Skip to main content

Table 4 Finding shortest path label from robot to room

From: Wi-Fi indoor positioning and navigation: a cloudlet-based cloud computing approach

Iterations Robot AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 Room
Robot 0 \(10^1\) \(\infty \) \(\infty \) \(\infty \) \(\infty \) 3 \(\infty \) \(\infty \) \(\infty \) \(\infty \)
{Robot, AP6} 0 \(10^1\) \(\infty \) \(\infty \) \(\infty \) \(9^6\) \(\mathbf{3}^{\mathbf{6}}\) \(11^6\) \(\infty \) \(\infty \) \(\infty \)
{Robot, AP6, AP5} 0 \(10^1\) \(\infty \) \(\infty \) \(16^6\) \(9^{6}\) \(3^{6}\) \(11^6 \) \(\infty \) \(\infty \) \(\infty \)
{Robot, AP1} 0 \(10^{1}\) \(16^1\) \(\infty \) \(16^6\) \(9^6\) \(3^6\) \(11^6\) \(\infty \) \(\infty \) \(\infty \)
{Robot, AP6, AP7} 0 \(10^1\) \(16^1\) \(\infty \) \(16^6\) \(9^6\) \(3^{6}\) \(11^{6}\) \(17^6\) \(\infty \) \(\infty \)
{Robot, AP1, AP2} 0 \(10^{1}\) \(16^{1}\) \(23^1\) \(16^6\) \(9^6\) \(3^6\) \(11^6\) \(17^6\) \(\infty \) \(\infty \)
{Robot, AP6, AP5, AP4} 0 \(10^1\) \(16^1\) \(23^1\) \(16^{6}\) \(9^{6}\) \(3^{6}\) \(11^6\) \(17^6\) \(\infty \) \(23^6\)
{Robot, AP1, AP2, AP3} 0 \(10^{1}\) \(16^{1}\) \(23^{1}\) \(16^6\) \(9^6\) \(3^6\) \(11^6\) \(17^6\) \(\infty \) \(23^6\)\(< 28^1\)
{Robot, AP6, AP5, AP4, Room} 0 \(10^1\) \(16^1\) \(23^1\) \(16^{6}\) \(9^{6}\) \(3^{6}\) \(11^6\) \(17^6\) \(\infty \) \(23^6\)