates the keys for encryption and decryption using a symmet-
ric key primitive. Two keys K1 and K2 are generated for encryption of index contents
and documents respectively. Both keys are generated and stored securely at the user
device. Note that this is a symmetric key primitive and therefore same key is used for
both encryption or decryption purposes.

B. Document re-processing: This block provides the necessary function to pre-process
a set of documents and initialize the encryption procedure. Before encrypting the
set of documents, the user needs to pre-process the document set to pull out the
keyword and build an index. Let D defines a set of document to be encrypted and
uploaded in the cloud server. The user has to list out all the keywords from each
document in D and build an index table listing the documents and the correspond-
ing keywords. The scheme will also assign a content ID for each of the documents in
the set. For example, consider a set of 5 documents D = {D1,D2,D3,D4,D5} to be
uploaded in the cloud. At the pre-processing step, the user will pre-process these set
of documents to build an index table as shown in Table 1. Here, wi (i = 1, 2, 3, · · · ,m)

User/ Client

Cloud Server

Encrypted Index

Data Outsourcing

Data Retrieval

Search over Encrypted Data

Encrypted
Query

Encrypted
Data

Figure 2 Working principle of adaptively secure SSE scheme to search over encrypted data. The figure
shows the work‑flow of the searchable symmetric encryption scheme. This scheme generates and stores an
encrypted index at the cloud server to enable search over encrypted data.

Page 8 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

represents the keyword and m is the total number (m = 10 for this example) of key-
words. The content IDs are assigned sequentially starting from 1. In the next step, it
will create an inverted index table which lists out the respective content IDs for each
keyword wi. For the above example, the inverted index is shown in Table 2.

C. Encryption: This block provides the functionality to encrypt the index and document
set. The encryption is performed using the encryption keys generated at the key gen-
eration step. Basically, it consists of index encryption and document encryptions and
performs as described below: Index encryption This encrypts the keyword set gener-
ated at the pre-processing step and creates an encrypted index/lookup table. The key-
word encryption is computed as ENCK1

(wi||ni), where ENCK1
 represents encryption

with key K1, wi is the keyword i and ni is the corresponding document ID containing
keyword wi. For each of the encrypted keywords, the encrypted index table lists out
the corresponding document ID. For our example document set, the encrypted index
table is shown in Table 3. Document encryption: This encrypts each document from
the document set D with key K2, and stores it in the database. The document encryp-
tion is computed as ENCK2

(Di) which represents encryption of document Di with key
K2. For the above example, the encrypted document lists are shown in Table 4.

D. Search token generation: This block is used when a user wants to search for a doc-
ument containing a certain keyword. It provides the user/client with the func-
tionality of generating a search token/ trapdoor which can be used at the server
to perform a search over encrypted documents. To carry out the search opera-
tion, the user will input the search keyword and then compute the search token.
The search token for a keyword wq is computed as follows: Search Token,
t = (t1, t2, · · · , tn) = ENCK1

(

wq||1
)

,ENCK1

(

wq||2
)

, · · · ,ENCK1

(

wq||n
)

, where n is

Table 1 Document index creation

Content/ document Content ID Keyword

D1 1 w1, w5

D2 2 w1, w3, w8

D3 3 w2, w9, w5

D4 4 w6, w7, w9

D5 5 w1, w4, w10

Table 2 Inverted index

Keyword Content ID

w1 1, 2, 5

w2 3

w3 2

w4 5

w5 1, 3

w6 4

w7 4

w8 2

w9 3, 4

w10 5

Page 9 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

the total number of documents in the document set D. For our example of 5 docu-
ment sets, the search token for keyword wq will be t = (t1, t2, t3, t4, t5). Once com-
puted, the search token is sent to the server to find out the corresponding document
containing the searched keyword.

E. Search: The search function takes the search token and the encrypted index table as
input and outputs the document list containing the searched keyword. For a search
token t = (t1, t2, · · · , tn) it will compare with the encrypted index if any of the values
in t matches with the encrypted keyword. It outputs the corresponding document
IDs which match the search token and then send back the respective documents to
the client.

F. Decryption: The client decrypts back the document once it has obtained the
encrypted document set containing the searched keyword. The document decryp-
tion is computed as DECK2

(Di) which represents decryption of document Di with
key K2.

Implementation of PrivCloud system
This section provides the detailed description for our implementation of the adaptively
secure SSE scheme, aka PrivCloud. This implementation considers a single writer/ single

Table 3 Encrypted index

Encrypted keyword Content ID

ENCK1 (w1||1) 1

ENCK1 (w1||2) 2

ENCK1 (w1||5) 5

ENCK1 (w2||3) 3

ENCK1 (w3||2) 2

ENCK1 (w4||5) 5

ENCK1 (w5||1) 1

ENCK1 (w5||3) 3

ENCK1 (w6||4) 4

ENCK1 (w7||4) 4

ENCK1 (w8||2) 2

ENCK1 (w9||3) 3

ENCK1 (w9||4) 4

ENCK1 (w10||5) 5

Table 4 Encrypted document list

Content ID Encrypted Document

1 ENCK2 (D1)

2 ENCK2 (D2)

3 ENCK2 (D3)

4 ENCK2 (D4)

5 ENCK2 (D5)

Page 10 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

reader scenario where the user that searches over the data is also the one who generates
it. First of all, we provide the basic framework for our implementation.

Framework of the PrivCloud system

The PrivCloud system implements the SSE-2 scheme [19] which consists of the follow-
ing modules: encryption, search and decryption. These modules are integrated with a
Key Generator block which provides the encryption/ decryption keys.

A. Encryption: This module provides the document and index encryption functionality.
Figure 3 shows the framework for the implementation of the SSE-2 Encryption mod-
ule. First, the key generator is initiated to generate keys. Since symmetric key genera-
tion does not require much computational power, we assume that the key generator is
located at the user device. This resolves the key distribution issue. The key generation
is a one-time process to generate and store the keys. After the key generation, a user
inputs a set of document for the encryption and index creation. When user inputs the
document set, the Encryption module uses the Keyword Extractor block to pull out the
keyword and builds an index of all the words in the document. After keyword extrac-
tion, input documents and the document index are fetched to the Encryption block. The
Encryption block uses the keys generated by the key generator to create the encrypted
document set and encrypted document index. Concurrently, the Encryption block also
creates a filename mapping object/ filename index which contains the mapping of docu-
ment IDs to the corresponding original filenames and extensions. This is stored in plain-
text at the user device. Finally, the encrypted files are uploaded to the server.

B. Search: The search module provides the functionality of searching a keyword over
the encrypted data stored at the cloud server. Figure 4 shows the framework for
the implementation of the SSE-2 search module. When user inputs the searched

EncryptionUSER

Keys for Document and

Index Encryption
Encrypted Index

Encrypted Doc n

Encrypted Doc 2

Encrypted Doc 1

…
…
. CLOUD

SERVER

Keyword Extractor

G
en

er
at

e
an

d
st

or
e

ke
ys

KEY
GENERATOR

Input Doc
Doc 1
Doc 2

Doc n

Convert into .txt file and pull out
the keywords for Index creation

Return and Store the Filename Mapping Object at the User

…
…
.

Figure 3 Encryption module. The figure shows the working principle of different blocks in the encryption
module of the PrivCloud system. The encryption module provides the document and index encryption
functionality.

Page 11 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

keyword(s), Search Token Generation computes a search token(s)/ trapdoor(s) using
the keyword/index encryption key. This generated search token is then sent to the
cloud server to perform the search operation. Upon receiving the search token, the
cloud server find out pointer(s) to the appropriate encrypted documents by compar-
ing the search token with the encrypted index values. Following this, the cloud server
retrieves the encrypted document(s) containing the searched keyword(s) and sends
it back to the client along with the corresponding document ID(s).

C. Decryption: The Decryption module that is located at the user’s device provides the
decryption functionality for a given set of encrypted documents. Figure 5 shows
the basic construction for the SSE-2 Decryption module. The Decryption module
requires Encrypted Document, corresponding Document ID, Document Decryption
Key and Filename Mapping Object as input. First, the Decryption module uses the
filename mapping object and the document ID to retrieve the original filename and
extension of the encrypted document. Then it decrypts the document using the doc-
ument decryption key and stores it to the user device.

CLOUD
SERVERSearched Token(s)

Searched Token(s)

Search Module

Search Token
Generation

Search

Return Document ID(s)
Containing Searched Keyword

Return Corresponding Encrypted Document(s) and Document ID(s) Containing Searched Result

USER

Index/ Keyword
Encryption Key

Searched Keyword(s)

Figure 4 Search module. The figure shows the working principle of different blocks in the search module of
the PrivCloud system. This module enables a cloud user to generate an encrypted query to the server. The
cloud server can use this encrypted query to search over the encrypted data without knowing the contents
of the data or the query.

USER Document Decryption Key

Input Encrypted Document

Decryption

Return Decrypted Document

Filename Mapping Object

Document ID

Figure 5 Decryption module. The figure shows the working principle of different blocks in the decryption
module of the PrivCloud system. This module provides the decryption functionality.

Page 12 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

Implementation details

The scheme is implemented and tested under the following environment: Java 1.7.0_51
, Windows 8.1 64-bit operating system. Based on the framework, we divide our imple-
mentation into four main class structures: Key Generation, Encryption, Search and
Decryption.

A. Key generation class: We use the standard javax.crypto library to generate the AES
keys. Two 128-bit AES keys (i.e., keyword encryption key, K1 and document encryp-
tion key, K2) are generated and stored. The key generation class has 3 methods:

• generate () : This method generates two 128-bit AES keys.
• store () : This method converts the generated keys (encoded) into strings, writes

into a Key object and then stores it to a location at the user device.
• read () : This provides the functionality to read the keys from user. The method

read () takes the Key object as input and reads the key values. Following this, it
will convert the key string to an array of bytes and then construct the correspond-
ing secret key from the given byte of array.

B. Encryption class: The encryption is performed at user device before outsourcing the
data to the cloud server. This creates the database containing the encrypted docu-
ment set and encrypted index. Before performing encryption one needs to pre-pro-
cess the data to retrieve the keyword and create an index. The SSE-2 scheme extracts
only a set of distinct keywords to create an index. However, in our implementation
we create an index of the whole document rather than a finite number of distinct
keyword set. This gives a user the flexibility to search for any words in the document
rather than a selected keyword and also user does not need to keep the keyword
index stored at its own device. We consider the initializing/pre-processing of docu-
ments within the Encryption block. The pre-processing step includes:

• Document ID allocation: For each document, it assigns a unique document ID.
The document ID will be assigned starting from 0 and will increase sequentially.

• Keyword extraction: The keyword extraction process searches for consecutive
sequences of non-blank and non-punctuation characters. It can easily be tweaked
to search for consecutive sequences of ASCII characters. This provides adequate
results for binary files containing uncompressed English text. To read out the
characters from an input document, we need to convert it to a text file first and
for this file conversion we have used the Apache Tika. The keyword extractor is
implemented by pulling characters from stream, checking if they are acceptable,
and accumulating consecutive acceptable characters into a keyword. An addi-
tional functionality is also provided where one can limit the number of total key-
words by selecting a minimum length of characters in a keyword. For example,
if we select the minimum keyword length to be 4 characters, then the keyword
extraction algorithm will pull out only those keywords which have 4 or more
ASCII characters.

Page 13 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

 After pre-processing process the encryption module outputs the encrypted files. We
use AES/CBC/PKCS5 for the document and index encryption. Encryption class consists
of mainly two methods: encrypt () and witeDocIDFileNameMapping ().

• encrypt () : This function takes as input all the files from user given path and
encrypt all the files and also creates an encrypted index. For each input file the
function retrieves the keywords first and for each keyword it computes the 128-
bit AES encryption of the keyword and document ID. Then, it creates an index
entry in the encrypted index table to list out the encrypted keyword and the
corresponding document ID. It uses put

(

key, value
)

 specified in Java TreeMap
interface to associate the specified value (document ID) with the specified key
(encrypted keyword). Finally, it saves the encrypted index in the database. The
input documents are ready for encryption once the indexing is finished. For
the encryption of a document, this method first creates a new document in the
database and writes the encrypted stream in this. For each encrypted document,
the corresponding document ID is used as the new filename of the encrypted
document.

• writeDocIDFileNameMapping () : This method is used to create and store a file-
name mapping object /filename index which stores the ID of an encrypted docu-
ment and the corresponding filename. It uses hash table to map the keys (docu-
ment ID) into values (filename). This object is stored at client and utilized during
decryption for the mapping of document ID to retrieve original filename and
extension of the document.

 Figure 6 shows the detail flowchart of the encryption procedure.
C. Search class: The search operation is initiated at the user device and performed in the

cloud server. The operation consists of two methods: searchToken () and search ().

• searchToken () : This takes the keyword and document ID as input and computes
the search token at the client device. The keyword encryption key is used to
compute the encrypted value of the user given keyword and returns the gener-
ated search token. The search token is then sent to the server.

• search () : This takes place at the server when it receives a search request from the
user. This method takes the search token and the user database as input to find
out the document IDs containing the search result. It uses get() defined in the Java
TreeMap class, which returns the value to which the specified key is mapped, or
null if this map contains no mapping for the key. Finally, server retrieves the cor-
responding document and sends back to the client for decryption.

D. Decryption class: This initiates the decrypt () method when the client receives the
encrypted document from the server.
• decrypt () : This method decrypts back the data in its plaintext form by using

the user decryption key stored at the client device. Once the user has input the
encrypted document, the program reads the corresponding document ID from
the filename of the encrypted document. Then, it uses the filename index stored
at the user device and gets the original filename and extension for an encrypted
document by using its ID. Then, it reads the input stream from the encrypted

Page 14 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

document and decrypts back the plaintext content using the corresponding
decryption key. Lastly, this method generates a new document with the retrieved
original filename and extension and then writes the decrypted plaintext stream
into this file and stores it in the user device.

Conclusion
This article provides the details of our implementation of Curtmola’s SSE scheme for the
PrivCloud System. For our implementation, we have chosen the AES/ CBC mode for
the encryption/decryption purpose. Our implementation indexes the whole document

START

Input Documents

Allocate Content ID
for each Input

Input =
Text file?

Convert Input
Document into Text

File

Extract Keywords

Compute Encrypted
Index Bytes for each

Keyword

Save Index Values to
File and store in

Database

Create Encrypted
Index Entry

(Maps Encrypted
Keyword and Content

ID)

Read Keyword
Encryption Key

Run Encryption

Read Document
Encryption Key

Compute Encrypted
Output Stream for

each Input Document

Read Data Stream
from each Input

Document

Write Encrypted
Output Stream in

Corresponding File
Created in the

Database

Create a Filename
Mapping Object

(Maps Content ID
with the original

Filename and
extension)

Store at the User
Device

Upload to Server

END

NO

YES

Index Encryption Document Encryption

Create a New File
(New Filename =

content ID of the input)
for each Input

Document

Figure 6 Flowchart for the document and index encryption process. The figure shows the flowchart of the
encryption module for the PrivCloud system. It provides detail work‑flow of the module to compute the
encrypted document and encrypted index.

Page 15 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

rather than a set of keyword from each document as proposed in the SSE-2 scheme,
which provides the user capability to search any keyword from the document with the
trade-off of a slightly larger index size. Also, the client does not need to maintain a key-
word index on its side. However, the index update process is static in our implementa-
tion, which does not allow the addition of new files or updating files. On the other hand,
our encryption module requires slightly longer time since this also includes the conver-
sion of documents into text file for the keyword extraction process. A faster encryption
process can be obtained if the keyword extraction module can work without the docu-
ment conversion process.

Author’s contributions
This work was carried out as a part of the TM R&D project: Privacy Preserving Data Storage and Retrieval System in Cloud
Computing. All the authors were part of this project and contributed to this manuscript. All authors read and approved
the final manuscript.

Author details
1 Information Security Institute, Queensland University of Technology, Brisbane, Australia. 2 Faculty of Engineering, Multi‑
media University, Cyberjaya, Selangor, Malaysia. 3 Faculty of Information Science and Technology, Multimedia University,
Melaka, Malaysia. 4 Faculty of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia. 5 University Malaysia
of Computer Science & Engineering, Putrajaya, Malaysia. 6 Lee Kong Chian Faculty of Engineering and Science, Universiti
Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia.

Acknowledgements
This research was supported by TM R&D Fund (RDTC/130827).

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Received: 4 December 2014 Accepted: 5 July 2015

References
 1. Kamara S, Lauter K (2010) Cryptographic cloud storage. In: Sion R, Curtmola R, Dietrich S, Kiayias A, Miret JM, Sako K,

Sebé F (eds) Financial Cryptography and Data Security, LNCS 6054. Springer, Berlin, Heidelberg, pp 136–149
 2. Hacigümüs. H, Iyer B, Li C, Mehrotra S (2002) Executing sql over encrypted data in the database‑service‑provider

model. In: Proceedings of SIGMOD, ACM, pp 216–227
 3. Subashini S, Kavitha V (2011) A survey on security issues in service delivery models of cloud computing. J Netw

Comput Appl 34:1–11
 4. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D et al (2000) Oceanstore: an architecture for global‑

scale persistent storage. In: Architectural support for programming languages and operating systems, ACM, pp
190–201

 5. Muthitacharoen A, Morris R, Gil TM, Chen B (2002) Ivy: a read/write peer‑to‑peer filesystem. In: Proceedings of the
5th symposium on Operating System Design and Implementation, vol. 36, pp 31–44

 6. Adya A, Bolosky WJ, Castro M, Cermak G, Chaiken R, Doucer JR et al (2002) Farsite: federated, available, and reliable
storage for an incompletely trusted environment. In: Proceedings of the 5th Symposium on Operating systems
design and implementation, vol. 36, pp 1–14

 7. Benaloh J, Chase M, Horvitz E, Lauter K (2009) Patient controlled encryption: ensuring privacy of electronic medical
records. In: Proceedings of the 2009 ACM workshop on Cloud computing security, ACM, pp 103–114

 8. Li M, Lou W, Ren K (2010) Data security and privacy in wireless body area networks. IEEE Wireless Communications
Magazine, vol. 17, IEEE, pp 51–58

 9. Li M, Yu S, Ren K, Lou W (2010) Securing personal health records in cloud computing: patient‑centric and fine‑
grained data access control in multi‑owner settings. In: Jajodia S, Zhou J (eds) Security and Privacy in Communica‑
tion Networks, LNCS 50. Springer, Berlin Heidelberg, pp 89–106

 10. Goh EJ (2003) Secure indexes. In: Cryptology ePrint Archive: Report 2003/216
 11. Boneh D, Crescenzo GD, Ostrovsky R, Persiano G (2004) Public‑key encryption with keyword search. In: Cachin C,

Camenisch JL (eds) Advances in Cryptology EUROCRYPT, LNCS 3027. Springer, Berlin Heidelberg, pp 506–522
 12. Boneh D, Waters B (2007) Conjunctive, subset, and range queries on encrypted data. In: Salil Vadhan P (ed) Theory of

cryptography, LNCS 4392, Springer, Berlin Heidelberg, pp 535–554
 13. Liu Q, Wang G, Wu J (2009) An efficient privacy preserving keyword search scheme in cloud computing. In: Interna‑

tional Conference on Computational Science and Engineering (CSE), Vol. 2, pp 715–720

Page 16 of 16Salam et al. Hum. Cent. Comput. Inf. Sci. (2015) 5:19

 14. Liu Q, Wang G, Wu J (2012) Secure and privacy preserving keyword searching for cloud storage services. J Netw
Comput Appl (JNCA) 35(3):927–933

 15. Tseng FK, Chen RJ, Lin BS (2013) iPEKS: Fast and secure cloud data retrieval from the public‑key encryption with
keyword search. International Conference on Trust. Security and Privacy in Computing and Communications, IEEE,
pp 452–458

 16. Lee SH, Lee IY (2013) A secure index management scheme for providing data sharing in cloud storage. J Inform
Process Syst 9(2):287–300

 17. Song DX, Wagner D, Perrig A (2000) Practical techniques for searches on encrypted data. In: Proceedings of the IEEE
Symposium on Security and Privacy, IEEE, pp 44–55

 18. Chang YC, Mitzenmacher M (2005) Privacy preserving keyword searches on remote encrypted data. In: Ioannidis J,
Keromytis A, Yung M (eds) Applied Cryptography and Network Security, LNCS 3531. Springer, Berlin Heidelberg, pp
442–455

 19. Curtmola R, Garay J, Kamara S, Ostrovsky R (2006) Searchable symmetric encryption: improved definitions and effi‑
cient constructions. In: Proceedings of the 13th ACM conference on Computer and communications security, ACM,
pp 79–88

	Implementation of searchable symmetric encryption for privacy-preserving keyword search on cloud storage
	Abstract
	Background
	Background on searchable encryption
	Searchable encryption: architecture
	Searchable encryption: security requirements
	Searchable encryption: design approaches

	Related work
	Proposed solution
	Adaptively secure searchable symmetric encryption

	Implementation of PrivCloud system
	Framework of the PrivCloud system
	Implementation details

	Conclusion
	Author’s contributions
	Received: 4 December 2014 Accepted: 5 July 2015References

