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Abstract

The availability of advanced wireless sensor nodes enable us to use video processing
techniques in a wireless sensor network (WSN) platform. Such paradigm can be used
to implement video sensor networks (VSNs) that can serve as an alternative to existing
video surveillance applications. However, video processing requires tremendous
resources in terms of computation and transmission of the encoded video. As the
most widely used video codec, H.264/AVC comes with a number of advanced
encoding tools that can be tailored to suit a wide range of applications. Therefore,
in order to get an optimal encoding performance for the VSN, it is essential to find
the right encoding configuration and setting parameters for each VSN node based
on the content being captured. In fact, the environment at which the VSN is
deployed affects not only the content captured by the VSN node but also the
node’s performance in terms of power consumption and its life-time. The objective of
this study is to maximize the lifetime of the VSN by exploiting the trade-off between
encoding and communication on sensor nodes. In order to reduce VSNs’ power
consumption and obtain a more balanced energy consumption among VSN nodes,
we use a branch and bound optimization techniques on a finite set of encoder
configuration settings called configuration IDs (CIDs) and a fairness-based scheme.
In our approach, the bitrate allocation in terms of fairness ratio per each node is
obtained from the training sequences and is used to select appropriate encoder
configuration settings for the test sequences. We use real life content of three different
possible scenes of VSNs’ implementation with different levels of complexity in our study.
Performance evaluations show that the proposed optimization technique manages to
balance VSN’s power consumption per each node while the nodes’ maximum power
consumption is minimized. We show that by using that approach, the VSN’s power
consumption is reduced by around 7.58% in average.

Keywords: Component; Video sensor network; H.264/AVC; Power consumption;
Computation and communication trade-off; Fairness
Introduction
The advances in VLSI, sensors and wireless communication technologies have pro-

vided us with miniature devices that have low computational power and communica-

tion capabilities. These devices can be organized to form a network called wireless

sensor network (WSN). A WSN is typically used to measure physical attributes of the

monitored environment and send the information to a central device that usually has

unlimited resources. The information gathered at the central device, usually called the

sink node, can be used by human operator or any additional machine/software to
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perceive the condition of the monitored environment and provide some action if neces-

sary. Due to the ad-hoc nature of the deployment, the information sent to the sink is

usually performed in a multi-hop wireless communication fashion.

Considering that visual information can significantly improve the perceived informa-

tion gathered from the sensed environment, there is a growing interest in incorporating

video applications and transmissions over WSN [1-3]. Wireless video sensor network

(VSN) has the potential to improve the ability to develop user-centric surveillance

applications to monitor and prevent harmful events [4,5]. VSNs offer an alternative to

several existing surveillance technologies because it can be implemented in an ad-hoc

manner, customized to user requirements, and implemented on locations that are lack-

ing infrastructure. However, unlike the conventional WSNs, VSNs require a large

amount of resources for encoding and transmitting the video data. Therefore, maximiz-

ing the power efficiency of coding and transmission operations in VSNs is very

important.

Video nodes in VSNs share the same wireless medium in order to send their encoded

video to the sink node. Since the bandwidth allocated for the network is limited, there

is an issue of fairness of bandwidth allocated per each VSN node. Allocating the same

bitrate to each video node guarantees the fairness in terms of bitrate and the quality of

the encoded video, given that each node is using the same video encoding parameter

settings and configurations. However, in many VSN deployment scenarios, nodes fur-

ther from the sink usually need to relay their data through intermediate nodes. There-

fore, the total energy consumption of nodes that are closer to the sink will be greater

than the nodes further. More balanced energy consumption among VSN nodes is

achieved by allocating different fairness ratio per each node in the VSN. It has to be

noted that this has to be done without sacrificing the quality of the transmitted video

of any node. To this end different fairness ratios are assigned to VSN nodes such that

the tradeoff between encoding complexity and compression performance is exploited.

Since encoding complexity and compression performance (in terms of bit rate) deter-

mine the required power for coding and transmission respectively, assigning different

fairness ratio per each node will affect the distribution of power consumption in a

VSN. To the best of our knowledge this idea has not been studied in details in the

existing literature on VSN.

In order to exploit the trade-off between computation and communication of a video

stream, an understanding on how the encoder works along with its impact on the com-

pression performance is necessary. H.264/AVC is the current most widely used ITU

and MPEG video coding standard [6,7]. There is a number of published research works

on H.264/AVC’s performance in literature [8,9]. However, the focus of most of the

existing studies is mainly on determining the optimal coding configuration without

considering the total energy consumed for encoding and transmission. One of the earl-

ier studies on H.264/AVC power consumption in a VSN is presented in [10]. In this

study, the trade-off between encoding and transmission energy consumption for only

two configuration settings of H.264/AVC are investigated. In another study [11], the re-

searchers compares the total energy consumption of some video encoders including

H.264/AVC using the same configuration settings as the ones used in [10]. The study

in [10] was further extended by [12] through including more configuration settings of

H.264/AVC encoder for investigating the trade-off between encoding and transmission
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energy consumption in a VSN. Furthermore, in [12] some encoder parameters that can

affect the performance of the encoder in terms of bitrate and computational complexity

were highlighted. In order to take advantage of the trade-off between encoding and

transmission energy consumptionin, a table called configuration ID (CID) was pro-

posed, that includes several encoder configuration settings to compress a video with

almost similar quality in terms of peak signal to noise ratio (PSNR), at different bitrate

and compression complexity level. Unlike the CommonConfig approach used in [10]

[11], where all VSN nodes have the same encoding configuration, the proposed scheme

in [12], assigns different CIDs to different nodes in order to exploit the trade-off

between communication and computation. The analysis of the energy consumption

fairness of the VSN showed that by assigning different configuration setting parameters

to each node, the node’s maximum energy consumption of VNSs can be reduced [13].

One of the common drawbacks of the existing studies is using the same video resource

for all VSN nodes. While this seting may show some aspects of the video encoding

process and trade-off in a VSN, it does not reflect the real life setting of a VSN deploy-

ment, where different VSN nodes capture the scene from different point of view and

thus the complexity of captured content is not consistent over different nodes. Note

that the performance of a video encoder in terms of computational complexity and

bitrate depends on both the encoding configuration and temporal and spatial complex-

ity of content. That brings the problem of exploiting the trade-off between computation

and communication in a VSN into a different level of difficulty.

In this paper, we propose an algorithm to reduce the maximum power consumption

VSN nodes by extending our previous work in [12] and [13]. We use a branch and

bound optimization techniques on a finite set of CID options and a fairness-based

scheme in order to reduce VSNs’ power consumption and obtain a more balanced

energy consumption among VSN nodes. Furthermore, in order to simulate a realistic

VSN implementation, we use a variety of real life captured content in our analysis.

We also study the effect of spatial and temporal complexity of the videos on the

VSN’s encoding performance. In order to perform the analysis, the captured videos

are classified into different content complexity classes. Then some of these videos are used

for training and the rest for testing the performance of our algorithm. Also, to evaluate the

performance of the proposed algorithm in a more realistic scenario, the VSN used in this

study has a more complex network topology than the one used in [12,13].

The rest of the paper is organized as follows: Section Video capturing and encoding

settings describes the video capturing and encoding settings used in this paper, Section

Video content classification presents the video content classification methodology,

Section VSN Power consumption modelling and formulation describes the energy con-

sumption model for the VSN used in the paper, experiments and results are provided

in Section Experiments and results, and conclusions are and future works are discussed

in Section Conclusions.

Video capturing and encoding settings

The complexity of the captured content by the VSN nodes depends on the activities of

the scene where VSN is deployed. This in turn will also affect the encoding complexity

and bitrate of the encoded video at each VSN node. In order to mimic realistic VSN ap-

plications, we have installed nine cameras in one of our labs. The cameras are installed



Figure 1 Camera placements. In order to mimic a realistic scenario, nine cameras are installed in one of
our lab such that each of them has different field of view.
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such that each of them has different field of view as shown in Figure 1. Some of the

cameras’ field of view overlaps one another. The scene arrangement is such that the

motion and activities are not centered in the middle of the field and the content cap-

tured by each camera is different. With the assumption that most important activities

occur around the entrance door in a surveillance system, the middle camera (see cam-

era 5 in Figure 2) is directed towards the door. To capture representative VSN data

with different temporal and spatial complexity levels, we modify the layout of the lab to
Figure 2 The setting of the room for video capturing process. To capture representative data, we
modify the layout of our lab to represent three different scenes: office (left), classroom (middle) and
party (right).
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represent three different scenes, namely “office”, “classroom”, and “party”. Figure 2 il-

lustrates the layout of different scene settings. To have a representative database with

different activity levels, each scene is captured several times based on four different

settings as follows:

1. The level of activity of all the people in the room is high, and the total number of

people is between six to eight.

2. Three or more people moving around the room, while the total number of people

in the room is around six.

3. Couple of people walking around the room, while the total number of people in the

room is around five.

4. Three or four people walking in the room.

Using the nine cameras installed, we have captured four different activity settings for

the three scenes (“office”, “classroom” and “party”), producing 108 different videos to

be used for our analysis. Each video is 10s length and downsampled to 15 frame per

seconds (fps) 416×240 pixels to mimic the requirement of a decent video sensor net-

work. Figure 3 shows snapshots of the “office” scene from camera2 and camera4 when

activity level of the scene falls into the first and third settings. As it is observed the

video content from the two cameras and the two activity scenarios are not the same.

Figure 4 shows snapshots from the “classroom” and “party” scenes when the activity

level of the scene falls into the second setting. For ease of referencing, the following

video identification is used: <camera-id__scene-setting__activity-level>. Hence, cam-

era2_party_act1 means the video captured by camera2 in the “party” scene when the

activity level of the scene falls into the first setting.
Figure 3 Some snapshots from the “office” scene. The first row show the snapshots of the “office”
scene in the first activity settings from: (a) camera2 and (b) camera6. The two cameras produced different
contents when the activity level of the scene falls into the third setting as shown in (c) camera2 and
(d) camera6.



Figure 4 Some snapshots from the “classroom” and “party” scene. The first row shows the snapshots
of the “classroom” scene from (a) camera2 and (b) camera4. On the other hand the second row show the
snapshots of the “party” scene from (c) camera2 and (d) camera4.
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For encoding the videos captured at each node, we use the most widely used video

coding standard H.264/AVC [6]. The video coding standard comes with a number of

different encoding tools that can be configured to suit a wide range video applications.

The performance of the H.264/AVC encoder in terms of computation requirement

(complexity) and bitrate depends on the setting parameters used to encode the video.

One of the encoding parameters is group of picture (GOP) size. GOP size determines

the number of inter-frame coded picture within a successive video stream. In inter-

frame prediction process, each block within a current frame is predicted by the most

similar block from previously coded reference frames. This is in contrast with the

intra-frame prediction technique, in which blocks of pixels are predicted from its

neighboring pixels within the same frame. The inter-frame prediction technique pro-

duces lower bitrate than intra-frame prediction; while the encoding complexity of

inter-frame coding is much higher than the later. As it is observed by increasing the

GOP size, the number of inter-frame coded pictures increases, therefore the bitrate of

the coded video is reduced at the cost of higher encoding complexity. Note that the

complexity and bitrate of inter-frame prediction can be controlled by adjusting the

search range (SR) of motion estimation process. The SR determines the size of search-

ing area in the reference frame to find the best match to be used for inter prediction.

Increasing the SR may result in better compression performance at the cost of in-

creased complexity. However this observation is quite content dependant and there are

cases where increasing the value of SR does not provide significant benefit in terms of

compression performance [12]. Quantization parameter (QP) is another encoding par-

ameter that regulates how much spatial detail is saved. In fact, the quality of the

encoded video in terms of peak signal to noise ratio (PSNR) depends largely on the QP

value. When QP value is very small, the residue signal is preserved more and the qual-

ity of compressed video is high, at the cost of higher complexity and bitrate.
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Due to the limitation in the energy and processing resources of VSNs, less complex

encoder configurations are deployed. To this end, we use the baseline profile of H.264/

AVC that is suitable for low complexity applications. Therefore, only I and P frames are

used (no B-frame). The other encoding settings used in this paper include the use of

context-adaptive variable-length coding (CAVLC) entropy coding, one reference frame,

SR equal to eight, while the rate distortion optimization (RDO), rate control, and the

deblocking filter are disabled. The H.264/AVC reference encoder software (JM 18.2) is

used in our study. The instruction level profiler iprof [14] that provides us with the

number of basic instruction counts (IC) to perform an encoding task is used as the en-

coding complexity measure. The benefit of using IC as the measure of complexity is

threefold. Firstly, IC is more accurate than the commonly used encoding time. The other

benefit of using IC is the fact that IC is agnostic to the device architecture. In addition, IC

can be used to estimate the encoding power consumption of the video node.

From our earlier work, we learned that the IC increases as the GOP sizes increases

[12]. For a specific QP, however, increasing the GOP size will also reduce the bitrate as

the number of intra predicted frames are reduced. Therefore, the trade-off between en-

coding and transmission power consumption can be controlled by managing the GOP

size. This information were translated into a tabular format as shown in Table 1. It has

to be noted that the table only shows the value of GOP size used for the corresponding

configuration ID (CID). The remaining encoder setting parameters are the same, i.e., as

mentioned in the previous paragraphs.

Figure 5(a) shows the complexity and bitrate plot of the CIDs defined in Table 1 for

different QP values for camera2_party_act2 video. As it is observed, when CID value is

small, the compression performance of the encoder is sacrificed such that the bitrate is

high. However, this is compensated by having a low encoding complexity. On the other

hand, using bigger CID means increasing the encoder complexity to gain a better com-

pression performance. Figure 5(a) also shows that reducing the value of QP will in-

crease both the encoder complexity and bitrate. Therefore, the bitrate of the encoded

video and the complexity of the encoding process depend on the CID and QP used. It

has to be noted that although the GOP sizes gap for CID = 6 (GOP = 32) and CID = 7

(GOP = 64) is very high, i.e., the GOP size gap is 32, the different in complexity (bitrate)

between these two CIDs is very small. Moreover, the values used in Table 1 shows a re-

lation between the GOP size and the CID, i.e., CID = log2(2*GOP). This shows that the

CID values represent an encoder parameter, i.e., the GOP size, whose values affect the

complexity and bitrate of the encoder. We also want highlight that the bitrate
Table 1 Configuration ID (CID)

CID GOP

1 1

2 2

3 4

4 8

5 16

6 32

7 64



Figure 5 Complexity, bitrate, and video quality trade-off. Part (a) of this figure shows the trade-off
between complexity (in terms of instruction counts) and bitrate of camera2_party_act2 video encoded with
different CID and QP values. It can be seen that the smaller CID value entails high bitrate but low encoding
complexity. On the other hand, encoding the video with a smaller QP value (to get better video quality)
increases computation complexity and bitrate. Part (b) of the figure shows that for the same value of QP,
the video quality is almost the same, regardless of the CID used to encode the video.
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(complexity) is monotonously decrease (increase) with the increase of CID value. In

terms of the encoded video quality, Figure 5(b) shows that for the same QP, the quality

of the encoded video is almost the same in terms of PSNR, i.e., the different is less than

0.5 dB, regardless of the CID value used to encode the video.

Video content classification

Since the cameras in a VSN can have different field of views, the content captured by

each camera in a VSN will be different. For example, Figure 6(a) shows the complexity

and bitrate of videos captured by three different cameras in the “party” scene at the

same activity level while Figure 6(b) shows the complexity and bitrate of videos cap-

tured by camera2 in the “party” scene at different activity levels. On the other hand,

Figure 7 shows the complexity and bitrate of videos captured by camera2 in different

scenes. It can be seen from these figures that the bitrate and encoding complexity of

the videos captured by each camera depends on the content complexity of the scene.

The video that contain more objects and with higher motion will have a higher bitrate

than the video that has less objects and motion. Consequently, the total bitrate gener-

ated by the captured scenes that have high spatial and temporal detail will be bigger
Figure 6 The complexity and bitrate of some videos from the “party” scene. Part (a) of the figure
shows the complexity and bitrate of videos from camera2, camera4, and camera7 in the second activity
setting. On the other hand, part (b) of the figure shows the complexity and bitrate of videos captured by
camera2 in different activity settings. The videos are encoded with QP equal to 28 while the CID value
is varied.



Figure 7 The complexity and bitrate of some videos captured at different scene settings. The figure
shows the complexity and bitrate of videos from camera2 captured at different scenes. The videos are
encoded with QP equal to 28 while the CID value is varied.
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than the ones obtained from the scenes with lower spatial and temporal detail. Ideally,

we need to find the nodes’ optimal bitrate allocation for each possible scene. However,

this approach is not practical. In this regard, we assume that if we can obtain the opti-

mal bitrate ratio allocation for the worst scenario, i.e., when the nodes’ bitrate is high,

we can use that information as an initial guide for us to allocate the configuration set-

tings for the other scenarios. Thus, in this paper, the scenes with higher content will be

used for the training set while the remaining scenes are use as the test set. In order to

find the scenes that have higher activity content, we need to formulate a methodology

to classify each camera and scene into different content complexity level. For that pur-

pose, we use the ITU-T recommendation that includes the use of spatial information

unit (SI) and temporal information unit (TI) that is defined as follow [15]:

SI ¼ maxtime stdspace Sobel Fnð Þ½ �� � ð1Þ

TI ¼ maxtime stdspace Fn−Fn−1½ �� � ð2Þ

SI and TI measure the spatial and temporal activity level of videos. In this regard,
Figure 8 shows the SI and TI values of camera1, camera2, camera5, and camera9. It

can be seen from this figure that for the same scene, each camera has different spatial

and temporal activity level. Consequently, Table 2 shows the SI values of all videos

while Table 3 shows the TI values, respectively.

In order to classify the scenes into different content complexity level, the following

procedure is used:

1. Classify each video from a scene into different SI and TI classes using the following

threshold:

t1 ¼ mean CCð Þ−0:5�std CCð Þ
t2 ¼ mean CCð Þ þ 0:5�std CCð Þ
CC ¼ SI;TIf g

ð3Þ



Figure 8 Spatial and temporal information of all scenes captured. The figure shows the spatial and
temporal information captured from (a) camera1, (b) camera2, (c) camera5, and (d) camera9.

Sarif et al. Human-centric Computing and Information Sciences  (2015) 5:7 Page 10 of 29
Using (3), we found that the value of t1 and t2 for SI are 87.85 and 98.95, respect-

ively. On the other hand, the value of t1 and t2 for TI are 14.32 and 19.04, respectively.

For example, if a specific video’s SI is less than t1, the video is classified as low-SI_video.

If the video’s SI is higher than t2, it is classified as high-SI_video. If the video’s SI is be-

tween t1 and t2, the video is classified as medium-SI_video.

2. Based on the SI(TI) classes of the videos, we classify the scene into different SI(TI)

classes using the following rules:
Tabl

Scene

office

office

office

office

classr

classr

classr

classr

party

party

party

party
a. The SI(TI) class of a scene is equal to the majority of SI(TI) classes of all videos

from that scene

b. If no majority is found, the scene is classified as medium SI(TI) scene
e 2 Spatial Information unit (SI) of all videos

cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8 cam9

_act1 100.52 97.83 88.92 76.17 84.60 89.95 85.73 95.06 94.98

_act2 85.83 90.26 85.90 71.24 76.14 84.45 85.20 90.06 88.62

_act3 87.78 88.68 89.78 74.30 67.62 91.16 89.93 90.80 92.75

_act4 84.97 87.01 87.96 71.40 61.17 89.97 83.85 87.36 87.43

oom_act1 94.62 99.18 96.73 89.56 97.46 96.04 92.03 88.12 83.59

oom_act2 96.30 94.46 96.30 91.46 74.07 88.83 92.74 85.52 84.99

oom_act3 89.67 94.11 90.04 85.71 77.42 87.03 88.94 85.85 82.55

oom_act4 101.69 101.21 94.74 92.68 89.08 94.57 91.86 89.19 83.64

_act1 114.85 112.10 116.85 99.60 81.27 104.73 104.60 110.79 105.97

_act2 115.40 114.49 107.53 90.61 95.06 101.31 104.56 111.56 101.90

_act3 113.43 112.04 113.87 99.02 76.15 96.36 107.40 111.86 107.08

_act4 106.64 103.51 111.48 89.54 93.97 95.22 101.28 102.44 105.30



Table 3 Temporal Information unit (SI) of all videos

Scene cam1 cam2 cam3 cam4 cam5 cam6 cam7 cam8 cam9

office_act1 20.91 23.88 18.15 25.59 21.83 26.44 14.93 21.35 21.51

office_act2 14.59 19.21 18.46 22.00 19.43 23.26 17.33 15.10 15.47

office_act3 13.10 18.34 18.77 20.77 13.73 20.90 17.04 17.20 16.51

office_act4 14.05 16.76 16.21 17.74 1.74 15.87 14.55 18.08 18.60

classroom_act1 18.05 18.39 18.42 17.47 19.47 19.56 11.04 11.21 7.38

classroom_act2 12.04 16.78 12.75 15.14 12.25 13.82 13.85 7.60 11.58

classroom_act3 15.18 15.88 11.79 13.76 17.64 14.98 9.65 11.07 4.75

classroom_act4 16.52 16.24 13.41 15.65 18.40 17.46 11.22 12.04 6.79

party_act1 22.45 27.82 21.44 27.15 19.59 21.93 17.15 18.27 17.98

party_act2 26.10 26.24 19.76 17.66 21.24 26.86 22.29 22.67 15.76

party_act3 13.75 17.83 14.74 17.05 10.92 15.01 13.93 13.50 11.72

party_act4 16.59 16.78 17.00 13.17 18.25 15.32 11.10 13.31 10.83
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Figure 9 shows an example on how to obtain the office_act1 and classroom_act1

scenes’ classes. Using the above rule, the office_act1is classified as medium-

SI_high-TI_scene. On the other hand, scene classroom_act1is classified as medium-

SI_medium-TI_scene. Figure 10 shows the classes of all the scenes.

Scenes with high SI will generally produce videos with higher bitrate than the scenes

that have lower SI. This is especially true for CID equal to one that corresponds to

using GOP size equal to one, i.e., the video is intra-frames coded. Therefore, the config-

uration settings that is suitable for a specific SI class may not be suitable to be used for

the other SI class. Based on this assumption, the scenes are arranged into three differ-

ent sets, namely scenes that have high SI, scenes that have medium SI and scenes that

have low SI. In each of these sets, the scene with the highest TI will be selected as the

training scene. For example, in Figure 10, the scenes having medium SI are the offi-

ce_act1, office_act3, classroom_act1, classroom_act2, and classroom_act4. Out of these

five scenes, the scene that has the highest TI class, i.e., office_act1, is selected as the

training scene for the medium SI scenes. If there is more than one candidate for the

training scene, the scene that has the biggest average TI will be selected as the training

scene. Henceforth, the training set for the high SI scenes is the party_act2, the training

set for the medium SI scenes is the office_act1, and the training scene for the low SI
Figure 9 SI (TI) class of office_act1 and classroom_act1 scenes and their corresponding scene’s
class. This figure shows an example on how we can obtain the scene’s class. Consider the office_act1
scene. Using equation (3), the SI classes of camera1 to camera9 are high, medium, medium, low, low,
medium, low, medium, and medium. Since the SI class’s majority is medium, office_act1 scene is classified
as a scene with medium SI. Furthermore, office_act1 also falls into a scene with high TI. Thus, the
office_act1 is classified as a medium-SI_high-TI scene. Using the same approach, classroom_act1 scene is
classified as a medium-SI_medium-TI scene.



Figure 10 Scene’s classes. The scenes shown in bold are the training scenes for their respective SI class.

Sarif et al. Human-centric Computing and Information Sciences  (2015) 5:7 Page 12 of 29
scenes is the office_act2. The training scenes are shown in bold in Figure 10. Corres-

pondingly, Table 4 shows the training scenes and their corresponding test scenes.

VSN Power consumption modelling and formulation

The encoding power consumption of a VSN node depends on the CID value assigned

to that node. However, since some nodes need to relay their data through intermediate

nodes, the node’s communication power consumption depends on both the CID value

assigned to that node and the way the encoded data is relayed in the network. This

problem can be formulated as an optimization procedure. For this purpose, the follow-

ing video sensor node model is used in this paper. All the nodes, including the sink,

are assumed to be statically deployed in the deployment area. It is assumed that a

standard medium access control (MAC) protocol is applied to resolve the link interfer-

ence problem. The network is modeled as an undirected graph G(N,L) where N is the

set of nodes and L is the set of links. The nodes are identified such that the first node

is the closest node to the sink while the Nth node is farthest one. The sink has unlim-

ited source of energy. However, the total information flow to the sink is constrained by

the bandwidth of the network.

Node i can communicate with node j if a link between those nodes (Lij∈L) exists. Sen-
sor node i can capture and encode video, and then generate video traffic with a source

rate Ri. Furthermore, each node can also relay the traffic from upstream nodes. The

flow conservation law at each node is then:
X

rij−
X

rki ¼ Ri ð4Þ
Table 4 Training and test scenes

Scene’s SI class Training scene Test scene Test scene label

High party_act2 party_act1 VS1

party_act3 VS2

Party_act4 VS3

Medium office_act1 classroom_act1 VS4

classroom_act2 VS5

classroom_act4 VS6

office_act3 VS7

Low office_act2 office_act4 VS8

classroom_act3 VS9
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Here, rij denotes the outgoing rate at Lij while rki denotes incoming rates at Lki, and

Lij, Lki∈L.
The sum of transmission rate of all the nodes is constrained to be equal to the band-

width available (B):

XN

i¼1
Ri≤B ð5Þ

The bitrate allocated to a node itself is obtained using the relation Ri = R{CIDi, QPi},
where R is the bitrate of the video for the pair of CID and QP used by the node.

A generally used energy consumption model for a wireless communication transmit-

ter and receiver as presented in [16] is used in this paper. The total transmission power

consumption of node i is the sum of all power consumed to transmit data to other

nodes within its transmission range. The transmission power consumption is calculated

as follow:

Pti ¼
X

aþ β⋅dij
n� �
⋅rij ð6Þ

where, Pti is the transmission power consumption of node i, α and β are constant
coefficients, η is the path loss exponent, and dij is the distance between node i and

node j. The total reception power consumption of node i is the sum of all power con-

sumed to receive data from other nodes, as formulated below, where λ is a constant

coefficient:

Pri¼
X

λ⋅rki: ð7Þ

The energy depleted to execute that task can be calculated as the multiplication of

the total number of cycles to execute that task and the average energy depleted per

cycle. Therefore, the average power consumption required to encode a sequence is

estimated as [12]:

Pei ¼ ki⋅CPI⋅Ec⋅Fr

Nf
ð8Þ

where, κi is the total number of instructions to encode the video for node i, CPI is the
average number of cycles per instruction of the CPU, Ec is the energy depleted per

cycle, Nf is the number of frames and Fr denotes the frame rate of the video sequence.

The value of κi is obtained using the following relation κi = IC{CIDi, QPi}, where IC is

the instruction count provided by iprof for the pair of CID and QP values used. Since

we want each node to produce video with almost similar quality, all nodes have to use

the same QP, thus, QPi =QP, ∀i∈N.
The total energy dissipation at a sensor node consists of the encoding power

consumption (Pe), the transmission power consumption (Pt) and the reception power

consumption (Pr):

Pi ¼ Pei þ Pti þ Pri ð9Þ

In a VSN-based monitoring or surveillance applications, the system lifetime is usually
denoted by the time on which the first node consumes all of its energy resource. This

means, the objective is to minimize the maximum energy consumption among all
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nodes, i.e., minimize Pnet where Pi ≤ Pnet,∀i∈N. This optimization problem is then

shown as follow.

Optimization minimizePower(CID)

minimize Pnet
subject to:

Pi≤Pnet

Pi ¼ Pei þ Pti þ Pri

Pei ¼ Ki⋅CPI⋅Eec⋅Fr=Nf

Ki ¼ IC CIDi;QP
� �

X
rij−

X
rki ¼ Ri;∀k∈N ; k≠i;∀j∈N ; j≠i

Ri ¼ R CIDi;QPf g
Pti ¼

X
aþ β⋅dn

i

� �
⋅rij

Pri ¼
X

λ⋅rki;∀k∈N ; k≠i

X
Ri≤B

In order to find the configuration settings per each node that minimizes the energy

consumption, we need to evaluate all possible CID combinations in the VSN. Let vi de-

notes the different CIDs that can be used by node i, then V = {v1, v2,…,vN} denotes the

vector of possible CID that can be selected by the nodes in a VSN. The combination of

all CIDs that needs to be evaluated is then given by C(V,N), where C denotes the com-

binatorial operation. The number of possible combinations increases with the number

of node. For example, when the number of nodes is equal to three, the number of pos-

sible CID combinations that needs to be evaluated is equal to 343. However, when the

number of nodes is increased to nine, the number of possible CID combination is equal

to 79. We can reduce the search space for the optimization problem by focusing on the

fact that all nodes share the same wireless bandwidth (2) such that the bitrate allocated

per each node is equal to a portion of the total bandwidth. Therefore, the problem of

assigning the CIDs to all nodes can be viewed as the problem of assigning fairness ratio

to each node in the VSN.

Common approach

A common approach for setting encoding parameters of VSN nodes is to use the same

configuration settings over all nodes. We call this approach CommonConfig algorithm.

This approach has been used by [10] and [17] to analyze the VSN power consumption

of Intra only configuration and Inter Main Profile with GOP size of 6 and frame-type

sequence of I-P-B-P-B-P-I. The authors in [11] also have used CommonConfig

algorithm for Intra only configuration in their analysis. In order to implement the

CommonConfig algorithm while still being fair with the implementation reported in the

literature, we try to assign the same CID to all nodes such that the bandwidth con-

straint is not violated.

It has to be noted that, the analysis performed in [10, 11, 17] assume that each VSN

node uses the same video. Therefore, by implementing the algorithm CommonConfig,
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each node will have the same bitrate and encoding complexity. However, if the video

source for each video is different, assigning the same CID to each node will not guarantee

the same bitrate is allocated to each node. The amount of bitrate allocated to each node

will then depend on the content complexity of the video captured by the node. To guaran-

tee some fairness measure for the VSN nodes, one can allocate the same bitrate per each

node. In this regard, the end-to-end fairness constraint, i.e., the maximum percentage of

the total bitrate that can be sent to the sink by each node, is formulated as follow [18]:

Ri≤ρi⋅
XN

j¼1
R
j

ð10Þ

With this constraint, each node i can only generate a flow to the sink that is lower

than a fraction of ρi of the sum of the bitrate of all nodes. According to (5) the

sum of all bitrate has to be less than the bandwidth of the network (B). When all

nodes use the same fairness constraints that is equal to ρfair = ρi = 1/N, each node

will be allocated equal transmission rate. In this condition, the network is called

to use the MaximumFairness scheme, as shown below.
In the algorithm shown above, the procedure getCID is a procedure to assign a node

with a specific CID, where R{CIDi, QP}/B < ρi, and R is the bitrate allocated for node i

when using the corresponding CID. Note that, fratio = {ρ1,ρ2,..ρN}, N is the number of

nodes, and ρi = 1/N.
Proposed optimization-based minimum energy VSN

For a VSN that has a large number of nodes, an exhaustive search to find the best CID al-

location is not feasible. In this paper, we try to solve the problem as an optimization

framework based on the finite set of CIDs defined in Table 1. The CIDs represent encoder

configuration labels and are related with the GOP size as explained in Section Video cap-

turing and encoding settings. It has to be noted that, the value of bitrate (complexity) is

monotonously decreasing (increasing) with the increase of the CID label. Consider an ex-

ample of cam1_office_act4 video. Assuming that QP equal to 28, for CID equal to one, the

bitrate of the video is equal to 1161 kbps while the encoding complexity is 32470 million

of instructions. On the other hand, when the CID is equal to four, i.e., GOP = 23 = 8, the

bitrate of the video is 195 kbps while the encoding complexity is 37411 million of instruc-

tions. In addition, when the CID is equal to seven, i.e., GOP size is 64, the bitrate of the

encoded video is 78.85 kbps while the encoding complexity for that configuration is

38115 million of instructions. Thus, selecting smaller CID corresponds to using smaller
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GOP size and lower encoding complexity but higher bitrate. Consider a simple VSN ex-

ample consisting of two nodes where node B sends its data to node A, and then node A

sends its own data and the relayed data to the sink. For simplicity, assume that both

node A and B have the same video source, i.e., cam1_office_act4 video, and the configur-

ation setting available for both nodes are either CID equal to one or CID equal to seven.

Table 5 shows the four possible configurations for node A and B along with the nodes’

power consumption associated with the possible CID combinations. Here PE, PT, and PR

denote the power consumption for encoding, transmission and reception respectively

using a particular CID for a specific video. The table shows that if both nodes use the

same CID, the power consumption of node A will be higher than that of node B. However,

if the nodes are using different CIDs, we can exploit trade-off between encoding complex-

ity and bitrate to minimize the node’s maximum power consumption. The example shown

in the Table is for a simple VSN with two nodes. However, the number of possible CID

combinations increases exponentially with the increase of the number of nodes.

Furthermore, it should be noted that the value of CID is bounded to be integral. On

the other hand, the value of rij and rki that determine the routing of data from and to

node i in (6) and (7) are rational numbers. An optimization problem involving mixed

linear and integer variables is NP-complete, where some of the solutions are intract-

able. However, there are algorithms that can be used to provide a near optimal solution

for this kind of optimization problem. These algorithms mostly work by solving the re-

laxed linear programming and then adding some linear constraints that drive the solu-

tion towards being integer without excluding any integer feasible points. Branch and

bound [19] is considered one such algorithm. Using branch and bound algorithm, the

optimization procedure can be terminated early and as long as a solution that satisfies

the stopping criteria is found. Therefore, a feasible, not necessarily optimal solution can

be obtained. In this paper, the branch and bound approach is implemented by using

the following steps: 1) solve the bounded optimization problem 2) call a recursive pro-

cedure to perform branch and bound until a solution is found or termination criteria

are satisfied. The bounded optimization problem is shows as follow.

Optimization minimizePowerBounded(CIDu _ bound,CIDl _ bound)

minimize Pnet
subject to:

Pi≤Pnet
Pi ¼ Pei þ Pti þ Pri

Pei ¼ κi⋅CPI⋅Eec⋅Fr=Nf

κi ¼ IC CIDi;QPf gX
rij−

X
rki ¼ Ri; ∀k∈N ; k≠i;∀j∈N ; j≠i

Ri ¼ R CIDi;QPf g
Pti ¼

X
αþ β⋅dη

i

� �
⋅rij

Pri ¼
X

λ⋅rki; ∀k∈N ; k≠i
X

Ri≤B

CIDi≤CIDu bound
i

CIDi≥CIDl bound
i

The difference between this algorithm and minimizePower optimization described in
Section VSN Power consumption modelling and formulation, is the fact that the CID



Table 5 Node’s power consumption for a simple scenario

CID (A,B) Node A’s power consumption Node B’s power consumption

Encoding Transmit. Relay Receive Encoding Transmit. Relay Receive

(1,1) PE(1) PT(1) PT(1) PR(1) PE(1) PT(1) N/A N/A

(7,7) PE(7) PT(7) PT(7) PR(7) PE(7) PT(7) N/A N/A

(7,1) PE(7) PT(7) PT(1) PR(1) PE(1) PT(1) N/A N/A

(1,7) PE(1) PT(1) PT(7) PR(7) PE(7) PT(7) N/A N/A
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values are given as upper and lower bounds instead of a specific value. Note that, since the

CID value represent the configuration label, whenever the optimization procedure needs to

lookup the values of the complexity and bitrate, the CID value needs be rounded to the

nearest integer. If the CID provided by the bounded optimization does not satisfy the inte-

grality constraint, the RecursiveBranchBound procedure will be called to perform branch

and bound approach to find the solution, as shown below.
If a solution that satisfies the integrality constraint cannot be found, the prob-

lem will be divided into two sub-problems by defining new upper and lower

bounds followed by call to the recursive functions. Note that, the integrality con-

straint ε is the error between the CID and the rounded integral value of the CID.

In order to illustrate the proposed approach, consider an example of a four node
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VSN. Assume that the configuration options available for these nodes are 1 ≤CID ≤4
and the integrality constraint is equal to 0.2. Assume that the proposed algorithm

proceed as shown in Table 6 (please see Figure 11 for the illustration of this example).

The UB and LB shown in the table are the CID’s upper and lower bounds for the corre-

sponding search space respectively. Finally the best solution will be selected from the

candidate solutions that satisfy the integrality constraint, i.e., CIDi = {3, 2, 2, 1} or

CIDi = {2, 1, 1, 1}.

Fairness-based CID allocation for the test Set

The scenes’ content complexity affects the overall VSN’s power consumption. Ideally, in

order to find the best solution, the VSN nodes’ optimal bitrate for each possible scene has

to be calculated. However, this approach is not practical since the scene’s activity captured

by a VSN changed with time while the algorithm to find the optimal solution requires

some significant computation. Thus, following our assumption mentioned in Section

Video content classification, we will attempt to find the optimal fairness ratio allocation

only for the training sets. The optimal fairness ratio allocation obtained from the training

sets will be used as an initial guess to allocate the CID for the test videos. However, since

the content of the video of the training set and the test set are not exactly the same, we

need to perform some adjustment procedure while assigning the nodes’ CID in the test

sets. Hence, the algorithm FairnessBased CID allocation is shown below.
In the above algorithm, the getCID procedure returns the highest possible CID option

that can be allocated to node i with fairness ratio equal to ρi. For example, if the pos-

sible CIDs that can be allocated to node i are either six or seven, the getCID procedure



Table 6 Example of the progression of the proposed MILP-based optimization for a four
node VSN

Bounds Solution found

Step 1 UB = {4,4,4,4} SOL = {3.5, 2.75, 2, 1.75}

LB = {1,1,1,1}

Recursive 1 UB = {4,4,4,4} NA

LB = {4,3,3,2}

Recursive 2 UB = {3,2,2,1} SOL = {2.75, 1.75, 1.75, 1}

LB = {1,1,1,1}

Recursive 2.1 UB = {3,2,2,1} SOL = {3, 2, 2, 1}

LB = {3,2,2,1}

Recursive 2.2 UB = {2,1,1,1} SOL = {2,1,1,1}

LB = {1,1,1,1}
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will return CID equal to six. However, in some cases, the getCID procedure may not

be able find a suitable CID with fairness ratio allocation ρj to be allocated to node

j. In this regard, the node will need to be assigned the highest CID possible accord-

ing to Table 1, i.e., it will use the configuration with the lowest bitrate. Then, a vari-

able named overflow is updated with the difference between the allocated bitrate

(obtained using a lookup table R{CIDj, QP}) with the supposed maximum bitrate for

that node, i.e., ρj*B. Note that, the variable overflow is used to record the accumula-

tive amount of bitrate that are borrowed from the other nodes. On the other hand,

if an appropriate CID is available while the value of overflow variable is positive, an-

other call to the procedure getCID with a lower fairness ratio is performed to get

another CID. This is performed so that we can ‘pay back’ the outstanding bitrate

‘debt’. The overflow variable is then updated accordingly. In the chance that the

overflow variable is still positive after the CID allocation for all nodes have been per-

formed, a procedure checkBandwidthConstraint is then called to adjust the CID al-

location per each node. Starting from the node furthest from the sink, the procedure

checks whether assigning a higher CID to that node can reduce the variable overflow to be

less than or equal to zero. After that, the nodes’ power consumption is calculated using the

minimizePower procedure as discussed in Section VSN Power consumption modelling

and formulation.
Figure 11 Example of how the proposed optimization based approach proceeds. This figure shows
an example of CID allocation for a four node VSN. Part (a) of the figure shows the initial step where the
solution obtained is shown as the dark bold line. Since the solution violates the integrality constraint, the
search space is divided into two new spaces, colored with green and yellow. Then, recursive calls with new
boundaries are executed. Following the assumption shown in Table 6, the new solution is shown as the
dark bold line in (b). Here two new search spaces are created. Note that, in this figure, the upper and lower
bound for the yellow colored space is the same.
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The VSN’s power consumption can be reduced further by adjusting the CID allocated

on some of the nodes. The following shows the adjustment procedure that is performed

on two nodes, e.g., the last node and the first node.
In this algorithm, the perturb procedure checks whether altering the CID allocation

of a specific node can reduce the VSN’s power consumption. For example, if node i is

assigned to use CID equal to four, the perturb procedure will check whether assigning

CID equal to three or five to node i reduces the VSN’s power consumption further.

Experiments and results
This section elaborates on our experiment settings for evaluating the performance of our

proposed approach. To ensure the efficiency of our proposed scheme, our experiment re-

sults are compared with the CommonConfig and MaximumFairness approaches.

Experiments settings

Figure 12 shows the network topology analyzed in this paper. In this figure, the dark

node is the sink node while the blank nodes are the video node. Each node is given an

identification number according to its distance to the sink. Therefore, the distance be-

tween node1 to the sink is smaller than the distance between node2 to the sink. It is as-

sumed that each video node located at a specific location in the topology illustrated in



Figure 12 Network topology used. The dark node is the sink node while the blank nodes are the video
node. Each node is given an identification number according to its distance to the sink. Therefore, node1 is
closer to the sink than node2, and so on. Each video node located at a specific location in the topology
illustrated in this is attached to the camera located at the same location shown in Figure 1.
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Figure 12 is attached to the camera located at the same location shown in Figure 1.

Therefore, node1 will be using the video captured by camera1; node2 will be using the

video captured by camera4, and so forth. The H.264/AVC software, JM version 18.2 is

used to generate the CID lookup table of encoding complexity and bitrate of all videos.

The QP value used in this paper ranges from 28 until 36.

Two separate sets of experiments were performed. The first set of experiment is con-

ducted on the training set. The objective is to compare the results obtained by the pro-

posed optimization technique with the ones obtained using the CommonConfig and

MaximumFairness approaches. From this experiment, we will obtain the fairness ratios

of the training set that minimize the node’s maximum energy consumption. We will

compare the energy consumption obtained using that approach with the one obtained

using the CommonConfig and MaximumFairness approaches. To this end the parame-

ters shown in Table 7 are used.
Performance evaluation of the proposed algorithms for the training scenes

In order to find the minimum power consumption with the highest possible video qual-

ity, we need to find the minimum QP for each content complexity class. To do this,

starting from the lowest QP, a procedure to check the possibility to allocate CIDs to all

the nodes is performed using the MaximumFairness approach. Since each scene has

different SI (TI) complexity class, the minimum QP value for each scene may also be

different. For example, for scene party_act2, the minimum QP that can be used to

allocate the CID using the maximum fairness approach is equal to 36. However, the



Table 7 Parameters used

Parameters Description Value

α Energy cost for transmitting 1 bit 0.5 J/Mb

β Transmit amplifier coefficient 1.3⋅10-8 J/Mb/m4

λ Energy cost for receiving 1 bit 0.5 J/Mb

η Path loss exponent 4

CPI XScale average cycle per instruction [20] 1.78

Ec Energy depleted per cycle for imote2 [10] 1.215 nJ

B Network Bandwidth 2 Mbps

d Distance between node 5m

ε Integrality constraints for the optimization based algorithm 0.2
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minimum QP for scene office_act2 is 28. Once the minimum QP for a scene is ob-

tained, we execute the optimization-based approach on the corresponding training

scene. It should be noted that for the optimization-based approach, we repeat the

experiment eight times to find the best solution. For the purpose of the analysis, we

compare the performance of the algorithm against the CommonConfig and Maxi-

mumFairness approaches mentioned in Section Common approach. Figure 13

shows the bitrate allocated using the compared techniques. Figure 13(a) shows the

bitrate allocation for the training scenes obtained using the CommonConfig algo-

rithm. The figure shows that the difference between the highest bitrate and the

lowest bitrate allocated in each scene is as follow: 129.85 kbps for the high SI train-

ing scene (party_act2), 115.87 kbps for the medium SI training scene (office_act1)
Figure 13 Bitrate allocated per each node in all training scenes. Part (a) of the figure shows the bitrate
allocated by the CommonConfig approach. Part (b) of the figure shows the bitrate allocated by the
MaximumFairness approach. The figure shows that the bitrate allocated per each node is roughly the same.
On the other hand, (c) shows the bitrate allocated by the proposed optimization based.
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and 115.08 kbps for the low SI training scene (office_act2), respectively. The algorithm

CommonConfig does not regulate the bitrate assigned per each node since the algorithm

only concern about using the same configuration for each node. Thus, the bitrate assigned

to each node does not follow any trend. However, the MaximumFairness approach allo-

cates roughly the same bitrate per each VSN node for any training scene used as shown in

Figure 13(b). Given that the content captured by each camera in each training scene is not

the same, there are some variations in the bitrate assigned to each node. However, the dif-

ference between the highest bitrate and the lowest bitrate allocated in each scene is not

significant, i.e., 50.37 kbps for the high SI training scene (party_act2), 63.85 kbps for the

medium SI training scene (office_act1) and 41.64 kbps for the low SI training scene (offi-

ce_act2), respectively. On the other hand, the proposed optimization-based approach

takes into account the node’s total power consumption in allocating the bitrate for each

node. As Figure 13(c) shows, the proposed technique allocates different bitrate to each

node such that the nodes closer to the sink have generally higher bitrate than the nodes

that are farther from the sink. The different between the maximum and minimum bitrate

allocated in each scenes has become more significant, equaling to 327.73 kbps for the high

SI scene, 471.56 kbps for the medium SI scene and 476.59 kbps for the low SI training

scene, respectively. It can also be seen in this figure that node2 is allocated with smaller

bitrate than the other nodes. The reason behind this behavior is the fact that node2 corre-

sponds to camera4 (see Figure 1), which according to Table 2 and Table 3 has lower con-

tent complexity level than the other cameras.

It should be noted that assigning a higher bitrate to a node is equal to using a lower CID

that exhibit lower encoding complexity. Therefore, the nodes that are assigned to have

higher bitrate will have lower encoding power consumption. This will balance out the in-

crease in the transmission power consumption with having higher bitrate. Indeed, the plot

shown in Figure 14 clarifies the trend in case of the high SI scene. Note that the communi-

cation power consumption shown in this figure is the sum of transmission and reception

power consumption. Figure 14(a) shows that by using the algorithm CommonConfig, each

node consume almost the same encoding power consumption. In the MaximumFairness

approach (see Figure 14(b)), each node was assigned roughly the same bitrate. However,

nodes that are closer to the sink consume more energy because they need to relay the data

from the other nodes. On the other hand, Figure 14(c) shows that the proposed

optimization-based approach manages to balance the total energy consumption of each

node in the VSN. Even though the nodes closer to the sink still consume more energy for

communication, these nodes have lower encoding power consumption than those that are

farther from the sink. This trend is also observed in the medium SI and low SI training

scenes. Table 8 shows the Pnet (nodes’ maximum power consumption), Pavg (average max-

imum power consumption) and STD(Pi) (standard deviation of nodes’ power consump-

tion) of the three algorithms. It is interesting to see that the CommonConfig algorithm

manages to perform better than the MaximumFairness algorithm. This shows that assign-

ing the same bitrate to each node does not help in reducing the VSN’s power consumption.

On the other hand, Table 8 also shows that the optimization-based approach manage to

have lower Pnet and Pavg as compared to the other algorithms. The algorithm is also better

in regard of balancing out the power consumption among all nodes as measured in terms

of standard deviation of nodes’ power consumption. This shows that by regulating the

bitrate and nodes’ encoder configuration such that the nodes’ power consumption is



Figure 14 Node’s power consumption profile for the high SI training scene. Note that the
communication power consumption shown in this figure consists of transmission and reception power
consumption. Part (a) of the figure shows the node’s power consumption profile using the CommonConfig
algorithm. Using this technique, the encoding power consumption per each node are almost the same.
Part (b) of the figure shows the node’s power consumption profile obtained using the MaximumFairness
approach. Using this algorithm, the bitrate allocated per each node are roughly the same. However, nodes
closer to the sink spend more energy for communication due to relaying other nodes’ data. It can be seen
that node1 consume the highest energy as compare to the other nodes. On the other hand, (c) shows
node’s power consumption profile obtained by the optimization-based technique that is not only
more balanced but also has a smaller Pnet than the one obtained by the CommonConfig and
MaximumFairness approaches.
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balanced, we can obtain lower VSN’s power consumption than the other algorithms. Fur-

thermore, Table 9 shows the fairness ratio allocation of the training scenes.

Performance of the fairness based algorithms for the test scenes

Using the fairness ratio obtained from the training scenes, the fairness based algorithm

explained in Section Fairness-based CID allocation for the Test Set will be used to allo-

cate the VSN nodes’ CID for all test scenes. Our initial experiments show that the

fairness-based with adjustment algorithm managed to obtain lower Pnet, Pavg and STD

(Pi) than the propsoed fairness-based allocation algorithm. Therefore, from this point

forward, we will only compare the proposed fairness-based with adjustment with the

other techniques mention in Section Common approach. In this regard, Table 10 shows

the Pnet, Pavg and STD(Pi) of the three algorithms for all test scenes. It can be seen from

the table that the proposed fairness with adjustment algorithm proves to perform better

than the other techniques. Correspondingly, Figure 15 compares the value of the Pnet,

Pavg and STD(Pi) obtained by the three algorithms in all test cases. Furthermore,

Table 11 shows the percentage of Pnet, Pavg and STD(Pi) improvement obtained by the

proposed techniques against the common approach for all test cases used. It can be

seen here that the amount of power consumption reduction obtained by the proposed

fairness-based with adjustment technique is in the range of 5.06% to 10.48%, averaging

into 8.18% improvement against the MaximumFairness algorithm. On the other hand,



Table 8 Pnet, Pavg and STD(Pi) of the training scenes

Training
sequence

Pnet Pavg STD(Pi)

Common Config Maximum Fairness Proposed Common Config Maximum Fairness Proposed Common Config Maximum Fairness Proposed

party1_act2 10.73 10.95 9.73 9.40 9.39 9.31 0.54 0.64 0.18

office_act1 10.25 10.45 9.53 9.03 9.03 9.38 0.49 0.57 0.09

office_act2 9.97 10.06 9.35 8.80 8.83 9.19 0.47 0.48 0.09
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Table 9 Fairness ratio allocation obtained from each training scenes

Training sequence node1 node2 node3 node4 node5 node6 node7 node8 node9

party1_act2 0.243 0.092 0.160 0.100 0.085 0.090 0.084 0.079 0.068

office_act1 0.296 0.079 0.131 0.082 0.071 0.063 0.090 0.089 0.099

office_act2 0.307 0.068 0.122 0.085 0.078 0.080 0.081 0.089 0.092
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the percentage of Pnet reduction against CommonConfig algorithm is in the range 4.24% to

9.67%, averaging into 6.97% improvement. Thus, the average improvement of the proposed

algorithm against the common approach is around 7.58%. This result is encouraging since

it shows that by using the fairness ratio obtained from the videos with higher activity level;

we are still able to reduce the maximum power consumption by around 7.58% than the

CommonConfig and MaximumFairness approaches. Since VSN’s energy is usually limited,

reducing the energy consumption by 7.58% means that we are increasing the lifetime of

the sensor network by 7.58%. In addition to that, except for test scene VS1 and VS4

the proposed algorithm also manage to slightly reduces the average power consump-

tion. On the other hand, the standard deviation of nodes’ power consumption is also

reduced by more than 40% on average.
Future work

In order to improve the result obtained in this paper, there are some considerations

that can be included into our framework. The first and notable extension is to directly

incorporate the effect of spatial and temporal information of the videos into the
Figure 15 Comparison of the Pnet, Pavg, and STD(Pi) values obtained from all test scenes. This figure
compares the Pnet, Pavg, and STD(Pi) values obtained by the (a) CommonConfig (b) MaximumFairness (c)
proposed approaches It can be seen that the proposed approaches produce smaller Pnet, Pavg, and STD(Pi)
in all test cases.



Table 10 Performance of the different techniques in all test cases

Test
scenes

CommonConfig MaximumFairness Proposed

Pnet Pavg STD(Pi) Pnet Pavg STD(Pi) Pnet Pavg STD(Pi)

VS1 10.61 9.32 0.55 10.87 9.41 0.63 9.73 9.35 0.26

VS2 10.47 9.18 0.56 10.56 9.19 0.62 10.03 9.14 0.41

VS3 10.63 9.22 0.59 10.71 9.24 0.64 9.60 9.16 0.24

VS4 10.11 8.78 0.58 10.48 8.99 0.67 9.40 8.89 0.36

VS5 10.08 8.73 0.58 10.08 8.77 0.59 9.28 8.66 0.34

VS6 10.14 8.79 0.58 10.29 8.87 0.62 9.38 8.76 0.34

VS7 9.73 8.84 0.37 9.91 8.83 0.45 9.29 8.78 0.23

VS8 9.55 8.51 0.43 9.64 8.52 0.47 9.04 8.43 0.29

VS9 10.06 8.76 0.57 10.07 8.80 0.58 9.24 8.69 0.33

Sarif et al. Human-centric Computing and Information Sciences  (2015) 5:7 Page 27 of 29
optimization framework. In this paper, the effect of spatial and temporal information is

implemented indirectly through the process of classifying the videos into different

scenes’ classes. We are currently working on to develop a model for encoding complex-

ity and bitrate that incorporate the spatial and temporal information. By using a model,

we can remove the use of tabular information of configuration ID that is used in this

paper. Another consideration that could be addressed is the power consumption

minimization during or at the point of the transmission. For example, one can imple-

ment an importance based scheduling approach such that only select nodes are allowed

to send their data to the sink. Some other practical considerations that could be in-

cluded from this study is to consider the effect of camera orientation into the VSN

power consumption and whether the nodes are implemented for indoor or outdoor en-

vironment. We are also considering the possibility to use the new encoding standard

HEVC for our future work. However, it has to be noted that HEVC encoder’s complex-

ity is higher than that that of H.264/AVC encoder. HEVC utilizes more advanced and

complex features compared to H.264/AVC. In order to implement our approach to the

HEVC-based VSNs, we need to first investigate the trade-off provided by different en-

coding parameters of HEVC and generate a CID table customized for HEVC, and then

tune our scheme accordingly.
Table 11 Percentage of improvement of the proposed algorithm against the other
techniques

Test scenes Improvement against CommonConfig (%) Improvement against MaximumFairness (%)

Pnet Pavg STD(Pi) Pnet Pavg STD(Pi)

VS1 8.33 −0.29 51.92 10.48 0.72 58.20

VS2 4.24 0.41 26.68 5.06 0.48 33.54

VS3 9.67 0.63 60.32 10.30 0.88 63.30

VS4 7.01 −1.29 38.01 10.23 1.04 46.57

VS5 7.88 0.83 40.86 7.97 1.29 41.32

VS6 7.50 0.41 41.89 8.83 1.29 45.48

VS7 4.60 0.63 36.85 6.28 0.53 47.90

VS8 5.40 0.96 33.65 6.21 1.05 38.81

VS9 8.12 0.73 42.56 8.24 1.20 43.33
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Conclusions
This paper analyzed the problem of minimizing the VSN’s power consumption by

exploiting the video encoder’s performance trade-off while also considering the differ-

ent content and scene settings on which a VSN can be implemented. For the purpose

of the analysis, a large number of real-life captured videos of simulated VSN scenes set-

tings with different activity levels are used in this paper. The scenes are classified

according to its content complexity on which the higher activity level scenes are used

as the training set. The proposed optimization technique to minimize the node’s

maximum power consumption is then used on the training sets. We have shown that

the proposed optimization procedure performs better than the CommonConfig and

MaximumFairness approaches such that VSN’s power consumption per each node was

balanced while the nodes’ maximum power consumption is minimized. We have also

shown in this paper that the fairness ratio allocated per each node affects the distribu-

tion of power consumption in a VSN. In particular, by assuming that the fairness ratio

of nodes closer to the sink are higher than the nodes that are farther from the sink, the

VSN’s power consumption is reduced.

The fairness ratio obtained by the proposed optimization-based approach is then

used in the proposed fairness-based encoder complexity and bitrate allocation algo-

rithm for the test scenes. The results show that the amount of power consumption

reduction obtained by the proposed techniques varies according to the test sequences

used. In general, the improvement obtained by the fairness based with adjustment tech-

nique is 8.18% on average against the MaximumFairness algorithm and 6.97% on aver-

age against CommonConfig algorithm. In addition to that, the proposed algorithm also

shows better performance in terms of nodes’ average power consumption and standard

deviation of nodes’ power consumption.
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