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Abstract

Human face processing and evaluation is a problem due to variations in orientation,
size, illumination, expression, and disguise. The goal of this work is threefold. First, we
aim to show that the variant of polar transformation can be used to register face
images against changes in pose and size. Second, implementation of fusion of
thermal and visual face images in the wavelet domain to handle illumination and
disguise and third, principal component analysis is applied in order to tackle changes
due to expressions up to a particular extent of degrees. Finally, a multilayer
perceptron has been used to classify the face image. Several techniques have been
implemented here to depict an idea about improvement of results. Methods started
from the simplest design, without registration; only combination of PCA and MLP as
a method for dimensionality reduction and classification respectively to the range of
adaptive polar registration, fusion in wavelet transform domain and final classification
using MLP. A consistent increase in recognition performance has been observed.
Experiments were conducted on two separate databases and results yielded are very
much satisfactory for adaptive polar registration along with fusion of thermal and
visual images in the wavelet domain.
Introduction
Due to enhancement in accuracy, face recognition has gradually increased its recognition

as a biometric trait for identification and authentication. Biometric security system is in

active research areas for more than last four decades but till date a tractable, robust, and

low cost solution is yet to be produced. Complications and difficulties arise in designing

such a system lie heavily due to the requirement of unconstrained face recognition. Some

constrained face recognition systems may be created specific to applications like monitoring

daily attendance, recording frequency of visits for known personalities, or identity checking

at non-critical official dealings, with ease, but to maintain security and surveillance e.g. to

counter terrorism if some suspect is to be restricted to the protected area like an airport,

unconstrained face recognition becomes a necessity. Many techniques have already been

developed to tackle sources of different complications like, changes in illumination level

and direction [1,2], variation in pose [3,4], changes in expression [5]; changes in skin colour

[6], disguises due to cosmetics [7], glasses [8,9], skin colour [6], beard, moustaches [7]

etc. These complications are multifaceted and it becomes deterrent to achieve better
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recognition performance when two or more complicacies are bundled together, some

of them are given below:

i. Different illumination levels

ii. Direction of illumination may vary

iii. Distance of camera from the face may vary and, as a result, effective facial area is

bound to be different. In this case if it is possible to crop the facial area still scaling

of cropped images is necessary

iv. Rotation of head about one or more axes in 3-D space leads to significant differences

in face images

v. Presence or absence of beard and/or moustache

vi. Presence or absence of spectacles and/or coloured-glasses, adornments

vii.Deliberate change in colour of skin and/or hair to appear before the designed

system in disguise.

viii.Change in expressions and

ix. Others

In order to tackle all these detrimental factors let us take them into account one by one.

To handle different pose and sizes all the images of each and every person are to be

registered against a frontal and neutral face design of that person. Illumination and

disguise related problems are dealt with fusion of visual and its corresponding infrared

or thermal face images. Finally, Principal Component Analysis (PCA) is used to manage

the results of beard, moustache, glasses, and expressions. However, with all these tools in

action, classification job is not necessarily a trivial one because all those tools are capable

of handling these ill effects to some extent whereas they are not safe enough to abolish

those unwanted circumstances. Therefore, like other complex pattern classification tasks,

here also, an efficient classifier is needed for final acceptance. Here, one multilayer percep-

tron (MLP) has been chosen because of its simplicity.

Face recognition is an active research area and researchers are still trying different

modalities to increase accuracy for recognition in an unconstrained environment. In

this category one, inclusion is thermal infrared imagery [9], and another very recent

addition is a using of fusion procedure [9] over different types of images.

Infrared (IR) or thermal images are considered a viable alternative to manage changes

in illumination level and in detecting disguised faces [10-12]. Thermal or IR cameras

capture images based on the heat patterns emitted from an object. Heat patterns emitted

by an object depend on the body temperature and characteristics of the constituent

material of the object. Since the blood vessel pattern, muscle, tissue etc. are different for

each person, the radiated pattern of heat should be unique for each and every individual.

The use of thermal face images has great advantages over visual images. Face recognition

systems based on visual images results very poor under different illumination conditions,

colours, disguises, and typical conditions like identical twins. However, these situations

can be handled by IR images very easily but it has many drawbacks. Firstly, IR imagery

depends on the temperature, and if there is a large difference in body temperature then

the heat patterns generated by human body would certainly differ. Heat pattern produced

by a person sitting in an air-conditioned room and the same person when sitting under

strong sunlight must be different. As a matter of fact, IR images should be captured
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in a controlled environment i.e. with minimum variation in external temperature. Second,

IR images are also sensitive to variations in the internal temperature of the face. Factors

that could contribute to these variations include diseases (e.g. cold, fever etc.), facial

expressions (e.g. open mouth, closed eyes), physical conditions (e.g. lack of sleeps), and

psychological conditions (e.g. fear, stress, excitement). Finally, IR is opaque to spectacles

and coloured glasses. This may introduce partial occlusion to the face images.

It is apparent from the above discussion; neither thermal images nor visual images

are capable of tackling complications of face recognition, and therefore a combination of

both the imaging modalities namely fusion of images have come up. Fusion is actually a

natural mechanism built in man and other mammals. It serves as perceiving the real

world by the simultaneous use of various sensing modalities [13]. The principal motivation

for the fusion approach is to exploit the benefits of two or more modalities in one hand

and simultaneously suppressing disadvantages of those on the other.

According to the method and data sources, image fusion techniques can be grouped

into [14] following categories:

(i) Multiview fusion: images from the same source and taken at the same time but from

different viewpoints.

(ii)Multimodal fusion: images coming from various sources like visual, thermal, X-ray etc.

(iii)Multitemporal fusion: images taken at different times

(iv)Multifocus fusion: images taken with different focal lengths.

For all these different categories, the fusion comprises of two primary steps: (i) image

registration, which is nothing but spatial alignment of input images, and (ii) combining

those aligned images.

Due to the rotation, tilting, and panning of head, it is difficult to match face images effi-

ciently and the situation worsens when images are taken at different time intervals. Also,

due to differences in distance from the camera to the source face, there may be a difference

in dimension which is not so easy to ignore. Any unknown image should be registered

against the probe images (neutral and frontal face image) stored in the images database.

Many works have been made in this area in the past twenty years [15]. Recently Zokai and

Wolberg [16] proposed an innovative design by using Log-Polar transform (LPT). LPT

[16,17], is well known tool for image processing for its rotation and scale invariant properties.

Scale and rotation in Cartesian coordinate appears as a translation in the log-polar domain.

These invariant properties provide a significant benefit in registering images. Log-polar trans-

formation utilizes the feature of applying greater weights to pixels at the centre of the

interpolation region and logarithmically decreasing weights to pixels away from the centre.

In this paper, two different face recognition procedures have been performed, and

their respective results are compared with each other. The general steps for each process

are image registration, fusion of images in the wavelet domain, dimensionality reduction

using PCA, and finally, classification of projected images using a multilayer perceptron

neural network (MLPNN).

This paper deals with recognition of human face images in semi-uncontrolled environ-

ment. Here, semi-uncontrolled term has been used because uncontrolled environment

may be any environment like wild where pose variation may be around 90 degrees, al-

most invisible face under overexposed or underexposed condition, very low resolution
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etc. Main contribution of this paper is to handle face recognition problem in moder-

ate conditions of pose, illumination, disguise, and occlusions termed as semi-

uncontrolled environment. Some techniques in literature exists where authors targeted

one or two sources of complicacies but in the system, developed here, a comprehensive

technique was developed, which is capable to handle combination of different ailments

generally present in most of the face recognition systems.

The organization of the rest of this paper is as follows. In Overview of the present

system section, the overview of the system is discussed. In Image registration section,

details of image registration have been discussed. Fusion of visual and thermal images

section describes the fusion of visual and thermal face images in detail. Principal compo-

nent analysis section and Multilayer perceptron neural network section describe PCA and

MLP respectively in brief. In Experimental results and discussions section, experimental

results and discussions are given. Finally, Conclusion section concludes this work.

Overview of the present system
In the following sections, we present the techniques which form the elements of our

system, shown in Figure 1 and which also describe our motivation for using them.

Briefly, we explore the use of polar transform to register images against rotation and

scale invariant face images, fusion of face images is made to achieve illumination invariance,

principal component analysis to incorporate expression changes to some degree and

ultimately, a multilayer perceptron is used for classification of images.

Image registration
Image registration is a means of finding correspondence between two images depicting

common visual information, like, images of the same object taken at different conditions

like changes in illumination levels and illumination direction, changes in the environment;

many geometrical position e.g. orientations about X-, Y-, and Z-axes; with a difference in

a time interval; and considered by several sensors, by which there may be a difference in

resolution, intensity etc. In general, image registration works in four steps.

(i) Feature detection: Salient and distinctive features like corners, intersection

and end points of lines, regions, edges, closed contours etc. are automatically

detected. These features are described by critical data structures and termed

as control points to establish a correspondence between images brought under

registration.

(ii)Feature matching: Once control points are computed; correspondences

between them are found through finding similarity between particular

features computed.

(iii)Transform model estimation: Depending on corresponding control points,

estimation of transformation is done. This estimation has to find the possible

transformation functions and their respective parameters, so that once applied to

transformed image; it becomes closest to the original one.
(iv) Image transformation: Final job is to transform the image as per transformation

model discussed above. Once transformation is completed it may require

resampling of images with appropriate brightness interpolation for pixels

represented by non-integer coordinates.
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Figure 1 Block diagram of the system.
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Image registration plays an important role in the fusion of images captured with

different cameras with different features like viewing angle, resolution and focus.
Log polar transform

Log-Polar transform (LPT) is a process that converts an image described in Cartesian

coordinate f(x, y) into the log-polar coordinate system s(r,θ). Image represented in
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log-polar coordinates are known for rotation and scale invariant properties. The

transformation can be given as

r ¼ log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xcð Þ2 þ y−ycð Þ2

q

θ ¼ tan−1
y−yc
x−xc

where, (xc, yc) is the centre pixel of the transformation in the Cartesian coordinates.

Figure 2 shows an image in 2(a) and its corresponding log-polar transformed image

in 2(d). Moreover, 2(b) and 2(c) are rotated images of the image in 2(a) and 2(e), 2(f )

are log-polar transformed images of 2(b) and 2(c) respectively.

It is evident from Figure 2 is that the rotation in Cartesian coordinate system is mere

shifting in log-polar coordinate system. Since, in case of shifting, detection is easier, and

retranslation to its earlier state back can be done afterwards, log-polar transformation has

been used in image registration very efficiently. The benefit of log-polar coordinate system

over the Cartesian coordinate representation is that any rotation and (or) scale in the

Cartesian coordinates are (is) represented as shifts in the angular and log-radius directions,

respectively. Since log-polar transform uses non-uniform sampling, it becomes very efficient

in object recognition. If the central message content becomes the centre of the transform

then for that part more samples are taken, whereas for background etc., which are in the

distant locations from the centre could influence very limited due to consideration of the

lesser number of samples for those.

Adaptive polar transform

In some cases, the benefit of non-uniform sampling becomes disadvantageous. For example,

in case of human face recognition, generally cropped images are considered and therefore

the importance of all the parts should be given uniformly. In log polar transformation, the
(a) (b) (c)

(d) (e) (f)

Figure 2 Log-Polar Transformation. (a) Original image, (b) rotated in 15 degrees and (c) rotated in 45
degrees; (d) – (f) are corresponding log polar transformed images of (a)-(c) respectively.
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pixels which were away from centre point may be missed, and as a result, the part of pixels

in the periphery in recognition becomes negligible and therefore the accuracy should de-

grade. To get rid of this disadvantage Matungka et al. [18] proposed a method called adaptive

polar transformation. In adaptive polar transformation number of samples near centre and

those at the periphery differ. It increases directly proportionally to the increase in radius.

In order to achieve consistent sampling over the circumference (Ci) at every sample

of radius (ri), the ith circular sample from centre through radius, number of samples

in an angular direction (θi) should be adaptive i.e. θi should increase along with the

increase in Ci. The circumference Ci at radius ri is known to be Ci = 2 × π × ri. For an

adaptive polar transform of an image, f(x, y), of size 2Rmax × 2Rmax in Cartesian co-

ordinate system into polar domain (with uniform samples over the circumference),

fapt(x, y), is given as

for i ¼ 1 to Rmax

begin
θ ¼ 2� π� i

for j ¼ 1 to θ

begin
fapt x; yð Þ ¼ f Rmax þ i� cos 2πj=θið Þ; Rmax þ i� sin 2πj=θið ÞÞðð

end for

end for

Adaptive polar transforms of Figure 2(a)-(c) are given in Figure 3(a)-(c) respectively.

Registration of these images is made in the adaptive polar transformed domain using

phase correlation because it is very easy to find the number of change by phase correl-

ation and registration can be made by realignment opposite to shifting in transformed

domain.
(a)

(b)

(c)

Figure 3 Adaptive Log-Polar Transformation. (a)-(c) Adaptive log-polar transform of images 2(a)-(c)
respectively.
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Phase correlation

Shifting theorem states that Fourier Transform of a function f(x+α) i.e. shifting of f(x)

by an amount ∝ can be obtained by multiplying Fourier Transform of f(x) by e-jαx. This

may be extended to 2-D (two-dimension) i.e. if f(x, y) is to be shifted by (α, β) then the

shifted function would be

f1 x; yð Þ ¼ f xþ α; y þ βð Þ

and its corresponding Fourier Transform is

F1 u; vð Þ ¼ e−j
αuþβvð ÞF u; vð Þ

where F(u, v) is the Fourier transformed image of f(x, y). That means translation between two

images in the spatial domain can be described as a phase difference in the frequency domain.

Cross correlation can be computed by the normalized multiplication in the frequency

domain between the first image and the complex conjugate of the second image. To

represent this phase difference as translation in the spatial domain, we apply the 2D

inverse Fourier transform to it. The peak value of this inverse Fourier transform indicates

the translation between the two images.

Figure 4 shows the use of cross-correlation in finding shifting of images. Figure 4(a),

(b), and (c) show original image, change in the horizontal direction, and change in both

horizontal and vertical direction respectively. Phase correlations of the original image

given in Figure 4(a) with all these three images are shown in Figure 4(d)-(f ) respectively.

Figure 4(d) shows complete black representing no translation. Figure 4(e) shows transla-

tion in the horizontal direction and the number of translation is pointed by black arrow.

Figure 4(f ) shows shifting in both vertical and horizontal direction, and the number
(a) (b)           (c)

(d)                (e)                       (f)

Figure 4 Cross-Correlation of Face Images. (a) Original image, (b) Shift in one spatial dimension, and (c)
Shift in both the spatial dimensions; (d), (e), and (f) are images of phase correlations of (a) with (a), (b), and
(c) respectively.
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of translation is pointed by white arrow. Once the number of shifting is known then

the images can be translated back to its original state. Since a rotation and scaling in

Cartesian coordinate is represented in Polar coordinate a shifting in horizontal and

vertical directions then retranslation of images in polar coordinate would produce

scale and rotation invariant images.
Fusion of visual and thermal images
The fusion of images can be described as a means by which different images acquired

through different sensors or modalities are combined to produce a new image with neces-

sary and complementary information from the input images and capable of resolving incon-

sistencies or ambiguities encountered by classifiers used for classification of face images.

Human face recognition based on visual images has shown poor performance under

uncontrolled working conditions. Among others, handling of larger variations in illumin-

ation level and disguises are very cumbersome. Whereas thermal face images are invariant

towards variations in illumination levels as because those images are representations of

the map for blood vessels. Other kind of visual impairments like disguise etc. can also be

managed by thermal imaging. But in thermal images apart from blood vessels all other

parts in the image are alike. As a matter of fact, two images of different persons may

appear to be same by considering this similarity. Therefore to take the advantages of

both the visual and thermal images combination of both the image types have been

performed and the name of this blend comes under the field of image fusion.
Image fusion techniques

In image fusion, two or more images are combined, and a finally a single fused image is obtained

which retains the necessary features from each of the original images. This image fusion is a

lossy process because none of the original image can be reconstructed from a fused image. As

discussed in Introduction, there could be many fusion situations. This existing design is a multi-

modal fusion, where images from two different sources namely visual and thermal are fused. In

[19] pixel level fusion method has been applied. In that work, it has been assumed that each face

is represented by a pair of images, one in the IR spectrum, and another is in the visible

spectrum. For a particular imaging condition, both the thermal and visual images have been

combined a priori to get corresponding fused images. During combining, 70% of a pixel in the

visual image is added to 30% of the corresponding pixel in thermal images subject to a max-

imum. The best result reported is 95.71% of recognition accuracy on IRIS face database [20],

but that idea didn’t consider the entire IRIS face database. When it comes to the full

database the performance degrades drastically, and the present method is an exten-

sion to that effort to acquire better recognition result for the whole face database.

The purpose of such drastic reduction is quite logical from the fusion point of view.

Since, in [19] pixel level fusion was considered, that should not work for the images with

a subtle change in position of pixels due to expression, shift, tilt, or even noise. To over-

come this category of problems, fusion of the wavelet coefficients is considered.
Wavelet-based fusion

Wavelet transform is a tool for time-frequency localization. It performs such localization

by separating given signal into different frequency components and then each section is
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analysed with a resolution matched to its scale. Since face images are two dimensional

discrete signals, 2-D discrete wavelet transforms are used in this situation. Several

researchers have already applied wavelet transforms for fusing images in time-frequency

domain [21-23]. Results of most of those investigations reveal that wavelet-based fusion

algorithms outperform other image fusion algorithms.

In general, discrete wavelet transform decomposes a discrete signal into two subsignals of

half of its length with the first one as a running average and another one as a difference or

fluctuation. Considering all the discrete wavelet transforms Haar wavelet is the simplest trans-

form. It has benefits like fast, requires less memory space, reversible etc., but it lacks capturing

of all the high frequency components. This is because Haar wavelet captures through a win-

dow of size two starting from odd index and if there is a huge difference in components with

even index in comparison with that of odd index then that the large difference is not taken

into account during computation of high frequency components. To get rid of such demerit,

in this work, Dubechies wavelet transform have been used. Keeping all other calculation same

as Haar wavelet transform Daubechies wavelet uses overlapping windows and therefore all

the changes are reflected in the high frequency coefficients. In this work, Daubechies 4-tap

wavelet has been considered with the filter coefficients shown in Table 1. Here; H0 and H1

are input decomposition filters and G0 and G1 are output decomposition filters.

The fusion of images using wavelets [24,25] follows a standard procedure and is

performed at the decomposition level. The input images are decomposed by a discrete

wavelet transform and the wavelet coefficients are selected using a set of fusion rules and

an inverse discrete wavelet transform is performed to reconstruct the fused image.

Wavelet fusion methods differ mostly in the fusion rule used for selection of wavelet

coefficients. Numerous fusion rules for combining the wavelet coefficients can be explored:

(i) simple average, (ii) weighted average, (iii) Maximum, (iv) Maximum for high frequency

components and minimum for low frequency components, (v) Maximum for high fre-

quency components and average for low frequency components, and (vi) Maximum

for high frequency components and the weighted average for low frequency compo-

nents. It has been recognized that these combination schemes are having little effect

on the overall performance of the fusion process. In this work, fusion rule “Maximum

for high frequency components and the weighted average for low frequency components”

has been chosen. The main reason for this choice is that the highest values capture the

salient information (e.g. edges) in the images and a weighted average of low frequency

coefficients to avoid the effects of noises.
Principal component analysis
Principal Component Analysis (PCA) is a well established tool for dimensionality

reduction. A human face with thousands of pixels, if represented immediately, needs a
Table 1 Daubechies 4-tap wavelet coefficients

H0 H1 G0 G1

0.4830 0.1294 −0.1294 0.4830

0.8365 0.2241 0.2241 −0.8365

0.2241 −0.8365 0.8365 0.2241

−0.1294 0.4830 0.4830 0.1294
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huge dimensional space for statistical analysis and subsequent classification. This will

require extremely large memory space and processing capabilities for a large database

which is common in real life applications. This problem is not as significant as storage

space and processing requirement may be manageable, but the concept of “curse of

dimensionality” may apply here. For a trainable classifier, it confirms that the required

number of training samples grows exponentially with the increase in dimensionality.

The fundamental objective of this step is dimensionality reduction by representing face

space in lower dimensional space by generating features that are optimally uncorrelated.

In the year 1987, Sirovich and Kirby used PCA to reduce dimensions for features vector

of faces [26]. In the year 1991, Turk and Pentland used the same PCA again for dimen-

sionality reduction in solving complex pattern recognition problem like problem of face

recognition [27]. As reported in [28-30], PCA not only reduces the size of face images but

also handles variations in face images due to changes in facial expressions.
Multilayer perceptron neural network
Artificial neural network (ANN) has already established its capability for classification

of models due to its adaptivity, generalization strength, robustness, and fault tolerance.

A Multilayer Perceptron (MLP) is a supervised neural network that has been used as a

classifier in different pattern classification tasks successfully. This learning algorithm

applied to multilayer feed forward networks here is consisting of processing elements

with continuous differentiable activation functions. Such networks associated with the

back propagation learning algorithm are also called backpropagation networks [31-35].

In this work, a multilayer neural network which incorporates backpropagation learning

with momentum is used. This is a homogeneous system with tansigmoid transfer function

in all the processing elements or neurons. The system consists of three layers. In the first

layer, the number of neurons is equal to the size of the feature vectors achieved after

dimensionality reduction and in output layer number of neurons is only one; a binary

classifier. To be more specific for each course, there is a system to classify members of

this class from others. Weights for the system are initialised with pseudorandom numbers.

Weights associated with all the interconnections incident on node k are initialized with

the pseudorandom numbers generated in the range [−3/√nk, 3/√nk], where nk is the num-

ber of interconnections to the kth node. Different parameters used to train the system are

goal, learning rate (lr) and momentum constant (mc), epochs with values 10−6, 0.06, 0.8,

and 6,00,000 respectively.
Experimental results and discussions
For the performance analysis, several experiments were conducted. For this investigation,

two face image databases were used. The first one is the IRIS database [20], and the

second one is a face database created at our own laboratory and its proposed name is

UGC-JU face database [36]. In all the experiments, images are normalized and cropped

into corresponding images of size with width × Height as 40 × 50. Original images are

normalized after registration of images with respect to frontal and neutral face images

of each person. In order to obtain higher recognition accuracy, all the images are registered

using variant of polar transforms and phase correlation. Corresponding registered visual

and thermal face images are fused in the wavelet domain and then fused images are
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transformed back into the spatial domain. In this work, a multilayer perceptron neural

network has been applied for classification of fused images. To evaluate the performance

of the classification, the classifier used here is considered as binary classifier i.e. for each

class, there is one classifier with elements of that class as positive exemplars and elements

from other classes taken as negative exemplars. During the testing, four different re-

sults are possible: True Positives (TP), True Negatives (TN), False Positives (FP), and

False Negatives (FN). False positive is considered when the outcome is incorrectly classi-

fied and marked as “yes” (or “positive”), when actually it is “no” (or “negative”). A false

negative is marked when the outcome is incorrectly classified as negative but in real it is

positive. Therefore, true positives and true negatives are correct classifications. Based on

those four results other two statistical measures have been derived: Sensitivity and Specifi-

city. Sensitivity is the measure that finds how good the test is in detecting real positives. It

measures the proportion of actual positives, which are correctly identified and it is given

as

Sensitivity ¼ TP= TPþ FNð Þ

Whereas, specificity, is the measure that finds how well the test is at detecting real

negatives. It measures the proportion of actual negatives, which are correctly identified

and described as

Specificity ¼ TN= FPþ TNð Þ

Another measure called accuracy is also calculated, which describes a ratio between
number of samples correctly classified and total number of samples used in classifica-

tion, given as

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ

There are other measures exist, which can be computed from Specificity or Sensitiv-
ity and for that reason those are not computed here; those include:

False positive rate ¼ FP= FPþ TNð Þ ¼ 1−Specificity

False negative rate ¼ FN= TPþ FNð Þ ¼ 1−Sensitivity

Sensitivity, Specificity, and Accuracy measures computed for both the databases using

different techniques implemented here are discussed in following sections.

IRIS thermal/visible database

This database [20] was initially formed in response to the IEEE Int’l Workshop on “Object

Tracking and Classification in and Beyond the Visible Spectrum”. The benchmark is

used for educational and research purposes only and is available for all researchers in

the international computer vision communities. The description relating to the database

is given below:

Sensor Details: Thermal - Raytheon Palm-IR-Pro

Visible - Panasonic WV-CP234

Data Details: Total size of 1.83 GB

Image size: 320 × 240 pixels (visible and thermal), Total 4228 pairs of thermal and

visible images with 176–250 images/person, 11 images per rotation (poses for each

expression and each illumination) 30 persons - Expression, pose, and illumination.
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Expression: ex1, ex2, ex3 - surprised, laughing, angry (varying poses)

Illumination: Lon (left light on), Ron (right light on), 2on (both lights on), dark (dark

room), off (left and right lights off ), varying poses.

Some visual and corresponding thermal images of a person are shown in Figure 5.

To measure the sensitivity, specificity, and accuracy, the IRIS database for visual and

thermal face images were considered. There are several methods implemented for this

experiment. Without fusion, visual and thermal face images are considered separately,

and six different methods were investigated. They are based on dimensionality reduction

using PCA and classification using Multilayer Perceptrons (MLP). Only difference is in

registration; first process is without any registration at all; second one is registration with

polar transform, and the third one is with adaptive polar transform for both thermal and

visual counts to six different designs. When fusion is taken into consideration, unregis-

tered, registered with polar transform, and registered with adaptive polar transform along

with pixel fusion and wavelet fusion we got total six different designs. For the calculation

of results, 3-fold cross-validation [37] was considered, and the results are shown in Table 2.

All the images are partitioned into three subsets. Out of those three groups one is

used for training and rest two are used for testing. From the results, in obtaining better

recognition performance we can infer the followings:

i) Registration of face images produces better in comparison to an unregistered one.

ii) Adaptive Polar Registration produces better results that polar one.

iii)Fusion of visual and thermal face images outperforms the techniques which

consider those individually.

iv)Wavelet based fusion produces better results that pixel fusion.
UGC-JU face database

This face database has been created at Department of Computer Science and Engineering,

Jadavpur University, India under a project with a grant from University Grants Commission

(UGC), India. Infrared images are captured using an FLIR 7 camera, and visual images are

captured using Sony DSC-W350 digital camera at our own laboratory. Images are captured

in pairs, one thermal and one visual, under different constraints. Every person sitting on a

chair at a distance of about 2 feet from both the cameras. Each person has 34 different tem-

plates: different expressions with eye movements and emotions without changing head

orientation, different views about x-axis, y-axis, and z-axis etc. for 20 persons.

All the experiments conducted on IRIS face database have also been conducted on

UGC-JU face database [36], results obtained is shown in Table 3. Trend of results for
Figure 5 Some visual images (first line) of a person with corresponding thermal images (second
line) from IRIS face database. (All are in grayscale).



Table 2 Experimental results on IRIS face database

Sl. no. Method Sensitivity Specificity Accuracy

1 Unregistered + No Fusion + PCA +MLP Visual images 90.42 81.60 88.73

Thermal images 87.04 84.62 85.38

2 Unregistered + Pixel Fusion + PCA +MLP 91.93 86.32 90.86

3 Unregistered +Wavelet Fusion + PCA +MLP 94.21 85.30 92.50

4 Log Polar Registered + No fusion + PCA +MLP Visual images 90.18 80.80 88.39

Thermal images 89.24 78.70 87.22

5 Adaptive Log Polar Registered + No fusion +
PCA +MLP

Visual images 91.84 84.70 90.47

Thermal images 90.99 82.80 89.42

6 Log Polar Registered + Pixel Fusion + PCA +MLP 92.53 86.70 91.41

7 Adaptive Log Polar Registered + Pixel Fusion + PCA +MLP 94.77 88.10 93.50

8 Log Polar Registered +Wavelet Fusion + PCA +MLP 95.84 92.80 95.26

9 Adaptive Log Polar Registered +Wavelet Fusion + PCA +MLP 98.46 97.90 98.36
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different techniques obtained in this database is also similar as in the case of IRIS face

database and therefore the inferences made in IRIS thermal/visible database section.

Some visual and corresponding thermal images of a person of UGC-JU database are

shown in Figure 6.
Comparative study

Discussion won’t be complete without comparison of results of the present process is

not made with other existing recent designs. Comparison is given in Table 4, where all the

methods are not using the same database. Here, we have tried to compare our method

with other through the same database and also result due to our database UGC-JU has

also been depicted.

In Table 4, a complete overview with regard to acceptance rate of different fusion

techniques has been presented. The IRIS thermal visible face dataset (which is one of

the OTCBVS benchmark dataset) has been used for all the experiments conducted
Table 3 Experimental results on UGC-JU face database

Sl. no. Method Sensitivity Specificity Accuracy

1 Unregistered + No Fusion + PCA +MLP Visual images 81.91 60.00 77.53

Thermal images 76.32 54.87 72.06

2 Unregistered + Pixel Fusion + PCA +MLP 86.32 73.53 83.76

3 Unregistered +Wavelet Fusion + PCA +MLP 87.21 77.06 85.18

4 Log Polar Registered + No fusion + PCA +MLP Visual images 85.44 72.35 82.82

Thermal images 82.79 64.12 79.06

5 Adaptive Log Polar Registered + No fusion +
PCA +MLP

Visual images 86.62 75.88 84.47

Thermal images 84.26 68.82 81.18

6 Log Polar Registered + Pixel Fusion + PCA +MLP 88.38 80.00 86.71

7 Adaptive Log Polar Registered + Pixel Fusion + PCA +MLP 92.06 82.94 90.24

8 Log Polar Registered +Wavelet Fusion + PCA +MLP 92.94 87.65 91.88

9 Adaptive Log Polar Registered +Wavelet Fusion + PCA +MLP 96.77 91.77 95.77



Figure 6 Some thermal images (first line) of a person with corresponding visual images (second line)
from UGC-JU face database.
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by M. K. Bhowmik et al. [19,39-45]. In [40], a pixel level fusion of visual and thermal

image has been used, and 97.05% acceptance rate is achieved. In [45], fused images

have been classified using radial basis function and multilayer perceptron and the

listed images using RBF shown better accuracy than MLP, which is 96.0%. In [19], log

polar transform of fused images has been analysed over MLP, and the acceptance rate

is 93.81% which is much lesser than other techniques [40,42,45]. In [41], an optimum

level fusion of visual and thermal images has been introduced, and 93% acceptance

rate is achieved. In [42], a new dimension reduction technique, candid covariance-free
Table 4 A comparative study between different fusion methodologies

Sl. no. Author Techniques Database
used

Reported
performance

1. M. K. Bhowmik et al. [19] log-polar transformed + PCA OTCBVS (IRIS) 93.81%

2. Mohammad Hanif et al. [38] Gabor Filter Technique Equinox DWT - 90.31%

OIF - 95.84%

3. M. K. Bhowmik et al. [39] Daubechies wavelet transform +
PCA + ICA

OTCBVS (IRIS) PCA - 91.13%

ICA I - 94.44%

ICA II - 89.72%

4. M. K. Bhowmik et al. [40] Pixel fusion + RBF OTCBVS (IRIS) 97.05%

5. M. K. Bhowmik et al. [41] Optimum + Eigenspace projection +
Multilayer Perceptron

OTCBVS (IRIS) 93%

6. D. Bhattacharjee et al. [35] Eigenspace projection +Multilayer
Perceptron + Backpropagation learning

OTCBVS (IRIS) 95.07%

7. M. K. Bhowmik et al. [42] Pixel fusion + CCIPCA + SVM OTCBVS (IRIS) 97.28%

8. M. K. Bhowmik et al. [43] Wavelet transformation +multiresolution
analysis +MLP+ RBF

OTCBVS (IRIS) Feature level - 87.28%

Decision level - 94.95%

9. M. K. Bhowmik et al. [44] Daubechies wavelet co-efficient +
ICA +MLP

OTCBVS (IRIS) 91.5%

10. M. K. Bhowmik et al. [45] Eigenspace projection +MLP + RBF OTCBVS (IRIS) RBF - 96%

MLP - 95.07%

11. D. R. Kisku et al. [46] Dempster-Shafer decision theory +
SIFT features

ORL, IITK ORL - 98.93%

IITK - 96.29%

12. R. Singh et al. [47] Match score fusion + 2ν GSVM +
Dezert Smarandache theory + SVM

Equinox DSm match score
fusion - 98.08%

SVM - 95.05%

DST - 96.51%

2ν GSVM - 94.98%

13 Present method Adaptive Log Polar Registered +
Wavelet Fusion + PCA +MLP

OTCBVS(IRIS) 98.36%

UGC-JU 95.77%
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incremental principal component analysis (CCIPCA) is applied over the fused images,

and finally those lower spaced fused images has been classified using different SVM

kernel and 97.28% acceptance rate is achieved, which is the maximum of all fusion

methodologies, those performed by M. K. Bhowmik et al. Since, Equinox database is

not available so no comparison could have been completed. Results are compared for

IRIS database only. All other methods, mentioned here, worked with IRIS database did

not consider complete database for the evaluation of results, whereas the present method

considered the entire database and has shown a very convincing result for acceptance of

this method for development of the face identification system.

Conclusion
We present a fully automatic human face recognition system which efficiently registers

face images using adaptive polar transformation. This technique also uses a wavelet based

fusion method that combines visual and thermal faces images in a robust manner. Alter-

native methods were also implemented with lower computational cost, but recognition

performance achieved is much lower than this. Different sources of complicacies when

present in face images it becomes difficult to solve this recognition problem in efficient

manner. This method has shown a very good performance in recognising almost all the

possible complicacies to a large extent.

There are possibilities for further improvements of the existing design. Registration

may be done based on some particular landmarks and considering symmetry of the face

image to handle images captured across poses. Support vector machine (SVM) may

improve classification result instead of a simple MLP. There may be fusion of different

region classifiers used at various distinct region of the face images.
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