
Using affective brain‑computer 
interfaces to characterize human influential 
factors for speech quality‑of‑experience 
perception modelling
Rishabh Gupta1, Khalil Laghari2, Hubert Banville1 and Tiago H. Falk1*

Background
With recent advances in wireless and portable neurotechnologies, new applications of 
brain-computer interfaces (BCI) have emerged. Previously, BCIs were mostly targeted 
towards communication and rehabilitation applications, such as powered wheelchair 
control or so-called brain spellers [1, 2]. Today, other types of applications have emerged 
and passive BCIs have been developed to measure implicit information from the users, 
such as their mental states (e.g., stress level), fatigue levels, and more recently, their 
mood and emotional states [3]. These latter are referred to as affective BCIs (aBCI). Rep-
resentative applications of passive and affective BCIs include neurogaming [4, 5], neu-
romarketing [6], attention monitors [7], and automated multimedia affective tagging 
[8], to name a few. In this paper, we explore a new application for aBCIs: monitoring 
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the human influential factors needed in quality-of-experience (QoE) perception models 
used by telecommunication service providers.

QoE has been formally defined as ‘the degree of delight or annoyance of the user of an 
application, resulting from the fulfillment of his/her expectations in light of the user’s 
personality and current mental state’ and is driven by three key influence factors: tech-
nological, contextual, and human [9, 10]. Technological influence factors (TIFs) refer 
to system and network parameters that can be readily measured (e.g., delay, bitrate). 
Contextual influence factors, in turn, can describe the user’s environment, as well as 
economic aspects (e.g., pricing, churn rate). Lastly, human influence factors (HIFs) char-
acterize the user’s perception, emotional and mental state with respect to a service [9, 
10]. For much of the last decade, experts have advocated for QoE to be used as the stand-
ard user-centric quality metric for emerging applications and products [11]. Notwith-
standing, the majority of existing work has focused only on technological and contextual 
aspects [12, 13]. In order to develop true QoE assessment methods, however, HIFs also 
need to be incorporated. In this paper, we propose the use of aBCIs during speech QoE 
perception tests to measure such HIFs.

User affective states can be inferred from multiple sources, such as facial expressions 
[14], body posture [15], and even voice [16]. These behavioural cues, however, can be 
concealed by the user. As such, monitoring of neurophysiological sources, such as heart 
rate, skin conductance, or neural responses, have become popular as they also accurately 
characterize human emotional states, but are more difficult to be volitionally concealed. 
Neurophysiological tools, such as electroencephalography (EEG) and functional near 
infrared spectroscopy (fNIRS) have been used in the past for affective state characteri-
zation with varying degrees of success [17–20], as well as for QoE assessment [21–23]. 
While EEG relies on measuring the electrical activity in the brain with high temporal 
precision (order of milliseconds), it suffers from limited spatial resolution. Functional 
NIRS, on the other hand, tracks cerebral hemodynamics with better spatial resolution 
than EEG, but with relatively poor temporal precision (order of seconds) [24]. Overall, 
EEG-based aBCIs have been more widely used and reported in the literature, but fNIRS 
is quickly gaining grounds [25].

Here, we are interested in exploring the use of EEG based aBCIs to measure HIFs to 
be used in objective models of speech QoE perception. Two case scenarios based on 
emerging speech applications are explored, namely text-to-speech (TTS) systems and 
hands-free communications. Over the last few years, TTS systems have gained tremen-
dous popularity, particularly in the domain of personal digital assistants (e.g., Apple’s 
Siri, Google Now, and Microsoft’s Cortana), automated call centres, reading assistants to 
the blind, and global positioning systems. Moreover, hands-free technologies have also 
gained popularity due to emerging voice-controlled consumer electronics, teleconfer-
encing, speech/speaker recognition, and automatic meeting transcription applications, 
to name a few. These applications were selected for two main reasons: (1) despite their 
advances, degradations incurred on the speech signal can severely hamper the user’s 
perceived QoE (e.g., choppy signal in concatenative TTS systems [26] or ambient noise 
and room reverberation in hands-free applications) and (2) significant effort has been 
placed to develop objective QoE perception models based solely on technological and 
contextual influence factors, thus allowing for the characterization of the importance of 
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HIFs on ‘true’ QoE perception modelling. Experimental results with data collected from 
two QoE perception studies show the importance of aBCIs and of HIFs on QoE percep-
tion modelling.

The general scheme of the proposed aBCI system for user QoE perception monitor-
ing is shown in Fig. 1 (for illustration purposes, a TTS example is shown). Within this 
framework, the audio signal (e.g., synthesized speech signal generated by a personal digi-
tal assistant) is used to extract TIFs and is presented to participants, whom in turn are 
wearing an EEG-based aBCI. Features from the EEG signal are then extracted and used 
as HIF correlates. The TIF and HIF parameters are then input to a QoE model which out-
puts an estimated user-perceived QoE value. As can be seen, the proposed setup, with-
out loss of generality, does not investigate the effects of contextual factors on QoE; such 
analysis is left for future study. To the best of our knowledge, this is the first time that (1) 
HIFs are quantitatively shown to be important influence factors for QoE measurement, 
(2) EEG-based aBCIs are used to objectively monitor HIFs for QoE modelling, and (3) the 
developed QoE models are validated on two independently acquired data sets.

Fig. 1  An overview of the aBCI approach for monitoring user QoE
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The remainder of this paper is organized as follows. “Methods and materials” section 
provides an overview of the methodology and experimental setups used. “Experimental 
results” section and “Discussion” section describe the experimental results and discus-
sion, respectively. Lastly, conclusions are presented in “Conclusion” section.

Methods
Speech QoE can be assessed either subjectively or objectively [12, 27]. Subjective testing 
typically involves user interviews, ratings and surveys to obtain insights about the end-
user’s perception, opinion and emotions about speech quality and their overall experi-
ence, thus forming the ‘ground truth’. Objective assessment, on the other hand, replaces 
the listener with a computational algorithm that has learned complex mappings between 
several key factors and previously-recorded subjective ratings. Existing objective meth-
ods have been “technology-centric”, thus relying mostly on technological and contextual 
factors [12]. In order to develop QoE assessment methods, however, human influen-
tial factors also need to be incorporated. More recently, neurophysiological monitor-
ing tools have been used to develop objective models which try to estimate the ground 
truth. Having this said, in this section we describe the methodology and experimental 
setup used in our study.

Subjective assessment methods

Quantitative subjective assessment methods typically involve the construction of ques-
tionnaires with rating scales, surveys, and user studies which can be conducted either in 
laboratory or “real-world” settings. The International Telecommunications Union (ITU), 
for example, has developed subjective study guidelines for perceptual speech qual-
ity evaluations. Recommendation P.800 [28] describes how to conduct the widely-used 
mean opinion score (MOS) listening test. The human-computer interaction domain 
has also covered guidelines on subjective testing methods for speech interface quality 
evaluation [29]. For speech intelligibility assessment, subjective tests are conducted that 
explore syllable, word, or sentence recognition.

In the affective computing domain, in turn, human affect is considered to manifest 
itself through multifaceted verbal and non-verbal expressions. Therefore, one com-
mon approach is to categorize affective factors using two broad dimensions comprising 
valence (V) and arousal (A) on two-dimensional plots [30]. Valence refers to the (un)
pleasantness of an event, whereas arousal refers to the intensity of the event, ranging 
from very calming to highly exciting [31, 32]. Using the valence-arousal (VA) model, 
various emotional constructs have been developed, as depicted by Fig. 2 [30, 32, 33]. In 
order to quantitatively characterize these two emotional primitives, the Self Assessment 
Manikin (SAM) pictorial system is commonly used, as shown in Fig. 3 [30, 32]. As can be 
seen, the SAM for valence ranges from a smiling, happy manikin to a frowning, unhappy 
one. For arousal, in turn, SAM ranges from very excited, eyes-open manikin to a sleepy, 
eyes closed one [34]. It is important to emphasize that a third dimension, dominance, 
has also been proposed and refers to the controlling/dominant nature of the felt emo-
tion [31]. While dominance has shown to be useful in characterizing emotions felt by 
subjects viewing pictures [17] and watching movies [35], it has shown limited use with 
speech stimuli, thus is omitted from our studies.
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Objective assessment methods

Objective assessment methods are also often referred to as instrumental measures. QoE 
insights are normally estimated either using technology-centric speech metrics or, more 
recently, via neurophysiological monitoring tools (i.e., aBCIs), as detailed below.

Technology‑centric speech metrics

Technology-centric models replace the human rater by a computer algorithm which 
has been developed to extract relevant features from the analyzed signal (speech, audio, 
image, or video) and map a subset/combination of such features into an estimated QoE 
value. For speech technologies, models can be further categorized as full-reference 
(also known as double-ended, intrusive) or no-reference (single-ended, non-intrusive), 
depending on the need, or not, of a reference signal, respectively. The ITU, for example, 
has standardized several objective models over the last decade, such as PESQ (recom-
mendation P.862 [36]) and POLQA (recommendation P.863 [37]) as full-reference mod-
els and ITU recommendation P.563 [38] as no-reference.

Fig. 2  Two-dimensional Valence-Arousal (VA) emotion map with representative emotions

Fig. 3  SAM scales for Emotion Assessment; top: Arousal; bottom: Valence
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For hands-free speech communications, one non-intrusive method called reverbera-
tion to speech modulation energy ratio (RSMR) has been shown to outperform the 
abovementioned standard algorithms, thus will be used in our studies. A description of 
the metric is beyond the scope of this paper and the interested reader is referred to [39, 
40] for more details. Moreover, for TTS systems, studies have shown the importance of 
signal-based metrics [41], such as prosody and articulation [42]. Recently, two quantita-
tive parameters were shown useful [42], thus are used in our TTS study: the slope of the 
second order derivative of the fundamental frequency (sF0′′) and the absolute mean of 
the second order mel frequency cepstrum coefficient (MFCC2). While the sF0′′ feature 
models the macro-prosodic or intonation-related properties of speech, MFCC2 models 
articulation related properties [42]. In our experiments, the openSMILE toolbox [43] 
was used to extract these features using the default window length of 25 ms and frame 
shift of 12.5 ms.

aBCI features

Typical EEG-aBCI features involve the calculation of specific EEG frequency subband 
powers, such as delta, theta, alpha, beta, or gamma sub-bands, as well as their interac-
tions [44]. To characterize human affective states, the human prefrontal cortex (PFC) 
region has been widely used. Seminal studies have shown differential involvement of 
right and left hemispheres in emotional processing, where the right hemisphere is linked 
with unpleasant emotions and the left with pleasant emotions [45, 46]. As such, an asym-
metry index has been developed which measures the difference in EEG activity in the 
alpha band (8–12 Hz) from the left to the right hemisphere; the index has been shown to 
be correlated with the valence emotion primitive [47, 48]. Moreover, the beta frequency 
band (12–30 Hz) power at the medial prefrontal cortex (MPC) has been associated with 
arousal [49].

Therefore, in order to objectively characterize affective factors, two features were 
extracted, namely an alpha-band asymmetry index (AI) and the MPC beta power (MBP), 
as correlates of valence and arousal, respectively. More specifically, the AI feature was 
computed as the difference between the natural logarithm of the alpha power of the left 
(αAF3) and right frontal electrodes (αAF4), as highlighted in the electrode map depicted 
by Fig. 4 and suggested by [47]:

The MBP feature, in turn, was computed as the beta-band power in the AFz position 
(central electrode highlighted in Fig. 4), as suggested by [17, 50].

Experimental setup: dataset 1 (hands‑free communications)

Participants

Fifteen naive subjects participated in this study (eight female, seven male; mean 
age = 23.27 years; SD = 3.57; range = 18–30); all of them were fluent English speak-
ers (participants for whom their first or second language was English). All participants 
reported normal auditory acuity and no medical problems. Participants gave informed 
consent and received monetary compensation for their participation. The study protocol 

(1)AI = ln(αAF4)− ln(αAF3).
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was approved by the Research Ethics Office at INRS-EMT and at McGill University 
(Montreal, Canada).

Stimuli

As stimulus, a clean double-sentence speech file created from the TIMIT database [51] 
was used. The clean file was then convolved separately with room impulse responses 
typical of three practical environments. The first represented a living room environ-
ment with a reverberation time (RT) of approximately 400 ms. The second represented 
a classroom environment (RT = 1.5  s) and the third a large auditorium (RT = 2  s). 
Higher RT values indicate rooms with greater reverberation levels, which in turn, are 
more detrimental to perceived speech quality. For consistency, all files were normalized 
to −26 dBov using the ITU-T P.56 voltmeter [52]. The sentence was uttered by a male 
speaker and digitized at 8 kHz sampling rate with 16-bit resolution. Speech files repre-
sentative of the four hands-free conditions were presented to the participants over sev-
eral trials, as detailed in the sections to follow. More details about this database can be 
found in [53].

Experimental protocol

The experiment was carried out in two phases. In the first phase, participants were 
asked to fill a demographic questionnaire and to report their perceived QoE for each 
file using a 5-point MOS scale (1 =  bad, . . .,5 =  excellent), as well as their perceived 
arousal and valence affective states using a continuous 9-point SAM scale, as shown in 
Fig. 3. Stimuli were repeated thrice for each speech quality condition. Whereas in the 
second phase, participants were placed in a listening booth and 64-channel EEG data 
was collected using an Active II Biosemi device with electrodes arranged in the modified 

Fig. 4  EEG electrode placement following the 10–20 International System. Highlighted electrodes were used 
in the calculation of the asymmetry index (AF4 and AF3) and in the MPC beta power (AFz) feature
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10–20 standard system (see Fig. 4). Four electrodes for electro-oculography (EOG) and 
two mastoid electrodes (right and left) were used for reference. The test consisted of 
an oddball paradigm, where the clean speech served as the standard stimulus and the 
reverberant files served as deviants. Clean and reverberant speech files were delivered 
in a pseudo-randomized order, forcing at least one standard stimulus to be presented 
between successive deviants, in sequences of 100 trials. Stimulus was presented with an 
inter-stimulus-interval varying from 1000 to 1800 ms. Participants were seated comfort-
ably and were instructed to press a button, whether they detected the clean stimulus or 
one of the deviants. Stimulus was presented binaurally at the individual’s preferred lis-
tening level through in-ear headphones.

Experimental setup: dataset 2 (TTS systems)

Participants

Twenty-one fluent English speakers (eight females) with average age 23.8 (±4.35) years 
were recruited for the study. None of them reported having any hearing or neuro-phys-
iological disorders. Insert earphones were used to present the speech stimuli to the par-
ticipants at their individual preferred volume levels. The study protocol was approved 
by the INRS Research Ethics Office and participants consented to participate and make 
their de-identified data available freely online. The participants were also compensated 
monetarily for their time.

Stimuli

Table 1 lists the speech stimuli used for this study along with certain important aspects. 
The stimuli consisted of four natural voices and seven synthesized voices, obtained from 
commercially available systems, namely: Microsoft, Apple, Mary TTS Unit selection & 
HMM, vozMe, Google and Samsung. Tested systems cover a range of different concate-
native and hidden Markov model (HMM) based systems. A non-identifying code is pro-
vided for each of the seven TTS systems in Table 1. Speech samples were generated from 
two sentence groups (A and B), each comprising four sentences. Thus, the total number 
of stimuli used in this study were forty-four [(4 natural voices + 7 synthesized voices) × 

Table 1  Description of the stimuli used for the listening test in dataset 2

Type System Sentence group Male sets Female sets Duration 
range (s)

Natural 1 A 0 4 17–19

2 A 0 4 18–23

3 A 0 4 17–19

4 B 0 4 13–14

Synthesized 5 A 0 4 19–24

6 A 0 4 17–22

7 A 2 2 17–20

8 A 2 2 18–25

9 A 2 2 17–22

10 A 2 2 17–21

11 A 2 2 13–17
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4 sentence sets]. The speech stimuli consisted of both male and female voices for five of 
the seven TTS systems. The speech stimuli were presented to listeners at a sampling rate 
of 16 KHz and a bitrate of 256 kbps. Table 1 also details the duration range of the speech 
stimuli for each system. More details about this database can be found in [54].

Experimental protocol

The experimental procedure was carried out in accordance with ITU-T P.85 recommen-
dations [55]. Participants were first comfortably seated in front of the computer screen 
inside a soundproof room. Participants were then fitted with 62 EEG electrodes (AF7 
and AF8 were not used) using a compatible EEG cap. Insert earphones were placed com-
fortably inside the participants’ ears to deliver the speech stimuli. The experiment was 
then carried out in two phases: a familiarity phase and an experimental phase. In the 
familiarity phase, participants were presented with a sample speech file followed by the 
series of rating questions, thus illustrating the experiment procedure and giving them 
the opportunity to report any problems and/or concerns. Next, the experimental phase 
consisted of several steps as shown in Fig. 5. First, data from a baseline period was col-
lected for 1 min in which the participants were advised to focus only on the cross bar in 
the middle of the screen and not think about anything else. This was followed by a 15-s 
rest period followed by the presentation of randomized speech stimuli, one sentence set 
(approximately 20 s long) at a time. The rest period was provided to allow neural activity 
and cerebral blood flow to return to baseline levels prior to TTS stimulus presentation. 
Moreover, following each stimulus participants were presented with rating questions on 
the screen where they scored the stimulus using a continuous slider on the 5-point MOS 
scale and the 9-point SAM scales for valence and arousal. This rest-stimulus-rating com-
bination is referred to as an experimental ‘block’. The procedure is repeated 44 times, 
where each block corresponds to one of the 44 speech stimuli available in the dataset.

EEG data processing

For data analysis, the MATLAB-based EEGLAB toolbox was used [56]. Data was 
recorded at 512 Hz but down-sampled to 256 Hz and band-pass filtered between 0.5 and 
50 Hz for offline analysis. All channels were re-referenced to the ‘Cz’ channel. For the 
first dataset, continuous EEG data were divided into epochs of 3000 ms, time locked to 

Fig. 5  Visual representation of the protocol used in the experimental phase for Dataset 2. The baseline 
period collected at the beginning and at the end of the test extended for 60 s. The pre-stimulus rest period 
lasted 15 s and the average length of the speech stimulus used was 20 s. The time allotted for rating the sub-
jective dimensions varied per stimulus and was participant-dependent. The rest-stimulus-rating combination 
comprised an experimental block and a total of 44 blocks were used
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the onset of the stimuli with a 200 ms pre-stimulus baseline. For the second dataset, the 
EEG data was divided into epoch-length corresponding to the speech stimulus length 
with a 300 ms pre-stimulus baseline. In order to remove artefacts from the EEG signals 
(e.g., eye blinks), a combination of visual inspection and independent component analy-
sis was performed. Features were then extracted from the artefact-free segments.

QoE model performance assessment

In order to assess QoE model performance, three tests were conducted for each study. 
First, we explored the goodness-of-fit (r2) achieved by using only the technology-cen-
tric speech metric as a correlate of the QoE score reported by the listeners (denoted as 
QoETech). Second, we investigated the gains obtained by including HIFs into the QoE 
models. Here, we measured the r2 obtained from a linear combination of the technology-
centric speech metric combined with the subjective valence and arousal (‘ground truth’) 
ratings reported by the listeners (denoted as QoEHIF). Gains in the goodness-of-fit met-
ric should indicate the benefits of including HIFs into QoE perception models. Lastly, we 
replaced the ground truth HIFs by the aBCI features that are used as correlates of the lis-
tener’s emotional states (denoted as QoEaBCI). It is expected that the r2 achieved will lie 
between those achieved without and with HIFs, thus signalling the importance of aBCIs 
in QoE perception modelling.

Towards this end, the goodness-of-fit measures were obtained by developing linear 
regression equations for each of the three proposed tests (i = 1, . . . , 3). Linear regres-
sion model ‘i’ had dependent variable yi as a linear combination of ‘p’ independent vari-
ables (or regressors, xip) weighted by regression coefficients (βp) and error (ǫi). The linear 
regression is formulated as follows:

The values of β and ǫ are estimated using least squares fitting on training data.

Experimental results
In this section, we report the experimental results obtained from the subjective and 
objective methodologies used.

Dataset 1: hands‑free communications

Subjective data evaluation

At first, the impact of RT over human QoE factors was analyzed by computing descrip-
tive statistics, as shown in Fig. 6. The obtained quality and affective ratings (valence and 
arousal) were averaged over all participants. As expected, a monotonic decrease across 
all subjective factors was observed with an increase in reverberation time. In order to 
test the effects of the four speech quality conditions on perceived quality, a repeated 
measures ANOVA with a Greenhouse-Geisser correction was used. A significant main 
effect was found (F(df1 = 1.08, df2 = 15.16) = 240.692; p ≤ 0.05) with effect size, 
η2 = 0.945, thus indicating significant between-group variations in QoE-MOS ratings 
for the four tested conditions. Moreover, post-hoc pairwise t-test comparisons with 
Bonferroni correction showed QoE scores to significantly decrease for each of the four 
tested conditions.

(2)yi = ǫi + β1xi1 + β2xi2...+ βpxip = x
T

i
β + ǫi.
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Similar analysis was performed for the arousal and valence ratings. 
For arousal, statistical difference across four condition groups was found 
(F(1.05, 14.78) = 11.83; p ≤ 0.05; η2 = 0.458), as was the case with valence 
(F(1.08, 15.20) = 91.85; p ≤ 0.05; η2 = 0.868). The stronger effect (η2) seen for valence 
over arousal suggests that RT has a stronger influence on the perceived pleasantness of 
the experienced files. Post-hoc pairwise t test comparisons with Bonferroni correction 
were also computed for the two emotional primitives. It was found that valence ratings 
significantly decreased with increasing RT levels (p ≤ 0.05). For arousal, on the other 
hand, significant differences were not seen between the RT = 1.5 s and RT = 2 s pairs, 
suggesting only subtle differences in arousal between the two conditions.

To better understand the impact of reverberation time on users’ emotional ratings, the 
2-dimensional valence-arousal map can be used, as depicted by Fig. 7. In the plot, the 
x-axis represents the SAM scores for valence and the y-axis represents arousal. The data 
are centred at (5,5), which is the neutral state according to the 9-point SAM scale. The 
positive valence and high arousal (PV–HA) quadrant represents emotions such as hap-
piness, excitement, and alertness. The PV–LA quadrant normally represents emotional 
characteristics like satisfaction, relaxation, and content. The negative valence and high 
arousal (NV–HA) quadrant, in turn, represents emotional characteristics such as agi-
tation and anger. Affective behaviors such as boredom, fatigue, discomfort, and dissat-
isfaction are represented in the NV–LA quadrant. As can be seen, for the clean signal 
the majority of the participants rated the stimulus between 4 and 6 in the arousal and 
valence scales, thus corroborating the neutrality of the speech content. As reverberation 
levels increase, the majority of participants rated between 2 and 4 in the arousal and 

Fig. 6  Box plots for the subjective overall impression (QoE-MOS), valence and arousal scores. The figure 
shows the box plots for subjective ratings collected from Dataset 1. The red line in the middle of the box plot 
shows the median for a particular rating whereas, the red cross bars show the outliers
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valence scales, thus, pointing towards the (NV–LA) quadrant states such as discomfort, 
unpleasantness, and boredom.

Pearson correlations between RT and each of the three subjective factors were also 
computed and are reported in Table 2. All correlation coefficient values were found to be 
significant (p < 0.05) with quality and valence ratings showing the strongest (positive) 
correlations with each other and strong (negative) correlations with RT. On the other 
hand, arousal showed only a mild correlation with quality and valence.

Objective model evaluation

As mentioned in “QoE model performance assessment” section, three QoE models were 
implemented in order to gauge the benefits of including HIFs, as well as aBCI features 
into the equation. For this study, the following QoE models were found:

(3)QoETech = 0.74 − 0.5× RSMR,

(4)QoEHIF = 0.38− 0.27× RSMR+ 0.73× Val − 0.13× Ar,

(5)QoEaBCI = 0.02+ 0.20× AI − 0.07×MBP − 0.94 × RSMR,

Fig. 7  Subjective Valence vs. Arousal emotional map across the four tested conditions in Dataset 1. The 
figure shows the spread of users’ valence and arousal scores, in response stimuli used in Dataset 1, on a 
valence-arousal map

Table 2  Pearson correlation analysis between the three subjective factors and reverbera-
tion time (RT) for dataset 1

RT QoE-MOS Valence Arousal

RT 1.00 −0.86 −0.73 −0.41

QoE-MOS −0.86 1.00 0.87 0.44

Valence −0.73 0.87 1.00 0.61

Arousal −0.41 0.44 0.61 1.00
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where ‘Val’ and ‘Ar’ indicate the valence and arousal subjective ratings, respectively, and 
the β and ǫ parameters were obtained on a subset of the available data. The obtained 
goodness-of-fit (r2) value for (3) was 0.72 with a root mean squared error (RMSE) value 
of 0.135. The r2 value for (4), in turn, was 0.87 with RMSE value of 0.093, thus suggesting 
the importance of HIFs in QoE perception assessment models. Lastly, for (5) an r2 value 
of 0.81 and an RMSE of 0.097 was obtained, thus signalling the benefits of using aBCIs 
for the task at hand. When comparing the output of the objective QoE model in (5) and 
model in (4), a Pearson correlation coefficient of 0.90 was obtained.

Dataset 2: TTS systems

Subjective data evaluation

Initially, the impact of varying TTS system quality on human QoE factors was analyzed 
by computing descriptive statistics, as shown in Fig. 8. It was observed that systems 1 
and 3 showed the highest quality ratings, which can be expected as both corresponded 
to natural voices. However, the other two natural voice systems (2 and 4) were rated 
at medium quality levels. This was due to the fact that the speaker used for system 4 
was specifically asked to speak with a neutral intonation and listeners reported voice 
2 as sounding breathy, thus lower in quality than the other natural voices. Regarding 
the TTS systems, system 11 scored the least in terms of quality, valence and arousal. 
In general, the synthesized speech systems scored lower than natural systems. How-
ever, comparing the systems which used synthesized voices, system 5 scored the 
maximum in terms of quality and valence. In order to test the effects of these speech 
systems in terms of perceived QoE, an ANOVA was used. A significant effect was found 

Fig. 8  Box plots for the subjective overall impression (QoE-MOS), valence and arousal scores. The figure 
shows the box plots for subjective ratings collected from Dataset 2. The red line in the middle of the box plot 
shows the median for a particular rating whereas, the red cross bars show the outliers
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[F(10, 913) = 143.32; p ≤ 0.01]. Moreover, post-hoc pairwise t-test comparisons with 
Bonferroni correction showed QoE-MOS scores to significantly differ between natural 
voices and TTS system outputs.

Similar analysis as above was performed for the arousal and valence rat-
ings. For valence, statistical difference across eleven condition groups was found 
[F(10, 913) = 96.28; p ≤ 0.01], as was the case with arousal [F(10, 913) = 31.5; p ≤ 0.01] . 
The stronger F-statistic seen for valence over arousal suggests that synthesized speech 
quality has a stronger influence on the perceived pleasantness of the experienced files. 
Post-hoc pairwise t-test comparisons with Bonferroni correction were also computed 
for the two emotional primitives. It was found that valence and arousal ratings signifi-
cantly differed between the natural and synthesized voices. Moreover, to better under-
stand the impact of TTS system quality on users’ emotional ratings, the 2-dimensional 
valence-arousal map was used, as depicted by Fig. 9. It can be seen that the natural voice 
cases were present mostly in the PV–HA quadrant of the valence-arousal map, whereas 
all synthesized voices existed in the NV–LA quadrant. Furthermore, a comparative anal-
ysis of subjective dimensions between male and female voices, using ANOVA, indicated 
a significant difference for male listeners, where the male listeners rated QoE-MOS and 
Valence for male voices higher than female voices with F(1, 258) = 15.72; p ≤ 0.01 and 
F(1, 258) = 6.49; p ≤ 0.05, respectively. Previous research has found similar preference 
of male voices over female voices, for male listeners [57], and, male and female listeners 
[58].

Lastly, Pearson correlations between each of the three subjective factors were also 
computed, as reported in Table  3. All correlation values were found to be significant 

Fig. 9  Subjective Valence vs. Arousal emotional map across the 11 tested conditions in Dataset 2. The figure 
shows the spread of users’ valence and arousal scores, in response to stimuli used in Dataset 2, on a valence-
arousal map
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(p < 0.05) with quality and valence ratings showing the strongest (positive) correlations 
with each other. Arousal, on the other hand, showed only a mild correlation with quality 
and valence.

Objective model evaluation

As mentioned in “QoE model performance assessment” section, three QoE models were 
implemented in order to gauge the benefits of including HIFs, as well as aBCI features 
into the equation. For this study, the following QoE models were found:

The obtained goodness of fit (r2) value for model (6) was 0.76 with an RMSE of 0.136. 
For model (7), in turn, the obtained r2 value was 0.96 with an RMSE of 0.05, thus again 
highlighting the importance of HIFs in QoE perception modelling. Lastly, for model (8), 
the obtained r2 value was 0.87 with an RMSE of 0.117. When comparing the output of 
the objective QoE model in (8) and model in (7), a Pearson correlation coefficient of 0.91 
was obtained.

Discussion
In this section, we discuss the experimental results obtained from the subjective and 
objective methodologies used.

Role of HIFs in QoE modelling

Recently, HIFs and objective HIF characterization have gained burgeoning attention 
from QoE researchers [10, 59, 60]. Previously, researchers have investigated the effects of 
user expectation on QoE [61]. In the similar vein, this paper has evaluated the effects of 
users’ affective states on overall QoE perception. We have found evidence from the two 
subjective assessment tests (hands-free communication and TTS systems) that indeed 
the users’ perceived affective states change with varying speech quality. As is evident 
from the results, these changes were produced irrespective of the impairment type.

It is visible from the valence-arousal maps depicted by Figs. 7 and 9 that poor qual-
ity speech stimuli produced low arousal and low valence states, thus producing states 
ranging from ‘sad’ to miserable’ in listeners. High quality stimuli, on the other hand, 

(6)QoETech = 0.36− 0.56×MFCC2 + 0.44 × sF0′′,

(7)
QoEHIF = 0.004 + 0.02×MFCC2 + 0.05× sF0′′ + 1.53× Val

− 0.52× Ar,

(8)
QoEaBCI = 0.08+ 0.86× AI − 0.23×MBP − 0.55×MFCC2

+ 0.24 × sF0′′.

Table 3  Pearson correlation analysis between the three subjective factors for dataset 2

QoE-MOS Valence Arousal

QoE-MOS 1.00 0.81 0.51

Valence 0.81 1.00 0.61

Arousal 0.51 0.61 1.00
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incited high arousal and high valence states, thus making users feel ‘alert’ or ‘amused’. 
From Tables 2 and 3, it was also found that the measured HIFs showed high (significant) 
correlation with QoE-MOS. When HIFs were combined with existing state-of-the-art 
technology-centric speech quality metrics, e.g., as in (4) and (7), improvements in QoE 
measurement performance were observed and relative gains of 20.8 and 26.3  % were 
seen for far-field and TTS systems, respectively. These findings suggest that the affective 
states can indeed directly influence a listener’s perceived experience (or QoE) with a new 
telecommunication service.

Nonetheless, despite the improvements seen when adding HIFs to objective quality 
models [i.e., (4) and (7)], there was still a gap to perfect goodness-of-fit, thus suggest-
ing that the inclusion of alternate additional HIFs may be important. To this end, future 
studies should investigate the effects of e.g., attention, cognitive load, fatigue and/or user 
engagement.

aBCI advantages and limitations

The use of affective BCIs during subjective QoE assessment has two major advantages. 
First, aBCIs may allow for monitoring of the listener’s affective states in an objective 
manner, thus potentially reducing listener biases in subjective tests, particularly for TTS 
systems [62]. To this end, typical EEG-based metrics were used to quantify two emo-
tional primitives: arousal and valence. More specifically, the alpha-band frontal inter-
hemispheric asymmetry index (AI) was used as a correlate of valence and the medial 
beta power (MBP) as a correlate of arousal [47, 48]. The gaps observed between models 
(4) and (5) for hands-free communications and between models (7) and (8) for TTS sys-
tems, however, suggest that improved EEG features may still be needed.

In order to better understand the observed gap between QoE models found with sub-
jective and with aBCI features, Pearson correlations were calculated between AI and 
MBP and the subjective valence and arousal ratings. For dataset 1 (hands-free), it was 
found that AI was significantly correlated with valence with a correlation coefficient 
of 0.41 (p ≤ 0.05) and MBP was weakly correlated with arousal with a coefficient of −
0.24 (p ≤ 0.1). For Dataset 2 (TTS), in turn, AI showed a significant positive correla-
tion with valence (0.52; p ≤ 0.05) and MBP a weakly-significant correlation with arousal 
(−0.29; p ≤ 0.06). Overall, it is expected that more powerful models can be obtained 
once improved aBCI features are developed. Alternately, additional neuro-physiological 
signal modalities may be incorporated for human affective state monitoring, such as 
fNIRS, galvanic skin response, and eye tracking. The development of such “hybrid” affec-
tive BCIs is the aim of our ongoing research.

The second main advantage of using aBCIs to objectively monitor listener affective 
states is that it allows for continuous real-time monitoring of listener affective states. In 
practice, it is not possible to have listeners attend to the quality of a presented stimuli 
continuously, as well as report the elicited affective states. Such cognitive load demands 
will result in unwanted effects in the obtained ratings, as recently reported by [63]. As 
such, the use of an aBCI can allow the participants to focus on the QoE experiment fully, 
particularly if it involves time-varying distortions, such as voice over internet protocol 
(VoIP). While the present experiments did not involve time-varying distortions, the 
high correlations obtained between the objective and subjective ratings suggest that the 
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proposed objective regressors could be used for such tasks. Overall, gains of 12.5 and 
14.5  % in QoE measurement could be seen once aBCI features were used, relative to 
using only technological factors, for the hands-free and TTS systems, respectively.

Conclusion
Speech QoE perception is known to be influenced by internal human factors, as well as 
external technological and contextual factors. Existing objective QoE models, however, 
have focused mostly on the latter two and have omitted human QoE factors, such as 
affective states, from the equation. In this paper, we have taken the first steps towards 
showing the importance of incorporating human affective states into speech QoE mod-
els, both subjectively and objectively. Subjectively, we showed the impact of speech dis-
tortions on the listener’s perceived valence and arousal states, and in turn, their effect 
on perceived QoE. Objectively, on the other hand, we have proposed the use of affective 
BCIs to measure the listener’s valence and arousal levels. Through regression analysis, 
we showed that features extracted from an EEG-based BCI could improve QoE models 
performance by as much as 12.5 and 14.45% for hands-free communication and TTS 
systems, respectively.
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