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Abstract

As mobile technologies become widespread, new challenges are facing the research
community to develop lightweight learning services adapted to the learner’s profile,
context, and task at hand. This paper attempts to solve some of these challenges by
proposing a knowledge-driven recommender for mobile learning on the Semantic Web.
The contribution of this work is an approach for context integration and aggregation
using an upper ontology space and a unified reasoning mechanism to adapt the
learning sequence and the learning content based on the learner’s activity, background,
used technology, and surrounding environment. Whenever context change occurs, the
system identifies the new contextual features and translates them into new adaptation
constraints in the operating environment. The proposed system has been implemented
and tested on various mobile devices. The experimental results show many learning
scenarios to demonstrate the usefulness of the system in practice.

Keywords: Ubiquitous learning; Context modeling and management; Semantic web;
Ontology design; Mobile learning
Introduction
The Semantic Web is an extension of the current web, whereby content is given well

defined meaning so that it can be understood and processed by both software agents

and humans [1]. Semantic Web provides an infrastructure with the potential to effi-

ciently reason with content that is defined at the semantic level with formalized know-

ledge [2-6]. The challenge in an information-rich world is not only to make

information available to people at any time, any place, and in any form, but also to

offer the right content to the right person in the right way [7-9]. In particular, in the

context of mobile learning, if such approach is to be adopted, many research efforts

are needed to close the gap between learning strategies, knowledge discovery, and con-

text perception and management on the Semantic Web [10]. These efforts would lead

to a Semantic Web that has the potential to revolutionize the way learning services

available on the web are discovered, adapted, and delivered to mobile users based on

their context. To achieve this goal, we need to formally describe not only web-content,

but also the various system stakeholders including content producers, content con-

sumers, and surrounding context. This approach is adopted in this paper by integrating

learner’s knowledge, domain knowledge, and context knowledge. At the semantic level,

meta-information and reasoning mechanisms are used to integrate these knowledge

components, thus making it possible to infer the learning sequence that suits learner’s

profile and experience, and the learning content that suits their activity, used technol-

ogy and surrounding environment.
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In this paper we deal with learning in a mobile environment. Although, much pro-

gress has been made in the field of mobile services [11-15], we believe that more re-

search is needed in the area of mobile learning. This is mainly due to the fact that most

existing systems have been designed with focus on technology only [16], while they

should equally address knowledge representation and learning strategies’ aspects for

mobile learning. In particular, several obstacles still hinder personalization of mobile

learning services, such as: (i) current mobile learning services act as passive compo-

nents rather than active components that can be embedded with context awareness

mechanisms; (ii) existing approaches for service discovery neglect contextual informa-

tion on surrounding environment; and (iii) lack of context modeling and reasoning

techniques that allow integration of various contextual features for better

personalization. In this paper, an attempt is made to solve some of the above men-

tioned problems, aiming to build a mobile recommender system with semantic-rich

awareness information. Our goal is to develop services capable of providing content

recommendations tailored to the learner’s background, context, and task at hand. Mo-

bile learners expect to access such learning services from various ubiquitous setups

(workplace, home, on the move, etc.) with different operational characteristics such as

varying network bandwidth and limited resources on mobile devices [17]. Also, it is im-

portant to note that the operational environment of a mobile setting changes fre-

quently. It is therefore necessary to consider a proactive context awareness mechanism

that can sense both system-centric and learner-centric context and adapts the accessed

services accordingly at run-time. In such setup, context aggregation can be made pos-

sible using a shared ontology space and a unified reasoning mechanism. In particular,

whenever context change occurs, the system identifies the new contextual features and

translates them into new adaptation constraints in the operating environment. The

contribution of this paper can be summarized into three points. First, a shared ontology

space for capturing, integrating and modeling contextual knowledge at a higher level

based on learner context, activity context, device context and environment context.

Second, a method for structuring semantic knowledge about subject-domain in such a

way to enable provision of content at different granularity levels to suit learners with

various background and skills. Finally, a model for run-time context management that

translates context changes into system-centric and learner-centric adaptations for bet-

ter personalization.

The remainder of this paper is organized as follows. Section 2 reviews related work

and discusses the main challenges for developing context-aware mobile learning sys-

tems. The overall system design and architecture, including context modeling are pre-

sented in section 3. Section 4 discusses the reasoning mechanisms used to deal with

context integration and management. The experimental results are discussed in section

5, and finally, conclusions are drawn and further research work is suggested.

Background and related work
Research in the field of personalized learning has been dominated by the use of ontol-

ogies and related Semantic Web technologies [18-28]. Ontology is a representation of a

set of concepts within a domain and the relationships between those concepts [18]. It

is used to reason about the properties of that domain. Ontology concepts are defined

in terms of classes which are extended with properties. These are commonly encoded
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using ontology languages such as the Web Ontology Language (OWL). In particular,

ontology-based approaches have been widely used for context modeling and manage-

ment [8-12]. A variety of ontologies have been adopted to model knowledge about sub-

ject domains, users, resources, and other contextual elements of the user surroundings

[8,29-34]. In such setups, reasoning techniques are usually applied on metadata derived

from a single ontology. However, real-life learning systems require simultaneous use of

knowledge derived from multiple ontologies. Cross-ontology reasoning presents many

challenges. One major challenge is related to disparity and semantic mismatching be-

tween related context elements across ontologies [35,36]. A solution to this problem is

efficient integration of various ontologies into an upper ontology space capable of cap-

turing and modeling information related to the global shared knowledge at a higher se-

mantic level, and thus simplifying cross-ontology reasoning. Another problem of

concern with ontology based approaches is their inappropriateness to reasoning with

uncertainty. It should be noted that not all context elements are perceived with preci-

sion. Some of the context elements are quantized with uncertainty leading to certain

ambiguity while defining and reasoning with context, [37]. This problem can be dealt

with by integrating various reasoning models that may combine probabilistic, rule-

based and logic reasoning techniques [38-40].

In addition to the above-mentioned problems, research in mobile learning recom-

menders has its own challenges. The task of a mobile learning recommender can be

considered, to a certain extent, as a knowledge management task to support the

learner’s current activity. This is because the goal for mobile learning is not always long

term learning, but, in many cases, an on-demand learning process triggered by immedi-

ate real-world needs. In such learning environment, the context of the learner matters,

and the system should be able to capture the learner’s profile, learner’s context, task at

hand, and the environment in which learning occurs. This knowledge is important to

provide context-aware delivery methods that can generate content that meets the im-

mediate learning goals. Other challenges that need to be addressed to develop robust

mobile learning recommenders are those related to (i) the limited-resource mobile

technology; (ii) low-bandwidth and unsecured wireless communication; (iii) heteroge-

neous context management and (iv) personalized content retrieval. This paper attempts

to solve some of the problems related to the last two challenges, heterogeneous context

management and personalized content retrieval, making use of the progress made in

ubiquitous computing and the Semantic Web respectively. Before describing our sys-

tem, we first overview recently published work in the field of ontology-based content

retrieval and adaptation for e/m-learning. We then particularly focus on work in m-

learning recommenders.

Dolog and Nejdl [33] have used knowledge extracted from four different ontologies

(subject, user, resource, and link ontology) to realize personalized access to resources

on the Semantic Web. Subject and resource ontologies are used to provide explicit se-

mantic about information resources and the way they fit to user queries and goals.

However, user and link ontologies are used to provide additional means for deciding

which links to show, hide, and annotate according to the learner’s background. The

focus of their work is mainly around learner-centric adaptations. Another system that

relies on learner modeling is the European Union project, Learning In Process (LIP)

[41]. LIP aims to provide immediate learning content on demand for knowledge
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intensive organizations through incorporating context into the design of learning sys-

tems. A matching procedure is presented to suggest personalized learning content

based on user’s current competency gap. The matching process tries to find relevant

learning objects for a given user context by computing a similarity measure between

the current user context abstraction and the ontological metadata of each learning

object.

In the field of mobile learning, many approaches were adopted to develop context-

aware learning services. These vary from simple systems relying solely on device con-

tent adaptation [42], to complex infrastructures for generating context aware mobile

learning applications [43]. Yarandi et al.[44] have developed a mobile learning system

with four modules to enable courseware management, course content adaptation, test

evaluation and course recommendation mediation. The system is used to learn new

natural languages. The course recommendation mediator selects suitable learning ma-

terial by traversing the courseware knowledgebase according to pedagogical rules and

ontological user profiles. The recommendation mediator is guided using results pro-

vided by the course-test evaluation module. Course material consists of learning objects

with various granularity and their associated learning activities (writing, reading, speak-

ing and listening). Each activity retains a learning objective, a difficulty-level, a sug-

gested time for completion, and is associated a test score based on a probabilistic

model. In a similar study, Benlamri et al. [45] have developed a combined model based

on probabilistic learning techniques and ontologies to enable context processing and

management in a mobile learning environment. The system uses Naïve Bayesian classi-

fiers to deal with context elements that are quantized with uncertainty. Naïve Bayesian

classifiers are used to recognize high level contexts in terms of their constituent atomic

context elements involving uncertainty. Recognized contexts are then interpreted as

triggers of actions yielding web service discovery and adaptation in order to achieve

personalized instruction that best match the learner’s needs and the operating environ-

ment. Mobiglam [46] is another mobile learning framework that is based on Bayesian

techniques. Unlike the systems mentioned above, Mobiglam allows users to access re-

sources and other learning services through Virtual Learning Environments (VLEs)

such as Moodle and WebCT. Device adaptations are provided by a J2ME application

installed on the client devices, while adaptation of VLE content is done on the server

side through a decision engine relying on a Bayesian learning algorithm.

Unlike the systems described above, Mobilearn [43] is a complete infrastructure de-

veloped by a consortium of European universities in collaboration with MIT and

Stanford to build mobile learning applications. Mobilearn is based on the Open

Mobile-access Abstract Framework (OMAF). The latter is built upon two technologies

– an extended version of the MIT-OKI (Open Knowledge Initiative) which provides an

open and extensible architecture for learning technology [47] – and the IMS-ALF

(Abstract Learning Framework) which provides an abstract representation of interoper-

able services and their interfaces [48]. The goal is to build a framework that can pro-

vide various specifications (i.e. various mobile applications) based on the used services,

according to the open architecture approach.

Another challenge of mobile learning is its human computer interface (Mobile HCI)

aspect, and especially the provision of context-aware communication and interaction.

For instance, a mobile device that support a number of network adaptors, and equipped
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with some sensors such a GPS (Global Positioning System) unit, a network bandwidth

sensor, and a smart card for user-authentication, can provide useful context-aware

functionalities that allow one to adapt the behavior of the system according to the

sensed wireless network, position in space (location-awareness), unexpected network

interruptions, and security threats respectively. Such system becomes able to select

what content to show and how to show it based on the learner’s activity and surround-

ing environment. An example system with such capability is the MObile PErsonal

Trainer, MOPET [49]. The latter monitors users’ positions and other physiological pa-

rameters in outdoor sports activities to present functionalities such as location-aware

maps augmented with visualizations of users’ performance, or context-aware fitness ad-

vice and 3D demonstrations of exercises. Mobile learning systems should exhibit these

capabilities to achieve efficient context-aware communication and interaction.

Although our approach builds on many of the techniques described above, it differs

from previous work in several aspects. First, unlike the above mentioned approaches,

the proposed system tries to build a global context view out of a large set of heteroge-

neous contextual information, including knowledge about the learner, learning domain,

learning activity, used technology, and surrounding environment. Second, unlike the

systems described in [33,41,44] which use separate ontologies for reasoning with do-

main knowledge and context knowledge respectively, our approach uses a shared upper

ontology space that permits reasoning with the entire system-centric and learner-

centric contexts, thus enabling efficient context integration and adaptation. Finally, an

important aspect of our approach is the ability for reasoning under uncertainty. It

should be noted that not all contextual information around the learner can be quan-

tized with certainty, yet the semantic web models are logic based with facts either being

true or false. One possible solution to this problem is to simplify contextual data, which

is fundamentally continuous or uncertain, down to symbolic discrete assertions. How-

ever, this process may introduce errors which can further propagate globally when re-

peatedly used in the reasoning process. To deal with this issue we opted for uncertainty

representations like fuzzy logic which uses non-linear combination functions. Fuzzy

logic uses min/max to combine values, so repeat combination of the same information

does not introduce significant errors [50] in the reasoning process.

System design and architecture
The overall system architecture is presented in Figure 1. The core of the proposed sys-

tem is based on a Run Time Environment (RTE) designed to maintain consistent be-

havior across variations in the operating environment. The aim is to provide learning

services adapted to the learner’s global context. Therefore, the main function of the

RTE is to coordinate and facilitate integration and aggregation of the main context

components as they emerge from the learner’s interaction with the system. To achieve

such complex task, we structured the RTE into three hierarchical levels as shown in

Figure 2. At the lower level of the hierarchy is the context sensing layer which is pro-

vided by a collection of hardware and software sensors that continuously probe the

wireless network features, temporal-spatial data, device features, and users’ background

and preferences. The context sensing layer generates quantized and non-quantized raw

data whose values are numeric values, boolean values, and literals, and most of which

are time-stamped. To transform this context data into meaningful context information



Context 

Sensing

& 

Acquisition

Ontology Reasoning

System 

Centric 

Adaptations

Learner 

Centric 

Adaptations

Ontology Management

Upper Ontology Space

LO Repository 1

Learner Profile Repository

Activity Repository

Device Repository

Environment Repository

LO Repository N

……

LO Repository 2

Run Time Environment

Surrounding 

Environment

Nomadic 

Learners

Service 

Discovery

Agent

Figure 1 System architecture.

Benlamri and Zhang Human-centric Computing and Information Sciences 2014, 4:12 Page 6 of 34
http://www.hcis-journal.com/content/4/1/12
that can be used by the reasoning engine, the raw-data is translated into symbolic infor-

mation. The mapping is achieved by the context perception layer through computation,

inference and learning techniques. The context perception layer is independent from

the context sensing technology in the sense that it provides an abstract context repre-

sentation through the use of ontologies. At the higher level, is context adaptation layer,

where learning services are discovered and learning content is adapted based on per-

ceived context. The upper ontology space describing knowledge about all context com-

ponents is incremented with subject-domain ontology knowledge, and used as a unified

knowledge base for system reasoning. The result of the reasoning process is a set of ex-

tracted metadata used for learning services discovery and adaptation based on system-

centric context (i.e. device and environment context) and learner-centric context (i.e.

learner and activity context). In particular, the extracted metadata is used to personalize

both the learning path and the learning content in order to match the learner’s back-

ground, prerequisite requirements, previous tasks, available network bandwidth, net-

work security, and other connectivity issues. Each of these adaptations is controlled by

context-adaptation logic in the form of ontology reasoning.

Context acquisition and representation

Context is any information that can be used to characterize the situation of an entity,

where an entity can be a person, a place, a physical or a computational object [51].

Context information can be classified into atomic context and composite context.

Atomic context elements are associated with raw data that is either sensed or profiled.

Composite context on the other hand can be derived from atomic context elements

through computation, inference, or learning techniques. Example of computed compos-

ite context is user’s age, or time to accomplish a learning task. Example of inferred

composite context is inference of media type that can be played by a handheld device

based on current network bandwidth and available memory. Finally, learned context is
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context that can be predicted from atomic context elements using prior knowledge and

a probabilistic model. Example of learned context used in this study is prediction of

wireless network bandwidth-range using fuzzy logic as will be shown in subsequent

sections.

Many researchers have tried defining context at the higher level such as Schilit et al.

[18] who decompose context into three categories – computing context – user context

– and physical context. In this study, a fourth dimension of context is introduced to

deal with activity context. The inclusion of activity context in a mobile setting is moti-

vated by the fact that the needs of mobile users regarding information access are quite

different from those of stationary users [52]. Usually, mobile users’ needs are mainly

about personalized content that is highly sensitive to their immediate environment and

task at hand. Therefore, activity context will significantly improve service discovery and

learning content adaptation to user needs and context.

In this study we divide context into four context groups – Learner context – Activity

context – Device context – and Environment context. Figure 3 shows the way these

four context categories extend each other for better context integration and service

adaptation. Learner context is the main source for provisioning personalization. It also

extends activity context by providing information such as learner’s background, pre-

ferred language(s), and learner’s schedule. Activity context however deals with accessed

services; consumed learning resources; adopted learning sequences; and other subject-
Figure 3 Context integration and aggregation.
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domain related knowledge. It uses subject-domain ontology as the main backbone for

service adaptation and content management. Device context on the other hand is the

main source for determining the software and hardware capabilities of used devices,

and hence is used for setting the right execution profile for the accessed services. Infor-

mation such as used operating system, screen resolution, and available memory are cru-

cial to target metadata that allow discovery of services that can run on such devices.

Finally, environment context deals with information such as temporal and spatial con-

textual information, network bandwidth, and other quality service features including

security. Environment context extends device context by adjusting the execution profile

of accessed services. For example, in determining the media type of the resources that

can run on the used device at a specific point in time, we may not solely depend on the

capabilities of the used device, but we should also take into consideration current net-

work bandwidth and network security for instance.

Figure 2 shows the main components of the context acquisition system. At the lower

level, a set of software and hardware services are used to sense and collect atomic con-

text data from different sources. Whenever the learner logs into the system, the latter

identifies the used device type, and then retrieves its static features from the associated

device profile stored in a device profile repository (see Figure 1) which is based on the

CC/PP (Composite Capabilities / Preference Profiles) standard [53]. It also senses the

user’s location, network channel used for connecting the learner; its connection speed

(i.e. maximum theoretical speed), and the current available bandwidth [54]. It should

be noted that while connection speed provides a good idea of the capabilities of the

used network adapter (i.e. its upper bound limit), it does not help predict the actual

network bandwidth which might be substantially less if the network is overloaded. So,

ideally, the available bandwidth should be continuously monitored to report bandwidth

changes as they occur. However, the process of continuously sensing and updating such

dynamic context element is time and resource consuming, especially in a mobile com-

puting environment where system resources are very limited [14]. To deal with this

problem, we rather predict current network bandwidth based on previously sensed

values. This is done using a fuzzy logic approach as described in section 4.1.

Table 1 shows some of the atomic context data used in this study. Each atomic con-

text is defined by a 4-tuple (Source_Id, Feature_Id, Absolute_Value, Symbolic_Value).

Source_Id refers to one of the above-mentioned four categories of context. Feature_Id
Table 1 Example of Atomic Context Properties

Source_ID (Type) Feature_ID (Type) Absolute_Value Symbolic_Value

1 (Device) 1 (Memory Size) Kbytes {Small, Medium, Large}

1 (Device) 2 (Screen Res.) (length, width) {Low, Medium, High}

1 (Device) 3 (OS) String {Linux, Symbian, …}

1 (Device) 4 (Media) String {Text, Image, Audio, Video}

2 (Environment) 1 (Net. Bandwidth) Kbps {Low, Medium, High}

2 (Environment) 2 (Ne.Security) Boolean {Secured, NonSecured}

2 (Environment) 3 (Time) Date-time {Current(yyyy:mm:dd;hh:mm:ss)}

3 (Learner) 1 (Authentication Info.) String {Username, Password}

3 (Learner) 2 (Language) String {English, French, …}

4 (Activity) 1 (Query) String {keyword, Domain-concept}
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identifies the atomic context within the context group, Absolute_Value is the actual

value of the atomic context, and Symbolic_Value is the associated symbolic representa-

tion of the actual value that is used for context reasoning. The focus of this paper is on

the way context data is perceived, integrated and recognized for better personalization

of the learning process.

Ontology-based context modeling

At the semantic level, we define context information using an upper ontology space

that includes four interrelated sub-ontologies – learner ontology – activity ontology –

device ontology – and environment ontology, in addition to a domain ontology that is

used to define the subject domain of interest. Thus, context aggregation is enabled

using a shared ontology space and a unified reasoning mechanism across these sub-

ontologies. Figure 4 shows the upper ontology space which encompasses the four con-

text sub-ontologies and the domain ontology. Various core ontology classes describing

basic ontology concepts (e.g. Device, LearningResource), role concepts (e.g. Learner),

and role holders (e.g. LearningActivity), are used to interrelate concepts among the

combined sub-ontologies. As shown in Figure 4, the five sub-ontologies are blended

along the many properties that link various classes to form the upper ontology space.

The following sections describe in details each of these sub-ontologies as well as the re-

lationships between them.

3.2.1 Domain ontology

Domain ontology is expressed in terms of a hierarchy of subject topics, each of which

is described by a set of concepts and their relationships. The class concept is the ontol-

ogy’s core class as shown in Figure 5. Concepts are related along the properties

HasPrerequisite, Is-a, HasPart, and HasNececassaryPart to describe the prerequisite, is-

a, part-whole, and necessary part-whole dependencies between the various concepts re-

spectively. While these properties are important authoring tools for defining concepts’

fragments (sub-concepts) at any desirable granularity level, they are also crucial to

guiding learners in building their learning paths. In addition to the above mentioned
Figure 4 Upper ontology space.



Figure 5 Domain ontology.
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properties, we use the class property IsMappedTo to annotate learning resources with

ontology concepts. This property along with HasKeyword and HasLearningGoal prop-

erties, which associate keywords input by the learner to most related ontology concepts

and learning goals, are very useful for retrieving learning resources by mapping their

metadata to ontology concepts, thus allowing resource sharing. Another important

property is LearningTime which associates learning resources with the typical learning

time it takes a learner to consume them. This feature enables time-constrained learning

by restricting the search for those learning resources that fall within the learner’s

allotted time. Time constrained learning is crucial in mobile learning which is time-

dependent in nature. In this study, we opted for the IEEE LOM (Learning Object Meta-

data) standard [55] to represent learning resources. LOM introduces a base schema

that abstracts data elements for learning resources into metadata with nine categories

capable of describing content granularity, learning time, and semantic relationship be-

tween described concepts.

3.2.2 Learner ontology

Learner ontology is used to capture knowledge about the learner, thus enabling the system

to discover, adapt, and deliver the most relevant learning resources based on their needs,

background, and preferences. As shown in Figure 6, learner ontology is related to domain

ontology along HasCovered and HasConsumed properties which link learners to covered

concepts and consumed learning resources respectively. In particular, when a new learning

path is constructed, all consumed learning resources are automatically discovered and re-

moved for better personalization, and further learning resources are suggested to fulfill the

learning goal. The latter is captured through the HasLearningGoal property which associ-

ates learners to one or more concepts they are interested in. Finally, the property Conduc-

tedLearningActivity is used to track previously conducted learning interactions by a

particular learner. Other properties are also used to determine learner’s location, preferred

language(s), surrounding environment, and available learning time.



Figure 6 Learner ontology.
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3.2.3 Activity ontology

Activity ontology is used to capture knowledge about a learning activity (i.e. set of user

interactions) conducted by a learner over a period of time using a specific handheld de-

vice. Knowledge embedded in this ontology allows the system to infer history of all user

interactions with the system, including queries made by the learner and used devices. It

also allows the system to recover from wireless network disconnections, which could

be frequent in a mobile environment, by identifying the most recent learning activity

and restoring most recent learning context. Figure 7 shows the main concepts used in

activity ontology along with their relationships with other ontology concepts. The prop-

erty UsedDevice links learning activities to devices that were used to conduct them. De-

vice is deliberately linked to learning activity as learners may use different devices in

their various interactions with the system. The property MakeQuery allows inferring all

queries made during a learning interaction with the system. Queries are linked to con-

cepts along the HasKeyword property. The system is designed to help learners use

ontology vocabulary to compose their queries. The data property QueryTime is used to

time stamp all queries made by the learner in order to infer the order in which ontol-

ogy concepts were covered and their respective learning resources were consumed.

This important temporal feature is crucial to organize and adjust the learning path
Figure 7 Activity ontology.
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every time a new query is made or a new learning resource is invoked by the learner.

Information such as begin-time and end-time of a learning activity can also be retrieved

from the ontology to track the most recent interaction with the system, and to deal

with the learner’s available time.

3.2.4 Device ontology

Device ontology is used to capture knowledge about used devices and their hardware

and software capabilities as well as their limitations. This knowledge is very useful for

discovery of learning services whose execution profile matches the characteristics of

the used device. Our device ontology is conforming to the CC/PP standard [53]. The

latter is an industry standard for describing a delivery context, a set of attributes that

characterizes the capabilities of the access mechanisms and the preferences of the user.

Using CC/PP, allows separating content-design from content-delivery. CC/PP repre-

sents device capabilities using two-level hierarchy consisting of hardware and software

attributes. As shown in Figure 8, the device ontology is based on the CC/PP compo-

nents, HasSoftwareProfile and HasHardwareProfile. These two ontology classes define

knowledge related to the software-centric and hardware-centric features of a device.

For instance, information about device operating system, supported applications, and

screen resolution are essential to discover learning services whose software and hard-

ware requirements match device capabilities. Other properties embedded in the device

ontology can also be used for personalization. For example, the property SupportedLan-

guage is used to infer whether the used device supports a language preferred by the

learner. Learner ontology and device ontology are linked along property UsedDevice

which enables inferring which device is used by a particular learner during a specific

learning activity.

3.2.5 Environment ontology

Environment ontology formally describes the knowledge about a learner environment

which consists mainly of temporal and spatial contextual features, as well as network-

ing, security, and connectivity issues. Figure 9 shows the main ontology classes and

their relationships. The property HasLocation links the Environment class to the

current learner’s location, while the properties HasWirelessNetwork, IsSecured and Has-

Bandwidth describes the wireless Network the learner is connected to, its security sta-

tus, and its current bandwidth. These contextual elements are crucial to infer and
Figure 8 Device ontology.



Figure 9 Environment ontology.
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adjust learning content that is compatible, in terms of size, media-type, and security

with the technological set-up that characterizes the surrounding environment.

Ontology reasoning
Understanding the importance and the role of tacit knowledge is key element to formu-

lating knowledge management strategies for mobile-learning systems. Unlike explicit

knowledge that is coded knowledge, tacit knowledge is knowledge that is embedded in

system actors (i.e. learners and other dynamic context elements) [56] and which is diffi-

cult to be shared and distributed. In this study, the upper ontology space, built out of

the five integrated sub-ontologies is used in such a way to allow tacit knowledge related

to learners and their context to be defined at the semantic level and used to a great ex-

tent in the personalization process. In particular, knowledge in the upper ontology

space is structured in such a way to allow building a conceptual learner model out of a

sequence of learning activities by linking a user’s conceptualization to particular subject

domain ontology. This constitutes the key design aspect of our upper ontology space to

enable personalized learning. A learning activity is characterized by user interactions,

through which contextual information related to the user’s surroundings, as well as

concepts covered, queries performed, and learning resources consumed are stored and

used as knowledge facts to enable further inferences aiming to achieve better adapta-

tion. Thus, the perceived context and the accessed domain information are efficiently

used for building a personalized learning path that is aware of the learner’s interaction

history, preferences, background knowledge, and operating environment. The used ap-

proach models the learner at the semantic level by providing a formal learner’s

conceptualization defined in OWL, and thus allows reasoning upon it in order to infer

the learner’s understanding of the subject domain. The reasoning is performed in terms

of SWRL (Semantic Web Rule Language) rules that are applied on knowledge repre-

sented in the OWL-DL (Description Logics) ontology. It should be noted here that rea-

soning in systems integrating DL ontologies and rules is a very hard task [56]. This is

mainly due to undecidability of reasoning in such systems. This is particularly the case
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for those systems integrating DL ontologies with recursive or hybrid rules [57,58]. So,

bridging the discrepancy in these two knowledge representations is a challenging prob-

lem. Many studies [57-60] have shown that to avoid undecidability of reasoning, prac-

tically all decidable approaches to integrating ontologies and rules should impose

specific conditions which restrict the interaction between the rules and the ontology. In

this work, we adopt a similar decidable reasoning approach by adhering to restrictions,

such as avoiding recursive and hybrid rules. In particular, we use the SWRL-Jess Bridge,

a bridge that provides the infrastructure for incorporating the Jess rule engine into Pro-

tégé-OWL to execute SWRL rules. The system also relies on some SWRL-built-in li-

braries, which include an implementation of the core SWRL built-ins, as well as

mathematical built-ins, to support the use of complex expressions in rules, reasoning

with temporal information and querying OLW ontologies.

The sequence of steps given below illustrates the personalization process adopted by

our system in a typical learning scenario where a learner submits a query in a specific

subject domain area and receives a planned learning sequence fulfilling the learning

goal. This learning scenario is also depicted graphically in Figure 10.

1. When the learner logs in, his background, preferences, and previous learning

activity are retrieved.

2. The learner uses the domain ontology vocabulary to query the system.

3. The subject-domain ontology related to the learner’s query is identified and

retrieved.

4. Based on the learner’s query, the system infers the related ontology concept(s) and

identifies those concepts that are part of prerequisite knowledge, core-knowledge,

and related knowledge using HasPrerequisite, HasNecessaryPart, and HasPart prop-

erties respectively.

5. Next, the system uses the perceived device and environment atomic context

elements to infer metadata that adapts the search for those learning resources that

are suitable for the system-centric context.
Figure 10 Processing steps in a typical learning scenario.
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6. The metadata generated in (4) dealing with related domain ontology concepts, and

the system-centric metadata generated in (5) are then used to discover and filter

out learning resources from various learning repositories.

7. The system will then determine the learner’s expertise in the subject-domain (i.e.

tacit knowledge) by inferring previous learning activities, covered concepts, adopted

learning paths, and consumed learning resources. This knowledge is used to build a

personalized learning sequence that is aware of the learner’s history and available

learning time. Thus, the newly constructed learning sequence consists of optimized

system-centric learning resources to fulfill the current learner’s activity and goals.

8. The personalized learning sequence is then provided to the learner for navigation.

9. Based on the newly selected concept, learner’s expertise is automatically updated

and the personalized learning path is re-adjusted by resuming processing from

step (4).

10.The learning activity terminates when either the learner logs out the system, or

when all domain concepts related to current activity have been covered.

The above strategy strives to meet the best personalized learning path by dynamically

updating the learning sequence based on the learner interactions with the system and

surrounding environment. Below, we give a detailed description of the various system-

centric adaptations and learner-centric adaptations used in the personalization process.

We also provide the algorithm used to help navigate a learning path.

4.1 System-centric adaptation

In a mobile environment it is important for the system to consider system-centric ad-

aptations to cope with the lack of resources in used devices and the unsecured low-

bandwidth wireless network. Thus, system-centric adaptations aim at filtering out those

learning resources that can efficiently be transmitted over the network and properly

run on used devices. These adaptations are triggered by the context monitoring process

which identifies context changes and proactively performs actions such as restricting

media type and pruning large learning resources from the learning path in case of low

network bandwidth. A number of inference rules have been developed to operate on

perceived device and environment atomic context elements to achieve this goal. The

diagram shown in Figure 11 describes the logical steps used to achieve the main

system-centric adaptations considered in this study.

When the learner logs into the system, first, the system senses the used network

adaptor and retrieves its connection speed. Connection speed is an attribute that is

straightforward to obtain and it represents the maximum theoretical speed for the used

wireless adapter [56]. Knowing the type of the network connection, such as IEEE

802.11 or GPRS, gives our reasoning engine the insight that allows it to make some

adaptation choices related to media-type and size of resources that are to be retrieved.

This is achieved by taking into account the available bandwidth and device features.

For example, if the network connection is IEEE 802.11, the system does not need to

sense the network bandwidth and does not need to make any restrictions on media

type because the available bandwidth is stable and large enough to handle all type of re-

sources. However, if the sensed connection is GPRS, the system adapts the media-type

and size based on the available bandwidth as explained below. For example, for a GPRS



Figure 11 Logical sequence for main system-centric adaptations.
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connection with a maximum connection speed of 48 kbps, the actual network band-

width is usually less than 48 kbps due to traffic on the network [54]. Ideally, the sys-

tem should continuously sense and update the current network bandwidth whenever

bandwidth change occurs. However, the process of continuously sensing and updat-

ing the ever changing bandwidth is time and resource consuming as it involves send-

ing data packets through the network. To solve this problem, we only sense the

actual bandwidth at some points in time, and we use a fuzzy logic approach in con-

junction with SWRL rules to predict the available bandwidth between these points.

Also, to reason with bandwidth, we translate the predicted current bandwidth into

meaningful symbolic values such as low, medium, and high bandwidth. Fuzzy logic is

also used to predict the maximum size of learning resources that can be communi-

cated without incurring long delays. For instance, we only search for learning re-

sources with text type if a mobile device, operating on a GPRS network for instance,

has very low bandwidth. However, we can extend media type to image and video if

the network bandwidth is high and the available device memory is large. We also

perform other checks to adapt to features such as screen resolution, used operating

system, and network security. Below we describe the fuzzy logic approach used to

predict media type and size and we give a full scenario to illustrate all system-centric

adaptations.

We make use of the fuzzy logic truth values in conjunction with SWRL rules to al-

locate symbolic value to the predicted current network bandwidth. Figure 12 shows

the membership function for network bandwidth. This is used to predict the network

bandwidth using the fuzzy qualifying linguistic variables such as low, medium, and

high. Note that Maxband which stands for maximum bandwidth is associated with

the maximum connection speed of the used wireless adaptor. The symbol μA(x) rep-

resents a truth value that is between 0 and 1. Based on the membership function

given in Figure 12, μA(x) can be computed by (1).



Figure 12 Membership function for bandwidth.
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L1 : μA bð Þ ¼ 1

L2 : μA bð Þ ¼ −
b−Mediumband

Mediumband−Lowband

L3 : μA bð Þ ¼ b−Lowband
Mediumband−Lowband

L4 : μA bð Þ ¼ −
b−Highband

Highband−Mediumband

L5 : μA bð Þ ¼ b−Mediumband
Highband−Mediumband

L6 : μA bð Þ ¼ 1

ð1Þ

In Rule-Set-1 we describe the SWRL rules that are used to infer the truth values of

classified symbolic network bandwidth given in (1). For the sake of space we only give

TruthValueRule1 and TruthValueRule2 which are respectively related to L1 and L2 of

(1), and which are used to infer the truth values associated to low network bandwidth.

The abstract SWRL syntax which is consistent with the OWL specification is rather

verbose and not particularly easy to read [61]. Instead, we use a relatively informal “hu-

man readable” form where both antecedent and consequent are conjunctions of atoms

with variables prefixed with a question mark (e.g., ?x), and which may also include

functional notations as shown in Rule-Set-1. The latter shows the two above-

mentioned rules which use the property UsedDevice(?act,?dev) which associates a

learner identified by an activity identifier act to their handheld device dev, and the data

properties HasBandwidth and MaxBandwidth which describe respectively the current

network bandwidth and maximum connection speed of a used handheld device.

Rule-Set-1 SWRL rules for fuzy logic truth values

TruthValueRule1

ActivityID(?act) ∧ UsedDevice(?act, ?dev)∧ HasBandwidth(?dev, ?b) ∧ HasNetworkA-

daptor(?dev, GPRS) ∧MaxBandwidth(?dev,?Maxband) ∧ swrlb:multiply(?Lowband,?

Maxband, 0.25) ∧ swrlb:lessThanOrEqual(?b, ?Lowband)→ProbLow(?dev, 1.0) ∧ Net-

workBandwidth(?dev, “Low”).
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TruthValueRule2

ActivityID(?act) ∧ UsedDevice(?act, ?dev) ∧ HasBandwidth(?dev, ?b) ∧ HasNetworkA-

daptor(?dev, GPRS) ∧ MaxBandwidth(?dev,?Maxband) ∧ swrlb:multiply(?Lowband,?

Maxband,0.25) ∧ swrlb:multiply(?Mediumband, ?Maxband, 0.5) ∧ swrlb:greaterThan(?b,

?Lowband) ∧ swrlb:lessThanOrEqual(?b, ?Mediumband) ∧ swrlb:subtract (?z1, ?Med-

iumband, ?b) ∧ swrlb:subtract(?z2, ?Mediumband,?Lowband) ∧ swrlb:divide(?z, ?z1, ?

z2)→ProbLow (?dev, ?z) ∧ NetworkBandwidth(?dev, “Low”)

The following real-life scenario illustrates the way we apply the SWRL rules shown in

Rule-Set-1. For instance, let’s assume that Irene is using the “Motorola W270” mobile

device model, called here MotoW270 which supports a maximum connection speed of

32.0 kbps. Let’s also assume that the value (x*) which represents the most recently

sensed network bandwidth is found to be around 18.0 kbps. This is fluctuating between

medium to high bandwidth with respect to the maximum connection speed as shown

in Figure 12. When TruthValueRule4 and TruthValueRule5 are applied, facts (A2) and

(B2) are inferred, resulting into the addition of four statements to the list of facts as

shown in Rule-Set-2. These new facts reveal the probabilities for the predicted current

bandwidth which were found to be 0.75 for medium bandwidth and 0.25 for high

bandwidth.

The inferred probabilities associated with current bandwidth are then used to deter-

mine the maximum allowable resource size. The aim here is to target resources which

have reasonable size, as it is not practical to offer the learner a large learning resource

(e.g. few Mbytes) if the used device operates on a low bandwidth (e.g. few kbps). So, we

conducted few experiments on three devices with different capabilities to identify some

typical threshold values related to resource sizes that can be used for specific band-

width ranges. The used devices are a basic Nokia phone emulator, a Sony-Ericson

W830C and an HTC-S261 smartphone which have a maximum bandwidth of 32kpbs,

48 kbps and 120 kbps respectively. We used these devices to request learning resources

of different media type and size under a network bandwidth varying from 8 kbps to

120 kbps. Based on these experiments, we have adopted the following assumptions

aiming to keep a reasonable response time. If a mobile device has a connection speed

less than 32 kbps, we should not consider resources that exceed 500Kbytes. However, if

the connection speed was between 32 kbps to 66 kbps, then resources over 1Mbytes

should not be considered. We used these threshold values along with the previously in-

ferred symbolic values associated with current network bandwidth to predict the max-

imum allowable resource size.

Rule-Set-2 Examples of truth value inferences

Ontology related facts

A1)before applying TruthValueRule4

ActivityID(Irene) UsedDevice(Irene, MotoW270) HasBandwidth(MotoW270, 18.0)

HasNetworkAdaptor(MotoW270, GPRS) MaxBand(MotoW270, 32.0) swrlb:multiply

(?Highband,32.0,0.75) swrlb:multiply(?Mediumband, 32.0, 0.5) swrlb:greaterThan(18.0,

16.0) swrlb:lessThanOrEqual(18.0, 24.0) swrlb:subtract(?z1, 24.0, 18.0) swrlb:subtract

(?z2, 24.0, 16.0) swrlb:divide(?z, 6.0, 8.0)
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B1) before applying TruthValueRule5

UsedDevice(Irene, MotoW270) HasBandwidth(MotoW270, 18.0) HasNetworkAdaptor

(MotoW270, GPRS) MaxBand(MotoW270, 32.0) swrlb:multiply(?Highband,32.0,0.75)

swrlb:multiply(?Mediumband, 32.0, 0.5) swrlb:greaterThan(18.0, 16.0) swrlb:lessThanOr

Equal(18.0, 24.0) swrlb:subtract(?z1, 18.0, 16.0) swrlb:subtract(?z2, 24.0, 16.0) swrlb:divide

(?z,2.0,8.0)

OInferred facts

A2)after applying TruthValueRule4

ProbMedium(MotoW270, 0.75) NetworkBandwidth(MotoW270, "Medium")

B2) after applying TruthValueRule5

ProbHigh(MotoW270, 0.25) NetworkBandwidth (MotoW270, "High")

It should be noted that the system is designed in such a way that the maximum toler-

able response time, that depends on the user’s activity and the nature of requested re-

sources, can be easily modified to accommodate learners with more or less restrictive

time constraints. Figure 13 shows the main components of the used fuzzy system which

consists of singleton fuzzifier, product inference engine, fuzzy rule base, and center

average defuzzifier. The system starts with a fuzzification of the input variable, then

rule evaluation, followed by aggregation. The latter is the process of unification of the

outputs of all rules. The last step of the fuzzy system is defuzzification to obtain a crisp

output [50]. Figure 14 shows the membership function for resource size.

The three fuzzy sets Low, Medium, and High describing predicted network bandwidth

are used as an input space in the fuzzy system to predict the maximum allowable re-

source size. We also define three fuzzy sets Small, Medium, and Large as the output

space (resource size) as shown in Figure 14. Note that we use SmallSize, MediumSize,

and LargeSize to refer to center average values for small, medium, and large fuzzy sets

respectively. The fuzzy rule base consists of three simple rules as shown below.

R1: if network bandwidth (B) is Low then resource size (Z) is set to Small

R2: if network bandwidth (B) is Medium then resource size (Z) is set to Medium

R3: if network bandwidth (B) is High then resource size (Z) is set to High
Figure 13 Configuration of fuzzy logic system.



Figure 14 Membership function for resource size.
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Suppose that the fuzzy set Fk in the fuzzy rule base Rk is normal with center �yk . Then

the crisp output from the fuzzy system with singleton fuzzifier, product inference en-

gine, center average defuzzifier, and rule base Rk where, Rkis defined as follows: if x1 is

A1
k and… and xn is An

k , then y is Fk, k = 1,…N is given by [50]:

y� ¼

XN
k¼1

�yk
Yn
i¼1

μAk
i
x�i
� � !

XN
k¼1

Yn
i¼1

μAk
i
x�i
� � ! ð2Þ

In our case, (2) results into:
Z� ¼

X3
i¼1

�Zi � μAi B�ð Þ

X3
i¼1

μAi B�ð Þ

¼ SmallSize � μLow B�ð Þ þMediumSize � μMedium B�ð Þ þ L argeSize � μL arge B�ð Þ
μLow B�ð Þ þ μMedium B�ð Þ þ μL arge B�ð Þ

ð3Þ

In Rule-Set-3, we show the SWRL rule (ResourceSizeRule) associated with equation

(3). In ResourceSizeRule, the data properties ProbLow, ProbMedium, and ProbHigh are

those probabilities obtained in TruthValueRules (see Rule-Set-1). To show how these

rules are applied in our system, we provide a real-life scenario. Let’s assume that our

learner Irene is using a GPRS connection with a maximum connection speed of 32 kbps.

This connection speed delimits the maximum resource size to 500Kbytes as described

above. These assumptions are represented by facts (A1) in Rule-Set-3. When Resource

SizeRule is applied, fact (A2) is inferred resulting into the addition of statement Resource

Size(MotoW270, 281.25) to the list of facts. Indeed, since the previously sensed
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network bandwidth was 18 kbps, our system chooses not to exchange resources over

281.25Kbytes as deduced from the set of inferences shown in Rule-Set-3.

Rule-Set-4 describes the SWRL rules used to select the media type of retrieved learn-

ing resources based on predicted current bandwidth. The data properties Network

Bandwidth and AvailableMemory represent respectively the current bandwidth and

available device memory. In MediaRule1-to-3, the system sets the media type to the ap-

propriate format (i.e. text, image, video) based on the value of predicted current net-

work bandwidth. The system also sets the maximum allowable resource size, as

computed in Rule-Set-3, based on the device’s available memory. If the size of the

device memory is smaller than the maximum allowable media size computed in Rule-

Set-3, then AllowedResourceSizeRule1 sets the maximum media size to the device

memory size; otherwise the maximum media size remains unchanged as stated in

AllowedResourceSizeRule2.
Rule-Set-3 SWRL rule and inferences for determining maximum allowed resource size

ResourceSizeRule

ActivityID(?act) ∧ UsedDevice(?act, ?dev) ∧ ProbLow(?dev, ?Tl) ∧ ProbMedium(?dev,?

Tm) ∧ ProbHigh(?dev, ?Th) ∧ MaxSize(?dev, ?Maxsize) ∧ swrlb:multiply(?Lowsize, 0.25,

?Maxsize) ∧ swrlb:multiply(?Mediumsize,0.5,?Maxsize) ∧ swrlb:multiply(?Largesize,

0.75, ?Maxsize) ∧ swrlb:multiply(?l, ?Lowsize, ?Tl)∧swrlb:multiply(?m, ?Mediumsize,?

Tm) ∧ swrlb:multiply(?h, ?Largesize, ?Th) ∧ swrlb:add(?z1, ?l, ?m, ?h) ∧ swrlb:add(?z2, ?

Tl, ?Tm, ?Th) ∧ swrlb:equal(?z2, 1) ∧ swrlb:divide(?z, ?z1, ?z2)→ FileSize(?dev, ?z)

Ontology related facts

A1)before applying ResourceSizeRule

ActivityID(Irene)

UsedDevice(Irene, MotoW270)

ProbLow(MotoW270, 0.0)

ProbMedium(MotoW270, 0.75)

ProbHigh(MotoW270, 0.25)

MaxSize(MotoW270, 500)

swrlb:multiply(?Lowsize, 0.25, 500.0) swrlb:multiply(?Mediumsize, 0.5, 500.0) swrlb:

multiply(?Largesize, 0.75, 500.0) swrlb:multiply(?l, 125.0, 0.0) swrlb:multiply(?m, 250.0,

0.75) swrlb:multiply(?h, 375.0, 0.25)

swrlb:add(?z1, 0.0, 187.5, 93.75)

swrlb:add(?z2, 0.0, 0.75, 0.25)

swrlb:divide(?z, 281.25, 1)

Inferred facts

A2)after applying ResourceSizeRule

FileSize (MotoW270, 281.25)

To show how the above rules are applied we use the previous scenario of learner

Irene who is using device MotoW270 operating at a bandwidth of 18.0 kbps to access
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the system services. Following the reasoning shown in Rule-Set-2, the system infers a

bandwidth fluctuating between medium to high as shown in facts (A1) and (B1). When

applying MediatypeRule2 and MediatypeRule3, facts (A2) and (B2) are respectively in-

ferred and added to the list of facts as shown in Rule-Set-5. In (C1), AllowedResource

SizeRule2 is applied to compare the maximum allowed resource size previously inferred

in Rule-Set-3 with the device’s available memory, leading to the addition of statement

AllowedSize(MotoW270, 281.25) to the list of inferred facts as shown in (C2). The out-

come of the ontology reasoning for this scenario is that all types of media can be se-

lected for delivery, while their size should not exceed 281.25Kbytes for them to be

efficiently ported on to the used device, and thus avoiding long communication delays.
Rule-Set-4 SWRL rules for media type and resource size selection

MediaRule1

ActivityID(?act) ∧ UsedDevice(?act,?dev) ∧ NetworkBandwidth(?dev,“Low”) →HasMe-

diaType(?dev, Text)

MediaRule2

ActivityID(?act) ∧ UsedDevice(?act, ?dev) ∧ NetworkBandwidth(?dev,“Medium”)→

HasMediaType(?dev, Text) ∧ HasMediaType(?dev, Image)

MediaRule3

ActivityID(?act) ∧ UsedDevice(?act, ?dev) ∧ NetworkBandwidth(?dev, “High”)→Has-

MediaType(?dev,Text) ∧ HasMediaType(?dev,Image) ∧ HasMediaType(?dev,Video)

AllowedResourceSizeRule1

ActivityID(?act) ∧ UsedDevice(?act, ?dev) ∧ FileSize(?dev,?Size) ∧ AvailableMemory(?

dev,?MemorySize) ∧ swrlb:lessThan(?MemorySize,?Size)→AllowedSize(?dev,?

MemorySize)

AllowedResourceSizeRule2

ActivityID(?act) ∧ UsedDevice(?act,?dev) ∧ FileSize(?dev,?Size) ∧ AvailableMemory(?dev,

?MemorySize) ∧ swrlb:greaterThanOrEqual(?MemorySize, ?Size)→AllowedSize(?dev,?Size)
Rule-Set-5 Inferences for media type selection

Ontology related facts

A1)before applying MediatypeRule2

ActivityID(Irene)

UsedDevice(Irene, MotoW270) NetworkBandwidth(MotoW270,“Large”)

B1) before applying MediatypeRule3

ActivityID(Irene)

UsedDevice(Irene, MotoW270) NetworkBandwidth(MotoW270,“Large”)

C1)before applying AllowedResourceSizeRule2

ActivityID(Irene)
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UsedDevice(Irene, MotoW270) FileSize(MotoW270, 281.25) AvailableMemory(MotoW270,

1024.0) swrlb:greaterThanOrEqual(1024.0, 281.25)

Inferred facts

A2)after applying MediatypeRule2

HasMediaType(MotoW270,Text)

HasMediaType(MotoW270,Image)

B2) after applying MediatypeRule3

HasMediaType(MotoW270,Text)

HasMediaType(MotoW270,Image)

HasMediaType(MotoW270,Video)

C2)after applying AllowedResourceSizeRule2

AllowedSize(MotoW270,281.25)

Another type of adaptation considered in this study is language adaptation that takes

into account the language preferred and used by the learner. LanguageRule in Rule-Set-6

establishes a constraint represented by the relationship SearchLanguage that associ-

ates a language with a specific learner activity. The property PreferredLanguage(?act, ?

lan) links an activity identifier act to a preferred language lan. The property Support

Language(?dev, ?lan) links learner’s handheld device dev to its support language lan.

For instance, let’s assume French is the preferred language for learner Irene. Let’s also

assume that English and French are languages supported by the used device

MotoW270. When applying LanguageRule1, as shown by (A1) in Rule-Set-6, we can

infer (A2) that is SearchLanguage (Irene, French), confirming that French can be used

as a search language because it is supported by the used device. The knowledge base

developed in this study also includes rules that deal with other system-centric adapta-

tions such as network security, operating system compatibility, and screen resolution.
Rule-Set-6 SWRL rule for language adaptation

LanguageRule

ActivityID(?act) ∧ UsedDevice(?act,?dev) ∧ PreferredLanguage(?act, ?lan) ∧ SupportLan-

guage(?dev, ?lan)→ SearchLanguage(?act, ?lan)

Ontology related facts

A1)before applying LanguageRule

ActivityID(Irene)

UsedDevice(Irene, MotoW270)

PreferredLanguage(Irene, French) SupportLanguage(MotoW270, English) Support

Language(MotoW270, French)
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A2)after applying LanguageRule

SearchLanguage(Irene, French)
Rule-Set-7 SWRL rules for learning sequence construction

SimilarResourceRule1: ConductedLearningActivity(?L,?act) ∧ MakeQuery(?act,?Q) ∧
HasKeyword(?Q,?C) ∧ IsMappedTo(?C,?LR) ∧ HasLearningTime(?L, t) ∧
LearningTime(?LR, ?t1) ∧ swrlb:greaterThanOrEqual(?t, ?t1)→ SimilarLR(?act,?LR)

SimilarResourceRule2: ConductedLearningActivity(?L,?act) ∧ MakeQuery(?act,?Q) ∧
HasKeyword(?Q,?C) ∧ Has(?C,?Ci) ∧ ¬Covered(?L,?Ci) ∧ IsMappedTo(?Ci,?LRi) ∧

¬Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧ swrlb:

greaterThanOrEqual(?t, ?t1)→ SimilarLR(?act,?LRi)

SimilarResourceRule3: ConductedLearningActivity(?L,?act) ∧ MakeQuery(?act,?Q) ∧
HasKeyword(?Q,?C)∧ Isa(?C,?Ci)∧¬ Covered(?L,?Ci)∧ IsMappedTo(?Ci,?LRi)∧ ¬Con-

sumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧ swrlb:great-

erThanOrEqual(?t, ?t1)→ SimilarLR(?act,?LRi)

PrerequisiteResourceRule: ConductedLearningActivity(?L,?act)∧MakeQuery(?act,?Q)∧
HasKeyword(?Q,?C)∧ HasPrerequisite(?Q,?Ci)∧ ¬ Covered(?L,?Ci)∧ IsMappedTo(?

Ci,?LRi) ∧¬Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧
swrlb:greaterThanOrEqual(?t, ?t1)→ PrerequisiteLR(?act,?LRi)

CoreResourceRule1: ConductedLearningActivity(?L,?a) ∧ MakeQuery(?act,?Q) ∧
HasKeyword(?Q,?C)∧ HasNecessaryPart(?Q,?Ci) ∧ ¬Covered(?L,?Ci)∧ IsMappedTo(?

Ci,?LRi)∧ ¬ Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧
swrlb:greaterThanOrEqual(?t, ?t1)→ CoreLR(?act,?LRi)

CoreResourceRule2: ConductedLearningActivity(?L,?a) ∧ MakeQuery(?act,?Q) ∧
HasKeyword(?Q,?C) ∧ IsNecessaryPartOf(?Q,?Ci) ∧ ¬Covered(?L,?Ci) ∧ IsMappedTo

(?Ci,?LRi) ∧ ¬ Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1)

∧ swrlb:greaterThanOrEqual(?t, ?t1)→CoreLR(?act,?LRi)

NonCoreRelatedResourceRule1: ConductedLearningActivity(?L,?act) ∧ MakeQuery(?

act,?Q) ∧
HasKeyword(?Q,?C) ∧ HasPart(?Q,?Ci) ∧ ¬Covered(?L,?Ci) ∧ IsMappedTo(?Ci,?LRi)

∧ ¬Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧ swrlb:

greaterThanOrEqual(?t, ?t1)→NonCoreRelatedLR(?act,?LRi)

NonCoreRelatedResourceRule2: ConductedLearningActivity(?L,?act)∧MakeQuery(?

act,?Q)∧HasKeyword(?Q,?C) ∧ IsPartOf(?Q,?Ci)∧ ¬Covered(?L,?Ci)∧ IsMappedTo(?Ci,?

LRi)∧ ¬Consumed(?L,?LRi) ∧ HasLearningTime(?L, t) ∧ LearningTime(?LRi, ?t1) ∧
swrlb:greaterThanOrEqual(?t, ?t1)→NonCoreRelatedLR(?act,?LRi)
4.2 Learner-centric adaptation

The best personalization of learning is the one that supplements domain knowledge

with the learner’s tacit knowledge. This approach is adopted in the learner-centric

adaptation process to produce ontology-compliant learning sequence aware of the

learner’s background and task at hand. As shown in Figure 10, first, the system infers

concepts related to the learner’s query using knowledge embedded in the subject domain

ontology. This is done to ensure that the initial learning sequence is ontology compliant.
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Then, knowledge related to learner’s context is used to avoid reiterated covered

concepts and consumed learning resources. In Rule-Set-7, we show the rules used

to derive the initial learning sequence. First, the reasoning engine uses Similar

ResourceRule1-to-3 to check for resources that are directly related to concept(s) in

the learner’s query. Second, PrerequisiteResourceRule is applied to infer prerequisite

knowledge based on HasPrerequisite relationship. Third, the reasoner checks for

core knowledge using CoreResourceRule which is based on the necessary part-

whole (HasNecessaryPart) relationship, thus inferring sub-concepts that should be

covered to completely understand the queried concept(s). Finally, the learning se-

quence is complemented with non-core related knowledge inferred using Non

CoreResourcesRule1&2 which are based on HasPart and its reciprocal relationship

IsPartOf. Each of the above-mentioned rules checks whether the time needed to

consume the recommended resource is within the learner’s available time. It also

checks for already covered concepts and consumed resources which are automatic-

ally eliminated from the learning sequence. Thus, making use of tacit knowledge

retrieved from the learner profile.
Rule-Set-8 example of learning sequence construction

Ontology related facts

A1)before applying SimilarResourceRule1:

ConductedLearningActivity(Irene,A1) MakeQuery(A1, Logical Express)

HasKeyword(Logical Express, C28)

IsMappedTo(C28,LR28a)IsMappedTo(C28, R28b)

B1)before applying CoreResourceRule1

ConductedLearningActivity(Irene,A1) MakeQuery(A1, Logical Express)

HasKeyword(Logical Express, C28)

HasNecessaryPart(C28,C29)

HasNecessaryPart(C28,C30)

HasNecessaryPart(C28,C31)

HasNecessaryPart(C28,C32)

¬Covered(Irene,C31)

¬Covered(Irene,C32)

IsMappedTo(C31,LR31a)

IsMappedTo(C31,LR31b)

IsMappedTo(C32,LR32a)

¬Consumed(Irene,LR31b)

¬Consumed(Irene, LR32a)

C1)before applying NonCoreRelatedResourceRule2:

ConductedLearningActivity(Irene,A1)
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MakeQuery(A1, Logical Express)

HasKeyword(Logical Express, C28)

IsPartOf(C28,C5)

¬Covered(Irene,C5)

IsMappedTo(C5,LR5a)

IsMappedTo(C5,LR5b)

IsMappedTo(C5,LR5a)

¬Consumed(Irene,LR5a)

¬Consumed(Irene, LR5c)

Inferred facts

A2)after applying SimilarResourceRule1

SimilarLR(A1, LR28a)

SimilarLR(A1, LR28b)

B2) after applying CoreResourceRule1

CoreLR(A1,LR31b)

CoreLR(A1,LR32a)

C2)after applying NonCoreRelatedResourceRule2

NonCoreRelatedLR (A1,LR5a)

NonCoreRelatedLR (A1,LR5c)

To illustrate the reasoning mechanism adopted in the learner-adaptation process, we

use a real life learning scenario based on the C++ Programming ontology shown in

Figure 15. Let’s assume that learner Irene wants to learn about “logic expressions” of

the C++ programming language. This query has similar keywords with the ontology
Figure 15 C++ Programming language domain ontology.
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concept C28 which describes “Logical_Expression” as shown in Figure 15. The reason-

ing engine is invoked by firing SimilarResourceRule1 which operates on facts (A1) and

infers (A2) as shown in Rule-Set-8. The results of this inference consist of mapping

learning resources LR28a and LR28b to concept C28. Facts (A2) are then added to

the knowledge base. It should be noted here that concept C28 does not have any

similar or prerequisite concepts in the C++ ontology. Therefore, the application of

SimilarResourceRule2&3 and PrerequisiteResourceRule do not produce any useful re-

sults in this case. However, when applying CoreResourceRule on facts (B1), concepts

C29(Boolean_data), C30(Relational_Operators), C31(Logical_Operators), and C32

(Operators_Precedence) are inferred as core knowledge that need to be offered to the

learner to fully understand the queried concept (i.e. Logical_Expressions). We also infer

that concepts C29 and C30 have already been covered by Irene in previous studies,

thus, the reasoner automatically eliminates them from the learning sequence. The system

also infers that learning resources (LR31a, LR31b) and LR32a are mapped to concepts

C31 and C32 respectively, and that learning resources LR31b and LR32a have not been

consumed by Irene. These resources are therefore prescribed to Irene and facts (B2) are

added to the knowledge base. Finally, NonCoreResourceRule2 is applied on facts (C1) to

infer (C2) which states that concept C28(Logical_Expression) is part of C5(Selection), and

that LR5a and LR5c which correspond to concept C5 have not been consumed by Irene so

far, and therefore can be prescribed to her as non-core related knowledge. The learning

sequence resulting from the application of the above mentioned rules produces the learn-

ing sequence shown in Figure 16 where the type of each learning resource (e.g. core, non-

core, prerequisite, etc.) is clearly specified to the learner.

The learning path navigation algorithm, described below, is triggered once the learner

starts interacting with the initially recommended learning sequence. The invocation of

any learning resource leads to updating the list of consumed learning resources, and

generating a new sub-learning path associated with the newly invoked concept. The

new path is then added to the global learning path as shown in step 10 of the
Figure 16 Recommended learning sequence.
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Learning_path_Navigation algorithm. The new sub-learning path is constructed by the

learning_path_generation procedure, which first infers core concepts associated with

the newly invoked concept and appends their respective resources. Then, for each core

concept, it infers resources to fulfill their prerequisite knowledge. The learning path

thus, grows dynamically as the learner invokes new concepts. However, when the

learner makes a backward move, the corresponding sub-learning path is completely

pruned from the global learning path. The learning session terminates when the learner

either logs out of the system or consumes all prescribed learning resources.
Experimental results
To illustrate the ontology reasoning mechanisms used in this study, we provide a num-

ber of scenarios that demonstrate the various system-centric and learner-centric adap-

tations. For system-centric adaptations, we devised an experiment where three mobile

phones with different software and hardware capabilities were used to query concepts

related to C++ programming language. Table 2 shows the software and hardware fea-

tures of the used devices while Figure 17 shows the list of learning resources returned

for each device after applying the various system centric rules described in section 4.1.

The first device used in this experiment is an emulator for a Nokia phone with basic

features and limited resources. The reasoning engine recognizes the limitations of the

Nokia phone and the limited network bandwidth (8.0 kbps) sensed during the experi-

ment, and returns a set of learning resources in text format, not exceeding 125Kbytes

as shown in Figure 17.a. Figure 17.b shows the learning resources retrieved for the Sony

Ericsson W830C which has more capabilities than the Nokia phone. These include re-

sources of image media type in addition to text resources not exceeding 250Kbytes due

to the limited sensed bandwidth. However, Figure 17.c shows the learning resources re-

trieved for the HTC S621 Smartphone which can support all types of media. Based on

the sensed bandwidth and the predicted maximum resource size, the system was able

to retrieve larger resources of various media types.

To demonstrate some of the learning centric adaptations used in this study, we show

an experiment where Irene is working on a C++ programming assignment as part of

her first programming course. Being a novice programmer, Irene is confused about the

syntax of “C++ Loops”. So, she used her mobile device “HTC S621 Smartphone” to

query the system using “C++ Loops”. Irene’s available learning time is set to 15 minutes.
Table 2 Experimental Mobile Devices

Feature Basic Nokia
Phone
Emulator

Sony Ericsson
W830C

HTC S621
Smartphone

Samsung S4

Smartphone

Operating system Symbian Sony Ericsson Java Windows Mobile 6 Android 4.2.2

Available Memory 256.0kbytes 6.0Mbytes 32.0Mbytes 64GB

Connection Speed 32.0 kbps 48.0 kbps 120.0 kbps 150Mbps

Screen Resolution 128×96 pixels 320×240 pixels 320×240 pixels 1920×1080

Browser WAP 2.0 WAP 2.0 Internet Browser Internet Browser

Keyboard Type Virtual Virtual Real Virtual

Media Type Text, Image Text, Image, Video Text, Image, Video Text, Image, Video

Display Type Monochrome 256 k Colors 65536 Colors 16 M Color Depth

Network Adaptor GSM 1900 GPRS, EDGE Wifi/GPRS/EDGE Wifi/GPRS/EDGE/HSPA



Figure 17 Experimental results with different mobile devices.
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Once logged in, the system tracks her previous login sessions, covered concepts, con-

sumed learning resources, and previously conducted learning interactions. Then, the

system proceeds with system-centric rules to adapt the search for learning resources,

taking into account the limitations of the used device and surrounding environment.

Irene’s query is then used to reason with the related subject-domain ontology to infer

those concepts that are part of similar knowledge, prerequisite knowledge, core-

knowledge, and related knowledge, using Is-a, HasPrerequisite, HasNecessaryPart, and

HasPart properties respectively. Consequently, the ontology concepts For, Do-While,

and While are inferred and classified as “similar knowledge” to C++ Loops, while con-

cept Looping is inferred and classified as “related knowledge”. As shown in Figure 15,

the C++ ontology does not have prerequisite or core concepts associated with C++

Loops. Thus, the learning sequence suggested by the system for this scenario is C41 (C

++ Loops)→ C44 (For)→ C43 (Do-While)→C42 (While)→C5 (Looping) as shown in

Figure 18.b. The system will then starts searching for learning resources associated with

the inferred ontology concepts to build a personalized learning path. The learning path

construction process uses the learner-centric rules described in section 5.2 to remove

already covered concept and consumed learning resources. It also uses the learner’s

available time (i.e. 15 minutes) to suggest only those learning resources that can fit

within the allotted time. Figure 18 shows Irene’s interactions with the system for this

learning scenario. The suggested learning resources for this case are a video about C++

loops from YouTube Pocket and a text tutorial about While loop as shown in

Figure 18.

An additional experiment was conducted to show both system-centric and learner-

centric adaptations using an ontology related to photography. The photography ontol-

ogy edited using Protégé software is shown in Figure 19. In this scenario we assume

that Irene would like to purchase a camera as a gift for her friend. On her way to the

shopping mall she used our system to get some technical background about cameras in
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order to make the right purchase decision. She queries the system with the keyword

“camera”. This experiment is conducted using three different devices, the openwave

simulator to emulate a Nokia phone with basic features, the Sony-Ericson W830C, and

a Samsung S4 Smartphone. The capabilities and features of these devices vary from

simple to sophisticated respectively as shown in Table 2. Irene’s available learning time

in this case is 20 minutes. For each experiment, first, system-centric adaptations rules

are applied to select learning resources that can be played on the used device. Second,

learner-centric adaptations rules are applied to infer concepts related to the user’s

query, taking into account the available learning time. The suggested learning concepts

are inferred in the following order: similar knowledge, prerequisite knowledge, core

knowledge, and then, related knowledge. In our experiment, the ontology concept

Digital Camera and Film Camera are inferred as “similar knowledge” of concept Cam-

era. The concept Photography Equipment is inferred as “related knowledge”. Thus, the



Figure 19 Photography ontology.
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resulting learning sequence is (Camera)→ (DigitalCamera)→ (FilmCamera)→ (Equip-

ment). The learning resources associated with these concepts, as shown in Figure 20,

are based on device capabilities and environment context as determined by the various

adaptation rules. In this case, Irene is particularly interested in Digital Cameras. By

choosing Digital Camera, further related concepts (Resolution, Lens, LCD Screen, Mem-

ory Card, and Flash) are inferred from the ontology and suggested for learning. Irene

can then deepen her knowledge about any of these features before making a purchase

decision. It can be seen in Figure 20 that resources suggested using the openwave emu-

lator are mainly small text-based resources, while more image- and video-based re-

sources are suggested for the Samsung S4 smartphone. The images for the Samsung

are taken using the Samsung screenshot utility. Each time Irene interacts with the sys-

tem, the learning resources associated with consumed concepts are removed and the

learning path is updated accordingly as shown in Figure 20. Due to limited space we

could not show all Irene’s interactions, however, details of the above mentioned learn-

ing scenarios can be viewed in videos provided at http://unite.lakeheadu.ca/mlearning.

Conclusion
In this paper, a personalized mobile learning system that provides lightweight services

adapted to both system-centric and learner-centric context is proposed. In particular,

an attempt was made to solve two challenging problems related to context-aware mo-

bile learning. These are heterogeneous context perception and integration at the se-

mantic level, and context-aware content discovery and adaptation at run-time. To deal

with context heterogeneity, an upper ontology space is used to define a higher level

unique semantic view of the learning scenario. We showed that knowledge embedded

in the upper ontology can homogeneously be used to enable a unified reasoning mech-

anism that operates on facts instantiated by the perceived heterogeneous context ele-

ments. The paper also addressed the problem of context that is perceived with

ambiguity by using fuzzy logic in conjunction with semantic web based reasoning. The

http://unite.lakeheadu.ca/mlearning
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proposed system is characterised by the fact that the reasoning engine translates con-

text changes as they occur into new content adaptation constraints in the operating en-

vironment, thus enabling context-aware personalized learning services. A number of

learning scenarios have been used to demonstrate the main functions of the proposed

system. The experimental results have shown that the system successfully adapts the

learning content based on the learner’s context and surrounding environment.

This research work can be extended in many ways. One possible extension is the use

of Mashup technology to make it possible to use multiple search agents in order to re-

trieve learning resources from multiple repositories, thus enhancing learning-content

provision. In addition, we are currently working towards the provision of secured light-

weight learning services. Trusted web-services are crucial for mobile learning applica-

tions such as those related to telemedicine or corporate learning.
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