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Abstract

Background: Incorrect snake identification from the observable visual traits is a
major reason for death resulting from snake bites in tropics. So far no automatic
classification method has been proposed to distinguish snakes by deciphering the
taxonomy features of snake for the two major species of snakes i.e. Elapidae and
Viperidae. We identify 38 different taxonomically relevant features to develop the
Snake database from 490 sample images of Naja Naja (Spectacled cobra), 193 sample
images of Ophiophagus Hannah (King cobra), 88 images of Bungarus caeruleus
(Common krait), 304 sample images of Daboia russelii (Russell’s viper), 116 images of
Echis carinatus (Saw scaled viper) and 108 images of Hypnale hypnale (Hump Nosed
Pit Viper).

Results: Snake identification performances with 13 different types of classifiers and
12 attribute elevator demonstrate that 15 out of 38 taxonomically relevant features
are enough for snake identification. Interestingly, these features were almost equally
distributed from the logical grouping of top, side and body views of snake images,
and the features from the bottom view of snakes had the least role in the snake
identification.

Conclusion: We find that only few of the taxonomically relevant snake features are
useful in the process of snake identification. These discriminant features are essential
to improve the accuracy of snake identification and classification. The presented
study indicate that automated snake identification is useful for practical applications
such as in medical diagnosis, conservation studies and surveys by interdisciplinary
practitioners with little expertise in snake taxonomy.

Keywords: Snake classification; Snake database; Taxonomy; Classifiers;
Feature analysis
Background
Snake is a cold blooded reptile that is in majority perceived to be deadly to humans

[1-5]. Since the ancient times, Snakes have been worshipped, feared and disliked by

people across the world. Snake remain a painful reality in the daily life of millions of

affected people and is largely one of the most misunderstood species [6,7]. At the same

time, they are more perilous than the wild animals due to their close existence near

human habitation [2]. World Health organization reports around five million snake

bites every year resulting in millions of envenomation, hundreds of thousands of am-

putations and deaths. In cities like Thiruvananthapuram in Kerala, that has high hu-

midity environment, where we started our study, on daily approximately 25–30 Snakes
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sightings are reported. Majority of these sighted snakes were identified to equip with

enough venom to kill a human in the course of few hours.

In tropical regions of the world, most of the snake bite cases are caused by four ven-

omous snakes often referred to as “Big Four” snakes [8]. They include Spectacled Cobra

(Naja naja), Common Krait (Bungarus caeruleus), Russell’s Viper (Daboia russelii) and

Saw Scaled Viper (Echis carinatus) [7]. Another snakes which causes major snake bite

cases and is very commonly found are King cobra (Ophiophagus Hannah) and Hump

nosed Pit Viper (Hypnale hypnale). Due to this reason we restrict our study in this

paper to these six deadly snakes [9,10].

Although anti-venom is produced in sufficient quantities by several public and pri-

vate manufacturers, most snake bite victims don’t have access to good quality care, and

in populated countries like India, both morbidity and mortality due to snake bite is

high. Because of serious misreporting, the true burden of snake bite is not known. Doc-

tors mostly inject polyvalent anti-venom to the snake bite victim. This is injected with-

out considering which snake has bitten the person, even under the situation when the

patient has knowledge about some observational features of the snake under consideration.

The taxonomy of the snake is not well understood by majority of the medical practitioners

making the correct identification of the snake from the remarks of the victims or eye wit-

ness. The polyvalent anti-venom injected by the medical practitioner contains antibodies

raised against two or more species of snake, which may neutralize the venom injected by a

single snake bite. Since there is only one type of venom injected by a snake bite, the

remaining non-neutralized part of the polyvalent anti-venom used for treating the patient

creates further risk to the human health. So proper identification of the snake is very im-

portant for the proper medical treatment to save the life of the snake bite victims [9-11].

To our knowledge, there has been no research reported yet on computer based ap-

proach to automatically distinguish snake classes. This may be largely due the lack of

database for this purpose and less awareness of snake taxonomy research. The lack of

database of venomous snakes in India makes this research very challenging, as the col-

lection of images often involve well trained snake catchers, photographers and expert

biologists. Through this paper we provide an early set of snake images that are col-

lected in a view to identify relevant features based on snake taxonomy. In addition, the

images contain a wide range of features from different snakes that can help with gain-

ing newer understanding on snake taxonomy. The Indian snake taxonomy is a topic

that is not investigated with rigor and there is lack of expert taxonomists. This makes

the first line snake identification difficult in life threatening situations that are essential

for recommending accurate treatment to the snake bite victims.

Materials and methods
Snake database

The snake images for the experiment were collected from forest across different parts

of Kerala, India with the help of snake catchers from Pujappura Panchakarma Serpen-

tarium, Trivandrum, India, through the close and 1 year long interaction with the sub-

jects under study. The total number of images used for this experiment is 1299 that are

obtained from 10–15 wild snakes of each species taken at different occasions and time.

Table 1 shows the taxonomically relevant features and their logical grouping based

on the top, bottom, side or body view of the snake in the captured image, and Figure 1
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shows the visual description of taxonomy features for each of snake class. The de-

scriptions of the snakes are included as a supplementary file (Additional file 1). In

total, 38 taxonomy based features are identified for creation of the feature database

from 1299 snake images collected. There are a total of 490 images of spectacled

cobra, 304 images of Russell’s viper, 193 images of king cobra, 88 images of com-

mon krait, 116 images of saw scaled viper and 108 images of hump nosed pit viper.

For creating the feature database, the 1299 snake images are manually converted

by taxonomist to form feature vectors representing 38 taxonomically relevant fea-

tures. This database file is included as a supplementary material to this article

(Additional file 2).
Feature ranking and selection

Out of 38 taxonomically relevant features, top features that have highest impact on

classification are determined. In order to find the top features from the complete data-

base following 12 Attribute Elevators are used: ChiSquared AttributeEval [12], CfsSub-

setEval [13], ConsistencySubsetEval [14], FilteredAttributeEval [15], FilteredSubsetEval

[16], GainRatioAttributeEval [17], InfoGainAttributeEval [18], OneRAttributeEval [19],

PrincipalComponents [20], ReliefFAttributeEval [21], SVMAttributeEval [19], Symmetri-

calUncertAttributeEva [19], along with combination of certain search methods [21,22] like

Genetic Search, Greedy Stepwise, Linear Forward Selection, Rank Search, Scatter Search,

Subset Size Forward Selection and Ranker. The histogram of the feature counts from

these attribute elevators is then plotted to get the ranking of the taxonomically relevant

features that are most useful for the classification as shown in Figure 2. The concept of

ranking and histograms used in this method is useful for identifying the relevance of the

features [23-25]. The rank table is made with the help of this histogram based on the total

number of repetitions of each features in the experiment. The repetitions of the feature

results from the repeated ranking of features using different feature ranking method. The

features that share same number of repetitions are then ranked on the basis of their aver-

age classification score taken independently for that feature i.e. features with highest aver-

age classification score among the features with same repetition is ranked first. Table 2

shows the ranking of all the 38 features using the attribute elevators with search method

and classification score. The rank list of features is used to prepare 38 feature subsets with

different numbers of features from 1 to 38 starting from the top feature to the last feature

of Table 2. The numbers of features in the feature subsets are referred to as feature size.
Classifier selection and training

In order to perform automated snake classification following 13 classifiers are used:

Bayes Net [26], Naïve Bayes [27], Multilayer perception [26], Ada BoostM1 [28], Multi

BoostAB [29], RBF network [30], IB1 [30], IBk [31], LWL [32], NB Tree [33], J48 [34],

Random Sub Space [35], and Bagging [36]. In the setting up the classification experi-

ment, the database is split into training and test set. The training set is the one that will

train the classifier parameter, while the test set is used to assess the performance of the

classifier in terms of classification accuracy, F-score value, the area under the receiver

operator characteristic curve, precision and recall rates. The selection of less number of

samples per snake class in the training set makes the problem challenging and performance



Table 1 The table shows the grouping of the taxonomy features and its idealistic feature
values for the creation of the database for automatic classification purpose

Feature
group

Features Feature name Spectacled
cobra

King
cobra

Common
krait

Russel’s
viper

Saw
scaled
viper

Hump
nosed
pit viper

Top F1 Rostral 1 1 1 1 1 1

F2 Internasal 2 2 2 1 1 2

F3 Prefrontal 2 2 2 1 1 2

F4 Supraocular 2 2 2 1 1 2

F5 Frontal 2 2 2 1 1 2

F6 Parietals 2 2 2 1 1 2

F7 V mark on head 0 0 0 1 0 0

F8 Triangular head 0 0 0 1 0 1

F9 Two dark patch
on head

0 0 0 1 0 0

F10 Number of scales
between
Supraoculars

1 1 1 6-9 6-9 1

F11 Big occipital 0 1 0 0 0 0

F12 Plus sign in the head 0 0 0 0 1 0

Side F13 Small nostril 1 1 1 0 1 1

F14 Round pupil 1 1 1 0 0 0

F15 Big nostril 0 0 0 1 0 0

F16 Elliptical pupil 0 0 0 1 1 1

F17 Loreal 0 0 0 1 1 1

F18 Nasorostral 0 0 0 1 0 0

F19 Supranasal 0 0 0 1 0 0

F20 Triangular brown
streaks below/behind eyes

0 0 0 1 0 0

F21 Subocular 0 0 0 1 1 1

F22 Nasal 2 2 2 1 3 1

F23 Preoculars 1 1 1 4 4 4

F24 Postoculars 3 3 2 4 4 4

F25 Supralabial scale 6-7 6-7 6-7 9-11 9-11 9-11

F38 Pit between eyes
and nose

0 0 0 0 0 1

Bottom F26 Mental 1 1 1 1 1 1

F27 Asterior sublingual 1 1 1 1 1 1

F28 Posterior sublingual 1 1 1 1 1 1

Body F29 Round/smooth scale 1 1 1 0 0 0

F30 Hood 1 0 0 0 0 0

F31 Spectacled mark
on hood

1 0 0 0 0 0

F32 Keeled scale 0 0 0 1 1 1

F33 Spots on dorsal scale 0 0 0 1 1 1

F34 White/yellow stripes
on dorsal scale

0 1 1 0 0 0

F35 Black stripes on ventral scale 0 1 0 0 0 0
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Table 1 The table shows the grouping of the taxonomy features and its idealistic feature
values for the creation of the database for automatic classification purpose (Continued)

F36 Enlarged and
Hexagonal vertebral
scale

0 0 1 0 0 0

F37 Ventral scale 1 1 1 1 1 1

If certain features are visible in the image, corresponding values are assigned else for every invisible or missing feature
‘0’ is assigned.

Figure 1 Scale diagrams for Spectacled Cobra, Common Krait, Saw Scaled Viper, King Cobra,
Russell’s viper and Hump Nosed Pit Viper observed at different natural view angles.
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Figure 2 The histogram of the results from 12 Attribute Elevators in combination with certain search
methods showing the top relevant features for classification.
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measures in such situations indicates classifiers applicability in practice. In our study, we

use 5% of the samples from each snake class for the training set, while remaining 95% is se-

lected as test set. The classifier that performs the best in terms of performance measures

can be selected as a possible candidate for implementation.

The research and work submitted do conform to the guidelines for care and use of

animals in scientific research. We’ve followed the guidelines published by Indian Na-

tional Science Academy. The Ethics committee of Enview R&D Labs gave approval for

the research work.

Results and discussion
The feature database of the snakes is as explained in Table 1 and Figure 1 is used for

analysing the classification performance of this six class classification problem. The fea-

ture database contains 38 features of each sample. Now using Table 2, we perform our

further experiments for databases with different feature size. The samples in the data-

bases are randomly split into 5% samples in training set and 95% in test set and per-

formance evaluated on individual classifiers. The selection of features is performed on

the training set. To ensure statistical correctness, the selection and testing is repeated

100 times, and the resulted reported in Table 3. The testing is done such that test and

training set are non-overlapping in samples. Table 3 shows the comparisons of average

performance measures of 38 feature size databases. The performances indicated are

percentage accuracy of correct classification, F-score value, the area under the receiver

operator characteristic curve, precision and recall rates. Table 3 shows the variation of

performance measures with the increase in feature size i.e. the number of features in

the feature-subset. As shown in Table 3, the correct classification accuracy increases

considerably till feature size 15 which contain top 15 features of rank list in the data-

base and tend to drop from feature size 31. This proves that these top 15 features are

alone enough for the automated snake identification instead of 38 taxonomically rele-

vant features.

Tables 4 and 5 shows the performance of the automatic snake classification using

Bayes Net [37], Naive Bayes [27], Multilayer perception [26], Ada BoostM1 [28], Multi

BoostAB [29], RBF network [30], IB1 [31], IBk [31], LWL [32], NB Tree [33], J48 [34],



Table 2 Ranking of all the 38 features based on the results from 12 attribute elevators
with certain search method and the average classification score taken individually for all
the features

Feature number Number of times repeated Classification - score

F12 30 43.66 ± 1.51

F29 28 57.02 ± 1.27

F35 28 47.95 ± 1.11

F34 28 47.59 ± 1.23

F10 27 51.16 ± 2.59

F24 27 46.46 ± 3.70

F30 25 47.51 ± 1.47

F36 25 39.92 ± 1.89

F32 23 54.79 ± 1.28

F11 22 36.80 ± 1.13

F16 20 50.60 ± 1.50

F13 20 44.73 ± 2.23

F14 17 50.23 ± 1.46

F1 16 36.82 ± 1.84

F8 15 45.80 ± 2.05

F25 15 45.77 ± 3.11

F37 15 36.24 ± 1.96

F23 14 45.56 ± 2.88

F26 14 43.14 ± 1.92

F3 14 36.47 ± 1.42

F15 12 50.23 ± 1.61

F33 12 41.16 ± 2.01

F38 12 37.50 ± 1.46

F17 11 48.50 ± 1.78

F9 11 41.22 ± 1.61

F27 11 39.67 ± 2.48

F22 11 37.81 ± 3.47

F6 11 36.42 ± 1.40

F19 10 49.05 ± 1.67

F18 10 48.46 ± 1.91

F20 10 48.02 ± 1.86

F7 10 44.97 ± 2.06

F31 10 36.83 ± 0.98

F4 10 36.30 ± 1.48

F2 10 36.26 ± 2.14

F5 10 36.21 ± 1.58

F21 9 48.60 ± 1.63

F28 9 41.26 ± 2.48
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Random Sub Space [35], and Bagging [36] classification methods for top 15 selected

snake feature database and 38 snake feature database respectively. The performances

indicated are percentage accuracy of correct classification, F-score value, the Area

under the receiver operator characteristic curve, precision and recall rates. The RBF



Table 3 Comparison of average classification result from 13 classifier in different feature
size snake database with 5% train and 95% test of the total samples

Feature size % Correct F-score AUC Precision (%) Recall (%)

1 43.69 ± 1.51 0.55 ± 0.00 0.55 ± 0.02 39 ± 0.02 95 ± 0.03

2 63.16 ± 1.83 0.81 ± 0.01 0.75 ± 0.02 64 ± 0.02 91 ± 0.03

3 72.41 ± 2.38 0.89 ± 0.01 0.84 ± 0.03 79 ± 0.03 92 ± 0.02

4 73.73 ± 3.01 0.93 ± 0.01 0.88 ± 0.03 86 ± 0.05 93 ± 0.01

5 75.23 ± 2.65 0.93 ± 0.01 0.88 ± 0.03 85 ± 0.05 93 ± 0.02

6 76.81 ± 2.83 0.94 ± 0.01 0.89 ± 0.03 85 ± 0.04 95 ± 0.02

7 77.21 ± 2.82 0.94 ± 0.01 0.89 ± 0.02 85 ± 0.03 94 ± 0.01

8 77.86 ± 2.84 0.94 ± 0.01 0.90 ± 0.03 86 ± 0.04 94 ± 0.01

9 77.89 ± 2.95 0.94 ± 0.02 0.89 ± 0.03 84 ± 0.05 96 ± 0.03

10 77.82 ± 2.96 0.94 ± 0.02 0.89 ± 0.03 84 ± 0.05 95 ± 0.03

11 77.65 ± 2.92 0.94 ± 0.02 0.89 ± 0.03 84 ± 0.05 91 ± 0.03

12 77.76 ± 3.03 0.94 ± 0.02 0.88 ± 0.03 84 ± 0.05 92 ± 0.03

13 78.05 ± 2.97 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 93 ± 0.03

14 77.66 ± 2.95 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 93 ± 0.03

15 78.80 ± 3.05 0.94 ± 0.02 0.89 ± 0.03 83 ± 0.05 95 ± 0.03

16 78.19 ± 3.14 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 94 ± 0.04

17 78.31 ± 3.03 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 94 ± 0.04

18 78.29 ± 3.06 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

19 78.05 ± 2.93 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

20 78.00 ± 2.94 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

21 78.44 ± 2.55 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

22 78.52 ± 2.74 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

23 78.61 ± 2.80 0.94 ± 0.02 0.88 ± 0.03 83 ± 0.05 96 ± 0.04

24 78.47 ± 2.79 0.94 ± 0.02 0.88 ± 0.03 82 ± 0.05 96 ± 0.04

25 78.41 ± 2.84 0.94 ± 0.02 0.88 ± 0.03 82 ± 0.05 95 ± 0.04

26 78.24 ± 2.85 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

27 78.10 ± 2.87 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

28 78.09 ± 2.89 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

29 78.03 ± 2.90 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

30 78.05 ± 2.89 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

31 77.99 ± 2.92 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

32 77.97 ± 2.92 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

33 77.96 ± 2.94 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

34 77.90 ± 2.91 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

35 77.83 ± 2.95 0.94 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

36 77.74 ± 2.99 0.93 ± 0.02 0.87 ± 0.03 82 ± 0.05 95 ± 0.04

37 77.67 ± 2.98 0.93 ± 0.02 0.87 ± 0.03 82 ± 0.05 94 ± 0.04

38 77.55 ± 2.96 0.93 ± 0.02 0.87 ± 0.03 82 ± 0.05 94 ± 0.04
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network, IBk and IB1 classifiers showed higher classification performance as opposed

other classifiers. The classification accuracy of above 85% in-dicates robustness of the

taxonomically relevant features in the automatic classification process. Multilayer per-

ception [26], RBF Network [30], IB1 [31], IBk [31], and J48 [34] shows good recognition



Table 4 Comparison of different classifiers when 5% of the class samples are used as
gallery and remaining 95% of sample are used as test on top 15 selected snake
feature database

Method % Correct F-score AUC Precision (%) Recall (%)

Bayes net [37] 81.26 ± 4.00 0.98 ± 0.01 0.92 ± 0.03 88 ± 0.05 96 ± 0.04

Naïve Bayes [27] 81.64 ± 3.05 0.98 ± 0.01 0.93 ± 0.03 91 ± 0.04 96 ± 0.04

Multilayer perceptron [26] 86.64 ± 2.71 0.97 ± 0.01 0.92 ± 0.02 90 ± 0.04 95 ± 0.03

Ada BoostM1 [28] 57.52 ± 1.27 0.80 ± 0.03 0.75 ± 0.02 63 ± 0.04 95 ± 0.04

Multi BoostAB [29] 57.52 ± 1.27 0.80 ± 0.03 0.75 ± 0.02 63 ± 0.04 95 ± 0.04

RBF network [30] 88.75 ± 2.69 0.97 ± 0.02 0.94 ± 0.02 93 ± 0.04 96 ± 0.03

IB1 [31] 86.05 ± 3.35 0.93 ± 0.03 0.91 ± 0.04 89 ± 0.04 94 ± 0.07

IBk [31] 87.50 ± 2.35 0.95 ± 0.01 0.92 ± 0.02 88 ± 0.04 96 ± 0.03

LWL [32] 69.57 ± 4.17 0.97 ± 0.01 0.86 ± 0.04 77 ± 0.06 96 ± 0.03

J48 [33] 84.71 ± 2.90 0.95 ± 0.02 0.91 ± 0.03 87 ± 0.06 96 ± 0.03

Random sub space [34] 79.77 ± 4.01 0.98 ± 0.01 0.89 ± 0.03 82 ± 0.06 98 ± 0.02

Bagging [35] 81.34 ± 3.93 0.97 ± 0.02 0.90 ± 0.03 85 ± 0.06 96 ± 0.03

NB Tree [36] 82.10 ± 4.02 0.96 ± 0.02 0.91 ± 0.03 87 ± 0.05 96 ± 0.03
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performance among the tested classifiers at 5% training data. While increasing the

training dataset size to 30% the multilayer perception [26] classifier results in 94.31 ±

1.00% classification accuracy. The results indicate the difficulty of automatic classifica-

tion of snakes, nonetheless, is indicative of the practical use in as a first line prediction

of the snake classification. These early results opens up two major directions of re-

search: (1) as to identify the taxonomy features of unknown snakes using feature auto-

matic feature analysis and (2) to develop accurate feature classification and recognition

methods for automatic snake. To use of real-time applications such as in diagnosis an

ambitious 100% accuracy is preferred, which is by far a challenging problem posed

through these results. In addition, the results on 5% training data, is likely to be more

useful in real-time systems as in real applications the size of the test data keeps on
Table 5 Comparison of different classifiers when 5% of the class samples are used as
gallery and remaining 95% of sample are used as test on 38 snake feature database

Method % Correct F-score AUC Precision (%) Recall (%)

Bayes net [37] 78.81 ± 2.27 0.98 ± 0.01 0.89 ± 0.03 83 ± 0.07 97 ± 0.03

Naïve Bayes [27] 77.69 ± 2.11 0.97 ± 0.01 0.89 ± 0.02 90 ± 0.05 89 ± 0.03

Multilayer perceptron [26] 86.85 ± 2.59 0.98 ± 0.01 0.92 ± 0.02 90 ± 0.04 94 ± 0.04

Ada BoostM1 [28] 57.39 ± 1.44 0.80 ± 0.03 0.75 ± 0.02 62 ± 0.04 95 ± 0.05

Multi BoostAB [29] 57.39 ± 1.44 0.80 ± 0.03 0.75 ± 0.02 62 ± 0.04 95 ± 0.05

RBF network [30] 85.00 ± 3.05 0.95 ± 0.02 0.91 ± 0.03 92 ± 0.05 89 ± 0.04

IB1 [31] 85.82 ± 2.45 0.93 ± 0.02 0.91 ± 0.02 88 ± 0.04 93 ± 0.04

IBk [31] 86.38 ± 2.47 0.94 ± 0.01 0.91 ± 0.02 88 ± 0.04 94 ± 0.03

LWL [32] 68.37 ± 6.26 0.97 ± 0.01 0.82 ± 0.05 72 ± 0.07 96 ± 0.03

NB Tree [36] 83.79 ± 2.87 0.95 ± 0.02 0.91 ± 0.03 88 ± 0.05 95 ± 0.04

J48 [33] 78.92 ± 4.37 0.98 ± 0.01 0.87 ± 0.04 80 ± 0.06 97 ± 0.03

Random sub space [34] 80.50 ± 3.29 0.97 ± 0.02 0.90 ± 0.03 85 ± 0.06 96 ± 0.04

Bagging [35] 80.91 ± 4.48 0.94 ± 0.03 0.88 ± 0.04 83 ± 0.06 93 ± 0.04
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growing at a rate higher than the training data, mainly because of the labor intensive

processes involved in the preparation and validation of the training data.

Conclusion
In this paper, we presented an automatic snake identification problem by developing a

taxonomy based feature targeted for use by the computer scientist and herpetologist.

The feature-subset analysis indicated that only 15 features are sufficient for snake iden-

tification. In a real-life situation, the snake feature database reflects a situation when

the bite victim has seen the snake, and based on the observed features it is required to

identify the class of the snake. In addition to the venom detection research required for

treating the bite victims, the proposed automatic snake recognition method could pro-

vide valuable information to administer correct medication and treatment in life threat-

ening situation. Survey of snakes in wild is another major activity in the process to

ensure the preservation of snake population and diversity. This is however a very chal-

lenging task and require prohibitive investments in manpower. The automatic classifi-

cation using snake image database can be extended to the analysis of snake images

captured remotely with minimal human intervention. The progress in snake taxonomy

research is in the decline for the last 60 years, and has resulted in lack of expertise for

environmental surveys and help required for medical practitioners in emergency situa-

tions. With a computerized analysis on the images of snakes using the proposed data-

base and classification approach, we hope that more studies would come out to

generate interest on this topic.
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