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Introduction
The specialized distributed real-time stream processing systems demand the underly-
ing system should able to adapt with increment in data volume, having heterogeneous 
data sources. Along with the requirement of massive computational capabilities on 
increasing data velocity, these specialized systems also insist that underlying frame-
work should provide highly scalable resources to achieve massive parallelism among 
the processing logic components in a distributed computing nodes in a timely man-
ner and to facilitate fast recovery from hardware failures, stateless and stateful mech-
anism of processing logic components ensure low latency streaming. Among all 
state-of-the-art specialized distributed stream processing framework Apache Storm 
[1], Apache Flink [2], and Apache Spark have emerged as the de facto programming 
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model which automatically take care of data and process distribution to achieve suf-
ficient task parallelism. More recent forays in low-latency distributed stream pro-
cessing, Google MillWheel [3] and Apache Heron [4] emerged as a successor to 
all modern unbounded streams of continuous data processing systems and scale 
transparently to large clusters which are most common among all stream process-
ing engines. Although there are similarities among components but they provide a 
different mechanism such as tuples or buffers for message passing to provide high 
throughput.

The emerging real-time distributed stream processing system’s Heron is built 
from plethora of components named as Spout, Bolts, Topology Master, Stream 
Manager and Metrics Manager which interacts in complex ways while running on 
several containers to correlate with high velocity of data volume. These containers 
are scheduled to run on a heterogeneous selection of multi-core nodes using large-
scale storage infrastructures. It also provides a framework to seamlessly integrate 
with existing large data processing components named as Apache Hadoop Distrib-
uted File System, Apache REEF [5], Apache Mesos, Apache Aurora [6], Simple Linux 
Utility for Resource Management (SLURM) and Google Kubernetes [7] but simul-
taneously makes it difficult to understand the performance behavior of underlying 
applications and components. Traditional relational database management systems 
performance complexities can be resolved using optimizers [8] but how to accu-
rately model and predict performance complexities in distributed stream process-
ing framework is quite challenging and has not yet been well studied. We address 
this gap in this paper. These performance complexities arise due to huge variance 
in workloads, elasticity, computation fluctuations and tuple serialization rate which 
makes difficult to predict the behavior of data pipelined on distributed compo-
nents. Since predicting the dynamic performance of data stream will provide further 
insight to a number of data management task including workload optimization [9], 
scheduling [10] and resource management which help in reducing unnecessary over-
provisioning of resources through efficient prioritization of resource allocations in 
the specialized distributed stream processing systems domain.

In this paper, we propose a novel architecture independent performance predic-
tion framework for text streaming in distributed stream processing platform run-
ning on top of OpenHPC systems. Specifically, we summarize our contribution to 
the following:

•	 We provide domain specific metrics which were most relevant for streaming 
platform running on top of high performance computing architecture because 
existing methodologies only depicts about the big data processing and distrib-
uted database management framework.

•	 We provide performance behavior of streaming platform running on top of high 
performance architecture.

•	 We transform state-of-the-art automated performance tuning module of distrib-
uted database management system to work for distributed streaming platform.
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•	 We propose a novel framework running on top of a streaming platform using lin-
ear least squares with L2 regularization to recommend a plausible performance 
for the stream of individual topology.

•	 To validate and evaluate the proposed framework, we implemented on an emerg-
ing processing system, Apache Heron.

The remainder of this paper is structured as follows: in “Background” section, we 
present the adequate background for the entire paper. “Design and implementa-
tion of proposed framework” section presents the methodology followed by an 
overview of the proposed framework. “Experimental evaluation” section presents 
the evaluation and results while comparing with all proposed models. In “Related 
work” section, all related literature are discussed and finally, the paper concludes in 
“Discussions and conclusions” section with addressing some of the conceivable used 
cases.

Background
A standard stream processing framework running on high performance computing 
cluster is the one where every component is running on computing nodes, an exem-
plary architecture described in Fig. 1. The processing representation of the continuous 
progression of tuples, streams we model it into a directed acyclic graph (DAG). These 
acyclic graphs are well known as topology in heron and have the capacity for process-
ing of these tuples with ∞ number of times which eventually depends on the availabil-
ity of tuples. Topologies in heron comprise three basic processing logic components 
(PLU) labeled as spout, bolt and edging bolt. The source processing component, spout 
read tuples potentially from the outsourced stream publisher-subscriber system (here, 
Apache Pulsar [11]) and seeds tuples into a contemporary graph having count zeros in-
degree. The tuple processing component, bolt parse the seeded tuple with user-defined 
processing logic and later, seed the processed tuple into a contemporary graph such that 
in-degree ≥ 1 and out-degree ≥ 1 to maintain the stream processing pipeline. Similarly, 
edging bolt or sink processing component parses the seeded tuple with user-defined 
processing logic and later, seed the processed tuple into outsourced storage such that in-
degree ≥ 1 and out-degree ⇐ 0 to maintain the stream processing pipeline. The vertices 
in the logical plan of topology represent nodes of contemporary graph and direction of 
these vertices represents the progression of these tuples whole scenario is elaborated in 
Fig. 1. These processing logic component instances packed into a containerized process, 
Heron Instance which can able to execute as many parallel tasks on multiple containers 
hosted on either single or multiple computing nodes. These user-defined topologies are 
distributed to the cluster through one of the scalable mechanism named as Hadoop File 
System, Local File System, and Lustre File Systems.1 Dynamically, the efficiency of con-
temporary topologies is maintained using the back-pressure mechanism [12] for spout 
and bolt respectively maintained through Topology Master. Tuples in this framework are 
generally composed of the message with the encoded meta-attributes object. Heron has 

1  http://www.lustr​e.org.

http://www.lustre.org


Page 4 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci.             (2019) 9:2 

six ways of grouping the tuples among contemporary processing component described 
as follows:

•	 Fields grouping: The progression of tuples is transmitted to those processing logic 
components comprised of similar meta-attribute value.

•	 Global grouping: The progression of tuples is transmitted to single instance having 
lowest encoded meta-attribute value.

•	 Shuffle grouping: The progression of tuples is randomly distributed to distinct 
instances while ensuring uniform distribution.

•	 None grouping: Till now, having similar functionality as shuffle grouping.
•	 All grouping: The progression of tuples distributed to all corresponding processing 

components.
•	 Custom grouping: The progression of tuples distributed to corresponding processing 

components as defined by the user.

Heron has gathered a results in following two ways described as follows:

•	 Sliding window: Tuples in a stream are grouped together to form windows that can 
be overlap either on the basis of time duration or on number of operation performed.

•	 Tumbling window: Tuples in a stream are grouped together to form non-overlapping 
window either on the basis of time duration or on number of operation performed.

A distributed stream data processing system consist of master node that serves as the 
topology life cycle management unit and helps in transformation of logical plan into 
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physical plan which are analogous to a database query plan [13] using state-of-the-art 
bin packing algorithm. Inspired from microkernel based architecture, it share these 
plans to the SLURM scheduler which further assign the task to specific compute nodes 
as per the physical plan of a topology. The scheduling solution leads to almost even dis-
tribution among all containers which assign a task to instances in a round-robin manner.

Design and implementation of proposed framework
In this section, we describe the overview of design and implementation details of the 
proposed framework.

Overview

Our proposed benchmark suite allows to inject various data loads into heron stream 
data processing systems and collect dynamic metrics which helps to estimate runtime 
performance of data streams in streaming topology. The overall architecture is presented 
in Fig. 2 and comes with modules such as Metrics Pipeline, Data Enrichment, Metrics 
Classification, Data Grid, Data Stream Performance Prediction Model and Benchmark 
Suite. It consists of five stream processing benchmark topologies to cover wide domains 
with help of CPU Intensive topologies, Memory Intensive topologies, Network Inten-
sive topologies and Scheduler Intensive topologies. Conceptually, each benchmarking 
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topology implements services running on a high performance stream data processing 
cluster where each service has several types of requests issued by users.

Performance metrics classification

There is no single metric exists till the time of writing paper based on which we evaluate 
overall performance of big data system which is almost the same problem discussed in 
[14]. In this section, we are classifying all existing metrics into seven different categories 
which helps in deeper visualization of strength and weakness of entire big data process-
ing systems discussed in following section.

Memory metrics

Heap memory Running topology in containerized environment contains another layer of 
abstract execution environment on top of hardware virtualization over a physical host-
ing platform and sharing these hardware resources along with memory among multiple 
Java virtual machines (JVMs) ends up with the unpredictable memory demands as dis-
cussed in [15].

To consider such memory behavior, the percentage of Heap Available metric is com-
puted using the total amount of heap memory free divided by total amount of heap 
memory available in terms of megabytes.

Garbage collection time The total accumulated milliseconds time spent by the garbage 
collector managed bean (MBean) [16] to find and reclaim unreachable objects to free up 
memory space per minute known as garbage collection time ( GCTime).

Alternatively, GCTime defined as the total accumulated time spent to determine the num-
ber of reachable objects ( α ), count of unreachable objects ( β ) and time to free up mem-
ory space in a milliseconds window frame ( γ).

n‑Verticals metrics

Thread share The total actively running live threads are simultaneously made request for 
the services in the same container at the given instance of time. These accumulated run-
ning threads also comprising of background supporting task which are fulfilled by daemon 
threads.

A total number of active threads (non-daemons) count at the given time can be evalu-
ated as modulus subtraction of numbers of active threads with a number of active dae-
mon threads running. Later, fraction with total active thread which is known as thread 
share.

(1)Heap available (%,mb) =
Heap free

Heap total
× 100

(2)GCTime = α + β + γ

(3)Threads share% =
|Active_Threads − Daemons|

Active threads
× 100
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CPU load The allocated cores which are actively running process (p) for x duration of 
time from the recent period being observed are termed as CPU Load of containerized 
process.

Alternatively, process CPU load is defined as a product of current process CPU load 
with the number of allocated cores to the topology. And the range of such java virtual 
machine variable count lies between 0 and 1. Hence, the percentage of core idle is related 
to the processing load and is defined as the complement of process load.

Communication metrics

Back pressure The total accumulated time spent by an instance under back-pressure.

We measure back-pressure (BP) time [17] in terms of milliseconds per minute which 
includes TCP back-pressure ( θ1 ), spout back-pressure ( θ2 ) and stage-by-stage back-pres-
sure ( θ3 ) as heron internal includes both back-pressure initiated by self and others.

Computation metrics

Execute latency The execution latency is the latency it acquired to process a user-defined 
logic on windowed incoming tuples of a topology.

Scheduler metrics

Uptime The total computation time allocated to a process on which Java virtual machine 
is running, once shortlisted by the short-term scheduler. In rest of the paper, we keep 
nanoseconds as a unit of measurement in metrics pipeline module .

Among all the selected metrics, containerized configuration as a cost metrics (RAM, 
CPU, Disk usage) and input-output as a cost metrics (emit count, fail count, acknowl-
edgement count) are some of the widely selected features on most state-of-the-art sys-
tems. A data-center system such as IBM Cloud Private [18], reports the performance 
of worker nodes to the master node in terms of CPUs, GPUs usage, and overall RAM 
utilization. Moreover, auto-scaling of running application totally depends on consump-
tion of these contemporary components. Poggi et al. [19] also includes these system con-
figuration metrics to report resource consumption based on the query to have a overall 
insight of cluster.

Data streaming performance prediction model

Regression algorithms are best candidate to perform prediction of any component in 
terms of latency. Since this problem is dealing with densely populated high-dimen-
sional input data but only having continuous attributes, which makes it appropriate 
to apply parametric ridge regularization regression algorithms. The non-parametric 
regression algorithm such as support vector regression algorithms ( ǫ-SVR, nu-SVR) 
also be the good candidate as it has less memory overhead in comparison with ridge 
regularization regression algorithm (label them as MSL in rest of the paper) but it 

(4)Core idle% = (1− Process_Load)× 100

(5)BPTime = θ1 + θ2 + θ3



Page 8 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci.             (2019) 9:2 

outperforms the SVR with respect to all the three validation metrics as shown in 
Table 1 for each distinct types of cluster discussed in “Environmental setup” section. 
We compare the performance of these regression models using various measures 
such as mean squares of the deviations, square root of the arithmetic means of imper-
fection measure, mean absolute error and coefficient of determination as described 
in Table 1. We also used cross-validation (k = 10) for various selections of kernel and 
the result depicts that Ridge regularization regression algorithm outperforms the lin-
ear kernel, the polynomial kernel, the radial basis function kernel and the sigmoid 
kernel for each ǫ-SVR and nu-SVR.

To compare the efficiency of proposed model (label as DKL in rest of paper), we 
use well-studied technique for regression problem used in most performance tun-
ing module of Distributed Database Management System. The dimensions of all the 
dynamic metrics are reduced using state-of-the-art dimensionality reduction tech-
nique called Factor Analysis. It transform the high dimensional stream processing 
systems dynamic metric data into lower dimensional data. Based on our experiments, 
we found that only the initial factors are most significant for our prediction frame-
work due to existence of major influenced metrics distribution. To find out the highly 
influential metrics, we use k-means clustering algorithm to cluster this lower dimen-
sional data using each row as its feature metrics and, keep a single metric from each 
cluster (one which were nearest to the centroid of a cluster). Finally, we use Gaussian 
processes regression to recommend performance of data streams with help of top k 
dynamic metrics of stream data processing system.

Table 1  Comparison of  regression algorithm with  respect to  three evaluation metrics 
(with cross  validation k =  10) performed on  (i) Cluster-I, (ii) Cluster-II and  (iii) Cluster-I 
and II

C-I, Cluster-I; C-II, Cluster-II; C-III, Cluster-I and Cluster-II

Italic values indicate the significance of various regression techniques (a minimum value of error within clusters)

Regressions Cluster MSE RMSE MAE R2

Lasso regression C-I 68.9297 8.0056 5.9667 0.9807

Lasso regression C-II 58.4858 7.5675 5.3386 0.963

Lasso regression C-III 42.481 6.518 4.649 0.99

Ridge regression C-I 66.7715 8.1146 5.8574 0.9813

Ridge regression C-II 55.2465 7.3488 5.2273 0.9663

Ridge regression C-III 40.433 6.359 4.546 0.991

Elastic net regression C-I 69.1028 8.0056 5.9757 0.9805

Elastic net regression C-II 60.7171 7.6966 5.3623 0.9618

Elastic net regression C-III 42.578 6.525 4.693 0.99

ǫ-SVR linear kernel C-I 316.88 8.1301 13.7762 0.9113

ǫ-SVR linear kernel C-II 298.6252 16.7423 13.3822 0.813

ǫ-SVR linear kernel C-III 126.669 11.255 9.044 0.971

nu-SVR linear kernel C-I 227.4365 17.0608 11.7427 0.9331

nu-SVR linear kernel C-II 214.9223 14.2851 10.9677 0.8661

nu-SVR linear kernel C-III 132.333 11.502 9.289 0.969
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Metric pipeline

The function of metrics pipeline is to keep running as multiple threads throughout 
the live compute nodes in the cluster. When tuples arrives from one component of 
topology, the entire dynamic metrics are recorded with a encoded meta-attribute ID 
and timestamp. Then the tuple will be processed and stream the aggregate metrics to 
adjoint component, while entire dynamic metrics are again recorded by the metric 
pipeline along timestamp including tuple ID.

Suppose there are total of t topologies and at any given time, maximum n nodes are con-
sumed up by topology tt1 . Therefore, during a time frame tthread are maximum threads 
running as shown in Eq. 6.

Data enrichment

The Data Enrichment converge all tuples record into new record having all dynamic 
metrics with help of unique tuple ID and timestamp. After concatenation, all the 
missing values are replaced with mean of entire column since all dynamic metrics 
record contains sparse data and distributed data storage termed as Data Grid.

Experimental evaluation
In this section, we provide the brief overview of benchmark suite used in the evalua-
tion of proposed framework followed by a glimpse of experimental setups. The bench-
mark topologies form a data pipeline using open-source distributed pub-sub messaging 
system Apache Pulsar [11] to consume text streams generated by parallel synthetic data 
load generator. The input streams are the tuples which are generated using Alice’s 
Adventures in Wonderland2 text file and the spout consume the data streams later emits 
into topology through subscription to pulsar topic.

Environmental setup

We perform the evaluation of the proposed performance modeling framework over 
Apache Incubator Heron 0.17.1 release [4] on top of Centos Linux 7. Entire methodolo-
gies are evaluated based on their performance on two different clusters having heteroge-
neous architectures. The Cluster 1 consists of 19 Intel Xeon E5-2683 v4 nodes running 
at 2.10 GHz. Each compute cores has 128 GB RAM and 64 cores (2 sockets × 16 cores 
each with SMTP value of 2). The Cluster 2 consists of 12 many integrated core nodes 
named as Intel Knights Landing Xeon Phi 7250 running at 1.4  GHz where each KNL 
node composed of 64 GB and 16 GB MCDRAM having 72 cores each. Each computing 
node from the cluster is interconnected with NL-SAS Directed attached storage of 108 
TB along with 100 Gbps Omni-Path fabric interconnect network for data and 1 Gbps 
Ethernet network for management which helps in maintaining overall cluster stability. 
Five different domain representative topologies were implemented and deployed. The 

(6)tthread = max
1≤j≤t

(n× tj)

2  http://www.guten​berg.org/files​/11/11-pdf.pdf.

http://www.gutenberg.org/files/11/11-pdf.pdf
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latency including throughput is measured during changes in number of parallel task and 
system performance.

Benchmark suite

Grep count directed acyclic graph (GC‑DAG)

The four stage topology widely known as a application of MapReduce. Their structure 
is alike to a chain of components comprised of three bolts and one spout as shown in 
Fig. 3 and it operates at the level of sentences with a maximum length of 119 char-
acters. The spout is connected with the uni-gram bolt which convert texts into uni-
gram tokens. These tokens are fed into Identify Keyword bolt which looks for keyword 
defined by a user. The Keyword Count bolt make a count for the presence of uni-gram 
in a tuple and store all results into a single file database3 using field grouping. In the 
experiments, the processing logic components was set to have thirteen stream man-
agers comprising of one spout executors, four uni-gram bolt executors, four Identify 
Keyword executors and four Keyword Count executors.

GEneral matrix to matrix multiplication directed acyclic graph (GEMM‑DAG)

The three-stage topology structure is alike to a chain of components comprised of three 
parallel bolts and one spout as shown in Fig.  4. To evaluate our framework, micro-
benchmark topology operates at the level of sentences with a maximum length of 20 
words. The purpose of this topology is to have a performance profile of data process-
ing platform during computation of CPU intensive operation on data stream along with 
deep learning model operations and matrix multiplication are the best candidate in 
such domain. Since performance of such operation varies due to dependency on size of 
matrices and kernel implementation along with the type of bound which can be com-
puted, bandwidth and occupancy bound. Surprisingly, the way these models are utilized 
in practice are diverse as the optimization space for hardware and software targeting 
deep learning is large and underspecified [20–22]. The spout is connected with two par-
allel bolts named as Matrix A and Matrix B which generates the matrix based on tuples 
received from the spout. These bolts generates a sparse matrix of certain user defined 
size based on the tuples they received from bolts and the presence of common words 
among two tuples. These matrices are fed into the GEMM bolt which performs the mul-
tiplication operation after receiving matrices from both tuples. The results are stored 
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Fig. 3  Micro-Benchmark. A keyword search topology

3  http://www.sqlit​e.org.

http://www.sqlite.org
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into a single file database (see footnote 3) using shuffle grouping and tumbling window. 
In the experiments, the processing logic components configured to have twelve stream 
managers comprising of one spout executor, six matrix A executors, six matrix B execu-
tors and ten GEMM executors each perform operation on matrix of size 1048 with value 
of BLAS α ∈ 1 and BLAS β ∈ 0.

Unique sort acyclic graph (US‑DAG)

The four stage topology structure is alike to a chain of components having five bolts 
including two adjacent parallel bolts and two parallel spouts as shown in Fig. 5. To evalu-
ate our framework, micro-benchmark topology operates at the level of sentences with 
a maximum length of 30 words. The purpose of this topology is to have a performance 
profile of data processing platform during computation of memory intensive operation 
on data streams and sorting algorithms are the best candidate for memory intensive 
computation. Since performance of such operation varies due to dependencies on size 
of inputs and kernel implementation along with the type of stableness it achieve. The 
spout is connected with bolt named as Unique A which transforms into tuples contain-
ing unique words based on tuples received from the spout. These transformed are fed 
into bolt named as Sort A which sort these tuples using standard merge sort algorithms 
which itself has O(n) space complexity. Lastly, sorted tuples are merged into a single 
stream and stored into a single file database (see footnote 3) using shuffle grouping. The 
experiments conducted with 16 stream managers comprising of one spout executor, 
twenty two unique A executors, twelve sort A executors and five merge bolt executors.
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Speed of light compute directed acyclic graph (SOL‑DAG)

The two stage topology has a chain-like structures with a group of bolts and a spout as 
shown in Fig. 6. To evaluate our framework, micro-benchmark topology operates at the 
level of sentences with a user-defined length of words. The purpose of this topology is 
to have a performance profile of data processing platform during computation of net-
work intensive operations on data streams and fast tuples consumption algorithms are 
the best candidate for network intensive computation with varying message size. Since 
performance of such algorithms varies due to presence of number of bolts, message size 
and bandwidth used to interconnect these components running on distributed compute 
nodes. The spout is connected with the user-defined count of bolts termed as Emit 1 and 
reach till Emit (n − 1). The goal of this topology is to have a performance trace of net-
work therefore we try to keep as minimum computation as can. Lastly, emitted counts 
are stored into a single file database (see footnote 3) using shuffle grouping. The experi-
ments conducted with 19 stream managers comprising of one spout executor, sixty emit 
n executors.

Speed of light sleep directed acyclic graph (SOLS‑DAG)

The three-stage topology structure is alike to a chain of components having two groups 
of bolts and spout as shown in Fig.  7. To evaluate our framework, micro-benchmark 
topology operates at the level of sentences with a fixed length of words. The purpose of 
this topology is to have a performance profile of data processing platform during com-
putation of scheduler intensive operation on data streams and placing a bolt into an idle 
state for fixed quanta of time, which makes it a best candidate for scheduler intensive 
computations. Most state-of-the-art big data systems scheduler has the capability to 
integrate with existing version of heron and provide state-of-the-art computation solu-
tions but how effectively it copes with the system calls at runtime totally depends on 
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the scheduler being used. Although there is a assurance of minimum time duration but 
there is not strict assurance in executing the contemporary thread immediately. How 
these knobs are utilized in practice can be diverse since the optimization space is large 
and underspecified because these assurance is dependent on thread priorities and 
scheduler’s decision. The spout is connected with the user-defined count of bolts termed 
as Sleep 1 and reach till Sleep (n − 1). Tuples from these bolts are fed into groups of bolts 
termed as Emit 1 and reach till Emit (n − 1). The goal of this topology is to have perfor-
mance traces of scheduler which inspire us keep to keep minimum processing logic at 
the contemporary components. Lastly, emitted counts are stored into a single file data-
base (see footnote 3) using shuffle grouping. In the experiments, heron cluster is config-
ured with 16 stream managers comprised with one spout, ten sleep bolt executor with a 
parallelism of eight and ten emit bolt with a parallelism count one.

Results and inferences

In this section, we describe the brief experimental results of the five benchmark topol-
ogies in “Experimental evaluation” section. These are based on three commonly used 
metrics Average Accuracy Rate over a fixed quanta of time (here, 60 s).

Average error rate over a fixed quanta of time (here, 120 s) and evaluated using (100—
accuracy) and Overall Execution Latency comprised of default and estimated execu-
tion latency of processing logic units over 20 min window frame. In the corresponding 
Figs.  8,   9,   10,  11 and 12 , “PL-SNumber”, “SNumber–PNumber”, “PNumber-Sq” and 
“Overall” resembles to the predicted accuracy, predicted error rate of tuple transmission 
latency among pulsar processing component and spout, spout and bolt, bolt and bolt, 
bolt and SQLite edging bolt after stabilization respectively. From these experimental 
norms, we can make the following observations.

GC‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 8. The 
average prediction accuracy rate of individual processing logic components are shown 
in Fig. 8a that varies from 99.91% (among the source component and uni-gram com-
ponent) to 88.45% (at keyWord Count component) for MSL model. The performance 
assessment of contemporary models would be interesting in presence of unpredict-
able workload variation. To represent dynamic behavior we forcefully ingest skewness 
in the processing of user-defined components by restricting the parallelism count 
to be four. Due to dynamic variations in process unit metrics, the available metrics 
are far enough to cover all possible values; thus it reduces the predictive accuracy of 
topology to 90.90%, which is slightly higher than individual accuracy rates. Surpris-
ingly, for model DKL prediction accuracy rate of individual processing logic compo-
nents varies from 99.65% (among the source component and uni-gram component) 

(7)Accuracy = 100− absolute

[

Estimated − Actual

Actual

]

∗ 100
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to 4.585% (at keyWord count edging component). The presence of sparse attributed 
metrics leads to 29.89% reduction in prediction accuracy which is slightly lesser than 
prediction accuracy of individual processing component. Later, based on the experi-
mental conclusion we found that discussed accuracy is much lower than overall accu-
racy achieved through MSL performance model. The average prediction error rates 
vary from 11.54% (among the source and uni-gram component) to 11.96% (at key-
Word count component) and 0.348% (among the source and uni-gram component) to 
95.84% (at keyWord count edging component) for MSL and DKL models respectively 
as shown in Fig. 8b. Even though DKL prediction model achieves an average accuracy 
of 29.89% but overall how it actually performs when its estimated latencies are com-
pared with default dynamic latencies along the latencies estimated with MSL model 
are shown in Fig. 8c, d for a regular time frame of 20 min for spouts and bolts compo-
nents respectively. Moreover, the default normalized dynamic execution latencies of 
bolts is much lower than the normalized estimated execution latencies of DKL pre-
diction model as shown in Fig. 8d. However, as shown in Fig. 8c there is no significant 
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Fig. 8  Performance behavior of a GC-DAG topology over three metrics, a Represents the average accuracy 
rate corresponding to the groups of various processing logic units. b Represents the average prediction 
error rate corresponding to the groups of various processing logic units. c Represents the average execution 
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average 
execution latency of various bolts for a regular execution time frame of 20 minutes
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difference among default and estimated normalized dynamic execution latencies of 
spouts.

GEMM‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 9. The 
average prediction accuracy rate of individual processing logic components are 
shown in Fig. 9a that varies from 99.74% (among the source component and matrix 
component) to 86.10% (at GEMM component) for MSL model. The performance 
assessment of contemporary models would be interesting in presence of unpredict-
able workload variation. To represent dynamic behavior we forcefully ingest skewness 
in the processing of user-defined components by restricting the parallelism count to 
be six. Due to dynamic variations in process unit metrics, the available metrics are far 
enough to cover all possible values; thus it reduces the predictive accuracy of topol-
ogy to 70.41%, which is slightly higher than individual accuracy rates. Surprisingly, 
for model DKL prediction accuracy rate of individual processing logic components 
varies from 90.03% (among the source component and matrix component) to 67.69% 
(at GEMM edging component). The presence of sparse attributed metrics leads to 

(a) (b)

(c) (d)
Fig. 9  Performance behavior of a GEMM-DAG topology over three metrics, a Represents the average 
accuracy rate corresponding to the groups of various processing logic units. b Represents the average 
prediction error rate corresponding to the groups of various processing logic units. c Represents the average 
execution latency of various spouts for a regular execution time frame of 20 minutes. d Represents the 
average execution latency of various bolts for a regular execution time frame of 20 minutes
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66.18% reduction in prediction accuracy which is slightly lesser than prediction accu-
racy of individual processing component. Later, based on the experimental conclu-
sion we found that discussed accuracy is much lower than overall accuracy achieved 
through MSL performance model. The average prediction error rates vary from 0.25% 
(among the source and matrix component) to 29.58% (at GEMM component) and 
9.96% (among the source and matrix component) to 32.30% (at GEMM edging com-
ponent) for MSL and DKL models respectively as shown in Fig. 9b. Even though DKL 
prediction model achieves an average accuracy of 66.181 percent but overall how it 
actually performs when its estimated latencies are compared with default dynamic 
latencies along the latencies estimated with MSL model are shown in Fig. 9c, d for a 
regular time frame of 20 min for spouts and bolts respectively. Moreover, the default 
normalized dynamic execution latencies of spouts is much lower than the normalized 
estimated execution latencies of DKL prediction model as shown in Fig. 9c. However, 
as shown in Fig.  9d there is no significant difference among default and estimated 
normalized dynamic execution latencies of bolts.
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Fig. 10  Performance behavior of a SOL-DAG topology over three metrics, a Represents the average accuracy 
rate corresponding to the groups of various processing logic units. b Represents the average prediction 
error rate corresponding to the groups of various processing logic units. c Represents the average execution 
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average 
execution latency of various bolts for a regular execution time frame of 20 minutes
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SOL‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig.  10. The 
average prediction accuracy rate of individual processing logic components are shown 
in Fig. 10a that varies from 93.85% (among the source component and emit component) 
to 91.73% (at emit component) for MSL model. The performance assessment of con-
temporary models would be interesting in presence of unpredictable workload variation. 
To represent dynamic behavior we forcefully ingest skewness in the processing of user-
defined components by restricting the parallelism count to be one. Due to dynamic vari-
ations in process unit metrics, the available metrics are far enough to cover all possible 
values; thus it reduces the predictive accuracy of topology to 92.79%, which is slightly 
lower than individual accuracy rates. Surprisingly, for model DKL prediction accuracy 
rate of individual processing logic components varies from 99.99% (among the source 
component and emit component) to 69.63% (at emit edging component). The presence 
of sparse attributed metrics leads to 84.81% reduction in prediction accuracy which is 
slightly lesser than prediction accuracy of individual processing component. The average 
prediction error rates vary from 6.76% (among the source and emit component) to 9.85% 
(at emit component) and 0.01% (among the source and emit component) to 73.81% (at 
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Fig. 11  Performance behavior of a SOLS-DAG topology over three metrics, a Represents the average 
accuracy rate corresponding to the groups of various processing logic units. b Represents the average 
prediction error rate corresponding to the groups of various processing logic units. c Represents the average 
execution latency of various spouts for a regular execution time frame of 20 minutes. d Represents the 
average execution latency of various bolts for a regular execution time frame of 20 minutes
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emit edging component) for MSL and DKL models respectively as shown in Fig. 9b. The 
MSL model on an average perfectly estimate the default dynamic latencies but scenario 
are very different for model DKL as shown in Fig. 10c, d. Moreover, the default normal-
ized dynamic execution latencies of spout is almost similar with DKL and MSL predic-
tion model observations but there exist significant deviation in 15–20 min range which 
can be negligible since difference is very minute as shown in Fig. 10c. However, there 
exists significant difference as shown in Fig. 10d among default and estimated normal-
ized dynamic execution latencies of bolts with DKL prediction model over a duration of 
20 min.

SOLS‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig.  11. The 
average prediction accuracy rate of individual processing logic components are shown in 
Fig. 11a that varies from 93.38% (among the source component and sleep component) to 
34.40% (at emit component) for MSL model. The performance assessment of contempo-
rary models would be interesting in presence of unpredictable workload variation. To rep-
resent dynamic behavior we forcefully ingest skewness in the processing of user-defined 
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Fig. 12  Performance behavior of a US-DAG topology over three metrics, a Represents the average accuracy 
rate corresponding to the groups of various processing logic units. b Represents the average prediction 
error rate corresponding to the groups of various processing logic units. c Represents the average execution 
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average 
execution latency of various bolts for a regular execution time frame of 20 minutes
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components by restricting the parallelism count to be eight and one respectively. Due to 
dynamic variations in process unit metrics, the available metrics are far enough to cover 
all possible values; thus it reduces the predictive accuracy of topology to 69.46%, which is 
slightly lower than individual accuracy rates. Surprisingly, for model DKL prediction accu-
racy rate of individual processing logic components varies from 92.29% (among the source 
component and sleep component) to 31.72% (at emit edging component). The presence of 
sparse attributed metrics leads to 66.12% reduction in prediction accuracy which is slightly 
lesser than prediction accuracy of individual processing component. The average predic-
tion error rates vary from 1.55% (among the source and sleep component) to 48.05% (at 
emit component) and 7.52% (among the source and emit component) to 58.72% (at emit 
edging component) for MSL and DKL models respectively as shown in Fig. 11b. The MSL 
model on an average perfectly estimate the default dynamic latencies but scenario are very 
different for model DKL as shown in Fig. 11c, d. Moreover, the default normalized dynamic 
execution latencies of spout is almost similar with DKL and MSL prediction model obser-
vations but there exist significant deviation in 0–20 min range which can’t be negligible as 
shown in Fig.  11c with observations of DKL model. However, similar observation exists 
with bolts but there exists a huge variations among DKL and MSL prediction model com-
paring with default normalized execution latencies as shown in Fig. 11d over a range from 
0 to 20 min.

US‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig.  12. The 
average prediction accuracy rate of individual processing logic components are shown in 
Fig. 12a that varies from 95.37% (among the source component and unique component) 
to 70.30% (at merge component) for MSL model. The performance assessment of contem-
porary models would be interesting in presence of unpredictable workload variation. To 
represent dynamic behavior we forcefully ingest skewness in the processing of user-defined 
components by restricting the parallelism count to be 12, 22 and 5 respectively. Due to 
dynamic variations in process unit metrics, the available metrics are far enough to cover 
all possible values; thus it reduces the predictive accuracy of topology to 79.56%, which is 
slightly higher than individual accuracy rates. Surprisingly, for model DKL prediction accu-
racy rate of individual processing logic components varies from 97.35% (among the source 
component and unique component) to 65.53% (at emit merge component). The presence of 
sparse attributed metrics leads to 84.82% reduction in prediction accuracy which is slightly 
lesser than prediction accuracy of individual processing component. The average predic-
tion error rates vary from 6.34% (among the source and unique component) to 26.60% 
(at merge component) and 2.11% (among the source and unique component) to 8.43% (at 
merge edging component) for MSL and DKL models respectively as shown in Fig. 12b. The 
DKL model on an average perfectly estimate the default dynamic latencies but scenarios 
are very different for model MSL as shown in Fig. 12c, d. Moreover, the default normal-
ized dynamic execution latencies of spouts is almost similar with MSL and DKL prediction 
model observations but there is small deviation among latencies in MSL observations com-
paring with default observations as shown in Fig. 12c. Unfortunately, there exists a huge 
variations among default normalized dynamic latencies and normalized latencies of MSL 
prediction model as shown in Fig. 12 d over a range from 2.5 to 20 min.
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Related work
We provide a comprehensive review of the organization and the community-contributed 
application workload driven benchmark in this section. It also includes the brief over-
view of crucial research efforts made on several state-of-the-art performance prediction 
models in the domain of specialized and generalized big data processing systems.

Big data system benchmarking: inferences and metrics

Karimov et  al. [23] measure the performance of three state-of-the-art stream pro-
cessing framework over various events viz. joins, aggregations, queries over increased 
windows size including presence of skewness in data, fluctuating workloads and back-
pressure with processing-time and event-time latency as a evaluation metric. Based on 
the experimental analysis, author suggest favourable conditions for various framework. 
Quan et al. [24] based on the conclusion with three distinct representatives systems pro-
posed that performance response on hardware fluctuates with the change in application 
workload. This dynamic variation not only depends on characteristics of workload but 
also on the amount of data underlying computing node processing. They also inferred 
that there is strong performance relationship among the type of workload running on 
which computing node. Han et al. [25] inferred that efficiently benchmarking the huge 
data processing system provides accurate measuring of contemporary systems and five-
span of these systems are the most prerequisite important to sustain huge precisions. 
They also introduce us with four further classifications about workload input data gen-
eration: ready-made datasets, a synthetic distribution based data generators, real-world 
data based data generators and hybrid generators and also about two sub-branches of 
benchmarks labeled as the micro and end-to-end benchmarks. Similarly, Han et  al. 
[26] authors categorized the whole system level evaluation metric into user-perceivable 
metrics(how frequently it can collect streams) and architecture metrics (how frequently 
it can respond to a streams). Similarly, Veiga et al. [27] using various batch and iterative 
workloads evaluates overall performance on the basis of cluster size, Block size, Data 
Size, Interconnect Network, Nodes Configuration and execution time on data center 
system. Finally, Jia et al. [28] suggests benchmarking with single application will not be 
enough to consider various domains of workload.

Big data system benchmarking: performance prediction model

Gupta et  al. [29] proposed a theoretical performance prediction model for big data 
processing system based on the new active data, historical data. And, with the help of 
machine learning algorithms, it generates the metadata for new active data based and 
determines the performance level of systems and configure the system based on the pre-
diction using metadata. The major drawback of such model is that they are based on a 
static sampling of correlated data. Baru et al. [14] highlight the importance of applica-
tion-level-data benchmarks that are striving to cover all aspects of the application from 
ingestion to analysis. Nikravesh et al. [30] provides the autonomic performance indicator 
to support scaling in a cloud environment. Authors periodically sample the values from 
time-series streams to correlate various workload pattern and accuracy of regression 
algorithms viz. multi-layer perceptron. However, based on the experimental analysis the 
performance model for stream processing framework exploiting multi-layer perceptron 
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neural network not able to work well. The relevant variant to our work is proposed by 
Li et al. [31]. Their proposed methodology entirely depends upon reinforcement learn-
ing. The complexity of their approach grows linearly with an increment in searchable 
(action) space which makes it unfit for actual use and further discussion on predictable 
performance are described here [32].

Discussions and conclusions
In our experiments, one of the most important contribution is the characterize trans-
formation of entire dynamic metrics into five distinct categorization named as mem-
ory metrics, n-Verticals, Communication metrics, Computation metrics and scheduler 
metrics. These feature classification helps in precise behavior of entire model as shown 
in “Results and inferences” section. Moreover, it can be inferred from experiment 
described in “SOL-DAG topology” section that the correct combination of number of 
stream managers, parallelism count and number or executors including state-of-the-
art resources available in computing node that helps in maintaining entire topology 
health while processing of large streaming data and ends with resource requirement 
problem for topology. In this work, we study the problem of predicting the perfor-
mance of data streams in distributed stream processing environment. We proposed a 
design, methodology and evaluation of performance prediction framework aiming at 
efficient, resource adaptive and high performance distributed streaming platform. The 
framework comprising of six functional modules that includes metrics pipeline, data 
enrichment, metrics classification, data grid, trigger and prediction model. The metrics 
classification module categorize the dynamic topology metrics into seven predefined 
class for better performance behavior analysis and data enrichment provides a solu-
tion for missing values if present. The data stream performance prediction module 
comprise of two models: MSL and DKL. The self-driven MSL model tries fit classified 
dynamic metrics using ridge regularization regression algorithm and fully-automated 
DKL model inherited from the state-of-the-art workload management module from 
distributed database management system for distributed stream processing systems. 
We implemented its base on Apache Heron (version 0.17.1) and evaluate it with pro-
posed Streaming Benchmark Suite comprising five domain specific micro-bench-
marking topologies. To evaluate the proposed methodologies, We forcefully ingest 
tuple skewness among the benchmarking topologies in order to setup ground truth 
for predictions. From experiments, we found that accuracy of predicting performance 
of data streams increased upto 80.62% from 66.36% along with reduction of error 
from 37.14 to 16.06%. This shows that our MSL model outperform the state-of-the-
art DSK model and can be used in workload optimization, scheduling and resource 
management problems in distributed stream processing systems.
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