
Performance prediction of data streams
on high‑performance architecture
Bhaskar Gautam*  and Annappa Basava

Introduction
The specialized distributed real-time stream processing systems demand the underly-
ing system should able to adapt with increment in data volume, having heterogeneous
data sources. Along with the requirement of massive computational capabilities on
increasing data velocity, these specialized systems also insist that underlying frame-
work should provide highly scalable resources to achieve massive parallelism among
the processing logic components in a distributed computing nodes in a timely man-
ner and to facilitate fast recovery from hardware failures, stateless and stateful mech-
anism of processing logic components ensure low latency streaming. Among all
state-of-the-art specialized distributed stream processing framework Apache Storm
[1], Apache Flink [2], and Apache Spark have emerged as the de facto programming

Abstract 

Worldwide sensor streams are expanding continuously with unbounded velocity in
volume, and for this acceleration, there is an adaptation of large stream data processing
system from the homogeneous to rack-scale architecture which makes serious con-
cern in the domain of workload optimization, scheduling, and resource management
algorithms. Our proposed framework is based on providing architecture independent
performance prediction model to enable resource adaptive distributed stream data
processing platform. It is comprised of seven pre-defined domain for dynamic data
stream metrics including a self-driven model which tries to fit these metrics using ridge
regularization regression algorithm. Another significant contribution lies in fully-auto-
mated performance prediction model inherited from the state-of-the-art distributed
data management system for distributed stream processing systems using Gaussian
processes regression that cluster metrics with the help of dimensionality reduction
algorithm. We implemented its base on Apache Heron and evaluated with proposed
Benchmark Suite comprising of five domain-specific topologies. To assess the pro-
posed methodologies, we forcefully ingest tuple skewness among the benchmark-
ing topologies to set up the ground truth for predictions and found that accuracy of
predicting the performance of data streams increased up to 80.62% from 66.36% along
with the reduction of error from 37.14 to 16.06%.

Keywords:  Apache Heron, Stream benchmark suite, Performance prediction,
Performance behavior, High performance computing, Regression, Clustering, Data
streams

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Gautam and Basava ﻿
Hum. Cent. Comput. Inf. Sci. (2019) 9:2
https://doi.org/10.1186/s13673-018-0163-4

*Correspondence:
bhaskar.gautam2494@gmail.
com
Department of Computer
Science and Engineering,
National Institute
of Technology Karnataka,
Surathkal, India

http://orcid.org/0000-0002-3258-9927
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-018-0163-4&domain=pdf

Page 2 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

model which automatically take care of data and process distribution to achieve suf-
ficient task parallelism. More recent forays in low-latency distributed stream pro-
cessing, Google MillWheel [3] and Apache Heron [4] emerged as a successor to
all modern unbounded streams of continuous data processing systems and scale
transparently to large clusters which are most common among all stream process-
ing engines. Although there are similarities among components but they provide a
different mechanism such as tuples or buffers for message passing to provide high
throughput.

The emerging real-time distributed stream processing system’s Heron is built
from plethora of components named as Spout, Bolts, Topology Master, Stream
Manager and Metrics Manager which interacts in complex ways while running on
several containers to correlate with high velocity of data volume. These containers
are scheduled to run on a heterogeneous selection of multi-core nodes using large-
scale storage infrastructures. It also provides a framework to seamlessly integrate
with existing large data processing components named as Apache Hadoop Distrib-
uted File System, Apache REEF [5], Apache Mesos, Apache Aurora [6], Simple Linux
Utility for Resource Management (SLURM) and Google Kubernetes [7] but simul-
taneously makes it difficult to understand the performance behavior of underlying
applications and components. Traditional relational database management systems
performance complexities can be resolved using optimizers [8] but how to accu-
rately model and predict performance complexities in distributed stream process-
ing framework is quite challenging and has not yet been well studied. We address
this gap in this paper. These performance complexities arise due to huge variance
in workloads, elasticity, computation fluctuations and tuple serialization rate which
makes difficult to predict the behavior of data pipelined on distributed compo-
nents. Since predicting the dynamic performance of data stream will provide further
insight to a number of data management task including workload optimization [9],
scheduling [10] and resource management which help in reducing unnecessary over-
provisioning of resources through efficient prioritization of resource allocations in
the specialized distributed stream processing systems domain.

In this paper, we propose a novel architecture independent performance predic-
tion framework for text streaming in distributed stream processing platform run-
ning on top of OpenHPC systems. Specifically, we summarize our contribution to
the following:

•	 We provide domain specific metrics which were most relevant for streaming
platform running on top of high performance computing architecture because
existing methodologies only depicts about the big data processing and distrib-
uted database management framework.

•	 We provide performance behavior of streaming platform running on top of high
performance architecture.

•	 We transform state-of-the-art automated performance tuning module of distrib-
uted database management system to work for distributed streaming platform.

Page 3 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

•	 We propose a novel framework running on top of a streaming platform using lin-
ear least squares with L2 regularization to recommend a plausible performance
for the stream of individual topology.

•	 To validate and evaluate the proposed framework, we implemented on an emerg-
ing processing system, Apache Heron.

The remainder of this paper is structured as follows: in “Background” section, we
present the adequate background for the entire paper. “Design and implementa-
tion of proposed framework” section presents the methodology followed by an
overview of the proposed framework. “Experimental evaluation” section presents
the evaluation and results while comparing with all proposed models. In “Related
work” section, all related literature are discussed and finally, the paper concludes in
“Discussions and conclusions” section with addressing some of the conceivable used
cases.

Background
A standard stream processing framework running on high performance computing
cluster is the one where every component is running on computing nodes, an exem-
plary architecture described in Fig. 1. The processing representation of the continuous
progression of tuples, streams we model it into a directed acyclic graph (DAG). These
acyclic graphs are well known as topology in heron and have the capacity for process-
ing of these tuples with ∞ number of times which eventually depends on the availabil-
ity of tuples. Topologies in heron comprise three basic processing logic components
(PLU) labeled as spout, bolt and edging bolt. The source processing component, spout
read tuples potentially from the outsourced stream publisher-subscriber system (here,
Apache Pulsar [11]) and seeds tuples into a contemporary graph having count zeros in-
degree. The tuple processing component, bolt parse the seeded tuple with user-defined
processing logic and later, seed the processed tuple into a contemporary graph such that
in-degree ≥ 1 and out-degree ≥ 1 to maintain the stream processing pipeline. Similarly,
edging bolt or sink processing component parses the seeded tuple with user-defined
processing logic and later, seed the processed tuple into outsourced storage such that in-
degree ≥ 1 and out-degree ⇐ 0 to maintain the stream processing pipeline. The vertices
in the logical plan of topology represent nodes of contemporary graph and direction of
these vertices represents the progression of these tuples whole scenario is elaborated in
Fig. 1. These processing logic component instances packed into a containerized process,
Heron Instance which can able to execute as many parallel tasks on multiple containers
hosted on either single or multiple computing nodes. These user-defined topologies are
distributed to the cluster through one of the scalable mechanism named as Hadoop File
System, Local File System, and Lustre File Systems.1 Dynamically, the efficiency of con-
temporary topologies is maintained using the back-pressure mechanism [12] for spout
and bolt respectively maintained through Topology Master. Tuples in this framework are
generally composed of the message with the encoded meta-attributes object. Heron has

1  http://www.lustr​e.org.

http://www.lustre.org

Page 4 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

six ways of grouping the tuples among contemporary processing component described
as follows:

•	 Fields grouping: The progression of tuples is transmitted to those processing logic
components comprised of similar meta-attribute value.

•	 Global grouping: The progression of tuples is transmitted to single instance having
lowest encoded meta-attribute value.

•	 Shuffle grouping: The progression of tuples is randomly distributed to distinct
instances while ensuring uniform distribution.

•	 None grouping: Till now, having similar functionality as shuffle grouping.
•	 All grouping: The progression of tuples distributed to all corresponding processing

components.
•	 Custom grouping: The progression of tuples distributed to corresponding processing

components as defined by the user.

Heron has gathered a results in following two ways described as follows:

•	 Sliding window: Tuples in a stream are grouped together to form windows that can
be overlap either on the basis of time duration or on number of operation performed.

•	 Tumbling window: Tuples in a stream are grouped together to form non-overlapping
window either on the basis of time duration or on number of operation performed.

A distributed stream data processing system consist of master node that serves as the
topology life cycle management unit and helps in transformation of logical plan into

Topology Master

Omnipath Interconnect Network | Lustre Parallel File System | Slurm Scheduler

Metrics Manager

Heron
Instance

Stream
Manager

Heron
Instance

Container

Metrics Manager

Heron
Instance

Stream
Manager

Heron
Instance

Container

High Performance Data Streaming Cluster

1,
2,

3,
.,1

, 2
, 3random floats

multiply one

Unify Streams

remove three

Logical Plan

remove two

Sink

Source

Fig. 1  The exemplary architecture of a high performance data stream processing system

Page 5 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

physical plan which are analogous to a database query plan [13] using state-of-the-art
bin packing algorithm. Inspired from microkernel based architecture, it share these
plans to the SLURM scheduler which further assign the task to specific compute nodes
as per the physical plan of a topology. The scheduling solution leads to almost even dis-
tribution among all containers which assign a task to instances in a round-robin manner.

Design and implementation of proposed framework
In this section, we describe the overview of design and implementation details of the
proposed framework.

Overview

Our proposed benchmark suite allows to inject various data loads into heron stream
data processing systems and collect dynamic metrics which helps to estimate runtime
performance of data streams in streaming topology. The overall architecture is presented
in Fig. 2 and comes with modules such as Metrics Pipeline, Data Enrichment, Metrics
Classification, Data Grid, Data Stream Performance Prediction Model and Benchmark
Suite. It consists of five stream processing benchmark topologies to cover wide domains
with help of CPU Intensive topologies, Memory Intensive topologies, Network Inten-
sive topologies and Scheduler Intensive topologies. Conceptually, each benchmarking

Heron Topology Master
(System Management Server)

Topologyx Compute
Node y1

Topology
Processes

Metrics Pipeline

Data Streaming Performance
Prediction Model

D
at

a
Lo

ad
s

B
en

ch
m

ar
k

S
ui

te

Omni-Path High Performance Interconnect

Topology
Processes

Topologyx Compute
Node yn

Topology
Processes

D
at

a
E

nr
ic

hm
en

t
Tr

ig
ge

r
D

at
a

G
rid

M

et
ric

s
C

la
ss

ifi
ca

tio
n

C
PU

 In
te

ns
iv

e
| M

em
or

y
In

te
ns

iv
e

| N
et

w
or

k
In

te
ns

iv
e

| S
ch

ed
ul

er
 In

te
ns

iv
e

Topologyx Compute
Node yn-1

Fig. 2  An overview of the incremental performance prediction framework where lightly shaded region
represents the performance advisor model flow

Page 6 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

topology implements services running on a high performance stream data processing
cluster where each service has several types of requests issued by users.

Performance metrics classification

There is no single metric exists till the time of writing paper based on which we evaluate
overall performance of big data system which is almost the same problem discussed in
[14]. In this section, we are classifying all existing metrics into seven different categories
which helps in deeper visualization of strength and weakness of entire big data process-
ing systems discussed in following section.

Memory metrics

Heap memory Running topology in containerized environment contains another layer of
abstract execution environment on top of hardware virtualization over a physical host-
ing platform and sharing these hardware resources along with memory among multiple
Java virtual machines (JVMs) ends up with the unpredictable memory demands as dis-
cussed in [15].

To consider such memory behavior, the percentage of Heap Available metric is com-
puted using the total amount of heap memory free divided by total amount of heap
memory available in terms of megabytes.

Garbage collection time The total accumulated milliseconds time spent by the garbage
collector managed bean (MBean) [16] to find and reclaim unreachable objects to free up
memory space per minute known as garbage collection time ( GCTime).

Alternatively, GCTime defined as the total accumulated time spent to determine the num-
ber of reachable objects ( α ), count of unreachable objects ( β ) and time to free up mem-
ory space in a milliseconds window frame ( γ).

n‑Verticals metrics

Thread share The total actively running live threads are simultaneously made request for
the services in the same container at the given instance of time. These accumulated run-
ning threads also comprising of background supporting task which are fulfilled by daemon
threads.

A total number of active threads (non-daemons) count at the given time can be evalu-
ated as modulus subtraction of numbers of active threads with a number of active dae-
mon threads running. Later, fraction with total active thread which is known as thread
share.

(1)Heap available (%,mb) =
Heap free

Heap total
× 100

(2)GCTime = α + β + γ

(3)Threads share% =
|Active_Threads − Daemons|

Active threads
× 100

Page 7 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

CPU load The allocated cores which are actively running process (p) for x duration of
time from the recent period being observed are termed as CPU Load of containerized
process.

Alternatively, process CPU load is defined as a product of current process CPU load
with the number of allocated cores to the topology. And the range of such java virtual
machine variable count lies between 0 and 1. Hence, the percentage of core idle is related
to the processing load and is defined as the complement of process load.

Communication metrics

Back pressure The total accumulated time spent by an instance under back-pressure.

We measure back-pressure (BP) time [17] in terms of milliseconds per minute which
includes TCP back-pressure ( θ1 ), spout back-pressure ( θ2 ) and stage-by-stage back-pres-
sure ( θ3 ) as heron internal includes both back-pressure initiated by self and others.

Computation metrics

Execute latency The execution latency is the latency it acquired to process a user-defined
logic on windowed incoming tuples of a topology.

Scheduler metrics

Uptime The total computation time allocated to a process on which Java virtual machine
is running, once shortlisted by the short-term scheduler. In rest of the paper, we keep
nanoseconds as a unit of measurement in metrics pipeline module .

Among all the selected metrics, containerized configuration as a cost metrics (RAM,
CPU, Disk usage) and input-output as a cost metrics (emit count, fail count, acknowl-
edgement count) are some of the widely selected features on most state-of-the-art sys-
tems. A data-center system such as IBM Cloud Private [18], reports the performance
of worker nodes to the master node in terms of CPUs, GPUs usage, and overall RAM
utilization. Moreover, auto-scaling of running application totally depends on consump-
tion of these contemporary components. Poggi et al. [19] also includes these system con-
figuration metrics to report resource consumption based on the query to have a overall
insight of cluster.

Data streaming performance prediction model

Regression algorithms are best candidate to perform prediction of any component in
terms of latency. Since this problem is dealing with densely populated high-dimen-
sional input data but only having continuous attributes, which makes it appropriate
to apply parametric ridge regularization regression algorithms. The non-parametric
regression algorithm such as support vector regression algorithms ( ǫ-SVR, nu-SVR)
also be the good candidate as it has less memory overhead in comparison with ridge
regularization regression algorithm (label them as MSL in rest of the paper) but it

(4)Core idle% = (1− Process_Load)× 100

(5)BPTime = θ1 + θ2 + θ3

Page 8 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

outperforms the SVR with respect to all the three validation metrics as shown in
Table 1 for each distinct types of cluster discussed in “Environmental setup” section.
We compare the performance of these regression models using various measures
such as mean squares of the deviations, square root of the arithmetic means of imper-
fection measure, mean absolute error and coefficient of determination as described
in Table 1. We also used cross-validation (k = 10) for various selections of kernel and
the result depicts that Ridge regularization regression algorithm outperforms the lin-
ear kernel, the polynomial kernel, the radial basis function kernel and the sigmoid
kernel for each ǫ-SVR and nu-SVR.

To compare the efficiency of proposed model (label as DKL in rest of paper), we
use well-studied technique for regression problem used in most performance tun-
ing module of Distributed Database Management System. The dimensions of all the
dynamic metrics are reduced using state-of-the-art dimensionality reduction tech-
nique called Factor Analysis. It transform the high dimensional stream processing
systems dynamic metric data into lower dimensional data. Based on our experiments,
we found that only the initial factors are most significant for our prediction frame-
work due to existence of major influenced metrics distribution. To find out the highly
influential metrics, we use k-means clustering algorithm to cluster this lower dimen-
sional data using each row as its feature metrics and, keep a single metric from each
cluster (one which were nearest to the centroid of a cluster). Finally, we use Gaussian
processes regression to recommend performance of data streams with help of top k
dynamic metrics of stream data processing system.

Table 1  Comparison of regression algorithm with respect to three evaluation metrics
(with cross validation k = 10) performed on (i) Cluster-I, (ii) Cluster-II and (iii) Cluster-I
and II

C-I, Cluster-I; C-II, Cluster-II; C-III, Cluster-I and Cluster-II

Italic values indicate the significance of various regression techniques (a minimum value of error within clusters)

Regressions Cluster MSE RMSE MAE R2

Lasso regression C-I 68.9297 8.0056 5.9667 0.9807

Lasso regression C-II 58.4858 7.5675 5.3386 0.963

Lasso regression C-III 42.481 6.518 4.649 0.99

Ridge regression C-I 66.7715 8.1146 5.8574 0.9813

Ridge regression C-II 55.2465 7.3488 5.2273 0.9663

Ridge regression C-III 40.433 6.359 4.546 0.991

Elastic net regression C-I 69.1028 8.0056 5.9757 0.9805

Elastic net regression C-II 60.7171 7.6966 5.3623 0.9618

Elastic net regression C-III 42.578 6.525 4.693 0.99

ǫ-SVR linear kernel C-I 316.88 8.1301 13.7762 0.9113

ǫ-SVR linear kernel C-II 298.6252 16.7423 13.3822 0.813

ǫ-SVR linear kernel C-III 126.669 11.255 9.044 0.971

nu-SVR linear kernel C-I 227.4365 17.0608 11.7427 0.9331

nu-SVR linear kernel C-II 214.9223 14.2851 10.9677 0.8661

nu-SVR linear kernel C-III 132.333 11.502 9.289 0.969

Page 9 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

Metric pipeline

The function of metrics pipeline is to keep running as multiple threads throughout
the live compute nodes in the cluster. When tuples arrives from one component of
topology, the entire dynamic metrics are recorded with a encoded meta-attribute ID
and timestamp. Then the tuple will be processed and stream the aggregate metrics to
adjoint component, while entire dynamic metrics are again recorded by the metric
pipeline along timestamp including tuple ID.

Suppose there are total of t topologies and at any given time, maximum n nodes are con-
sumed up by topology tt1 . Therefore, during a time frame tthread are maximum threads
running as shown in Eq. 6.

Data enrichment

The Data Enrichment converge all tuples record into new record having all dynamic
metrics with help of unique tuple ID and timestamp. After concatenation, all the
missing values are replaced with mean of entire column since all dynamic metrics
record contains sparse data and distributed data storage termed as Data Grid.

Experimental evaluation
In this section, we provide the brief overview of benchmark suite used in the evalua-
tion of proposed framework followed by a glimpse of experimental setups. The bench-
mark topologies form a data pipeline using open-source distributed pub-sub messaging
system Apache Pulsar [11] to consume text streams generated by parallel synthetic data
load generator. The input streams are the tuples which are generated using Alice’s
Adventures in Wonderland2 text file and the spout consume the data streams later emits
into topology through subscription to pulsar topic.

Environmental setup

We perform the evaluation of the proposed performance modeling framework over
Apache Incubator Heron 0.17.1 release [4] on top of Centos Linux 7. Entire methodolo-
gies are evaluated based on their performance on two different clusters having heteroge-
neous architectures. The Cluster 1 consists of 19 Intel Xeon E5-2683 v4 nodes running
at 2.10 GHz. Each compute cores has 128 GB RAM and 64 cores (2 sockets × 16 cores
each with SMTP value of 2). The Cluster 2 consists of 12 many integrated core nodes
named as Intel Knights Landing Xeon Phi 7250 running at 1.4 GHz where each KNL
node composed of 64 GB and 16 GB MCDRAM having 72 cores each. Each computing
node from the cluster is interconnected with NL-SAS Directed attached storage of 108
TB along with 100 Gbps Omni-Path fabric interconnect network for data and 1 Gbps
Ethernet network for management which helps in maintaining overall cluster stability.
Five different domain representative topologies were implemented and deployed. The

(6)tthread = max
1≤j≤t

(n× tj)

2  http://www.guten​berg.org/files​/11/11-pdf.pdf.

http://www.gutenberg.org/files/11/11-pdf.pdf

Page 10 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

latency including throughput is measured during changes in number of parallel task and
system performance.

Benchmark suite

Grep count directed acyclic graph (GC‑DAG)

The four stage topology widely known as a application of MapReduce. Their structure
is alike to a chain of components comprised of three bolts and one spout as shown in
Fig. 3 and it operates at the level of sentences with a maximum length of 119 char-
acters. The spout is connected with the uni-gram bolt which convert texts into uni-
gram tokens. These tokens are fed into Identify Keyword bolt which looks for keyword
defined by a user. The Keyword Count bolt make a count for the presence of uni-gram
in a tuple and store all results into a single file database3 using field grouping. In the
experiments, the processing logic components was set to have thirteen stream man-
agers comprising of one spout executors, four uni-gram bolt executors, four Identify
Keyword executors and four Keyword Count executors.

GEneral matrix to matrix multiplication directed acyclic graph (GEMM‑DAG)

The three-stage topology structure is alike to a chain of components comprised of three
parallel bolts and one spout as shown in Fig. 4. To evaluate our framework, micro-
benchmark topology operates at the level of sentences with a maximum length of 20
words. The purpose of this topology is to have a performance profile of data process-
ing platform during computation of CPU intensive operation on data stream along with
deep learning model operations and matrix multiplication are the best candidate in
such domain. Since performance of such operation varies due to dependency on size of
matrices and kernel implementation along with the type of bound which can be com-
puted, bandwidth and occupancy bound. Surprisingly, the way these models are utilized
in practice are diverse as the optimization space for hardware and software targeting
deep learning is large and underspecified [20–22]. The spout is connected with two par-
allel bolts named as Matrix A and Matrix B which generates the matrix based on tuples
received from the spout. These bolts generates a sparse matrix of certain user defined
size based on the tuples they received from bolts and the presence of common words
among two tuples. These matrices are fed into the GEMM bolt which performs the mul-
tiplication operation after receiving matrices from both tuples. The results are stored

uni-gramSpout
Identify

Keyword
Keyword

Count

A
pa

ch
e

P
ul

sa
r

D
at

a
Lo

ad
G

en
er

at
or

Fig. 3  Micro-Benchmark. A keyword search topology

3  http://www.sqlit​e.org.

http://www.sqlite.org

Page 11 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

into a single file database (see footnote 3) using shuffle grouping and tumbling window.
In the experiments, the processing logic components configured to have twelve stream
managers comprising of one spout executor, six matrix A executors, six matrix B execu-
tors and ten GEMM executors each perform operation on matrix of size 1048 with value
of BLAS α ∈ 1 and BLAS β ∈ 0.

Unique sort acyclic graph (US‑DAG)

The four stage topology structure is alike to a chain of components having five bolts
including two adjacent parallel bolts and two parallel spouts as shown in Fig. 5. To evalu-
ate our framework, micro-benchmark topology operates at the level of sentences with
a maximum length of 30 words. The purpose of this topology is to have a performance
profile of data processing platform during computation of memory intensive operation
on data streams and sorting algorithms are the best candidate for memory intensive
computation. Since performance of such operation varies due to dependencies on size
of inputs and kernel implementation along with the type of stableness it achieve. The
spout is connected with bolt named as Unique A which transforms into tuples contain-
ing unique words based on tuples received from the spout. These transformed are fed
into bolt named as Sort A which sort these tuples using standard merge sort algorithms
which itself has O(n) space complexity. Lastly, sorted tuples are merged into a single
stream and stored into a single file database (see footnote 3) using shuffle grouping. The
experiments conducted with 16 stream managers comprising of one spout executor,
twenty two unique A executors, twelve sort A executors and five merge bolt executors.

A
pa

ch
e

P
ul

sa
r

D
at

a
Lo

ad
G

en
er

at
or

Spout GEMM Matrix A Matrix B

Fig. 4  Micro-Benchmark. A GEneral matrix to matrix multiplication topology

Unique A

Spout B

Spout A

Unique B

Sort A

Merge

Sort B

Apache Pulsar

DataLoad Generator

Fig. 5  Micro-Benchmark. A unique sort topology

Page 12 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

Speed of light compute directed acyclic graph (SOL‑DAG)

The two stage topology has a chain-like structures with a group of bolts and a spout as
shown in Fig. 6. To evaluate our framework, micro-benchmark topology operates at the
level of sentences with a user-defined length of words. The purpose of this topology is
to have a performance profile of data processing platform during computation of net-
work intensive operations on data streams and fast tuples consumption algorithms are
the best candidate for network intensive computation with varying message size. Since
performance of such algorithms varies due to presence of number of bolts, message size
and bandwidth used to interconnect these components running on distributed compute
nodes. The spout is connected with the user-defined count of bolts termed as Emit 1 and
reach till Emit (n − 1). The goal of this topology is to have a performance trace of net-
work therefore we try to keep as minimum computation as can. Lastly, emitted counts
are stored into a single file database (see footnote 3) using shuffle grouping. The experi-
ments conducted with 19 stream managers comprising of one spout executor, sixty emit
n executors.

Speed of light sleep directed acyclic graph (SOLS‑DAG)

The three-stage topology structure is alike to a chain of components having two groups
of bolts and spout as shown in Fig. 7. To evaluate our framework, micro-benchmark
topology operates at the level of sentences with a fixed length of words. The purpose of
this topology is to have a performance profile of data processing platform during com-
putation of scheduler intensive operation on data streams and placing a bolt into an idle
state for fixed quanta of time, which makes it a best candidate for scheduler intensive
computations. Most state-of-the-art big data systems scheduler has the capability to
integrate with existing version of heron and provide state-of-the-art computation solu-
tions but how effectively it copes with the system calls at runtime totally depends on

Spout

A
pa

ch
e

P
ul

sa
r

D
at

a
Lo

ad
G

en
er

at
or

Emit nEmit 1 Emit (n-1)

Fig. 6  Micro-Benchmark. A speed of light compute topology

Spout

A
pa

ch
e

P
ul

sa
r

D
at

a
Lo

ad
G

en
er

at
or

Sleep 1 Sleep n Emit nEmit 1

Fig. 7  Micro-Benchmark. A speed of light compute sleep topology

Page 13 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

the scheduler being used. Although there is a assurance of minimum time duration but
there is not strict assurance in executing the contemporary thread immediately. How
these knobs are utilized in practice can be diverse since the optimization space is large
and underspecified because these assurance is dependent on thread priorities and
scheduler’s decision. The spout is connected with the user-defined count of bolts termed
as Sleep 1 and reach till Sleep (n − 1). Tuples from these bolts are fed into groups of bolts
termed as Emit 1 and reach till Emit (n − 1). The goal of this topology is to have perfor-
mance traces of scheduler which inspire us keep to keep minimum processing logic at
the contemporary components. Lastly, emitted counts are stored into a single file data-
base (see footnote 3) using shuffle grouping. In the experiments, heron cluster is config-
ured with 16 stream managers comprised with one spout, ten sleep bolt executor with a
parallelism of eight and ten emit bolt with a parallelism count one.

Results and inferences

In this section, we describe the brief experimental results of the five benchmark topol-
ogies in “Experimental evaluation” section. These are based on three commonly used
metrics Average Accuracy Rate over a fixed quanta of time (here, 60 s).

Average error rate over a fixed quanta of time (here, 120 s) and evaluated using (100—
accuracy) and Overall Execution Latency comprised of default and estimated execu-
tion latency of processing logic units over 20 min window frame. In the corresponding
Figs. 8, 9, 10, 11 and 12 , “PL-SNumber”, “SNumber–PNumber”, “PNumber-Sq” and
“Overall” resembles to the predicted accuracy, predicted error rate of tuple transmission
latency among pulsar processing component and spout, spout and bolt, bolt and bolt,
bolt and SQLite edging bolt after stabilization respectively. From these experimental
norms, we can make the following observations.

GC‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 8. The
average prediction accuracy rate of individual processing logic components are shown
in Fig. 8a that varies from 99.91% (among the source component and uni-gram com-
ponent) to 88.45% (at keyWord Count component) for MSL model. The performance
assessment of contemporary models would be interesting in presence of unpredict-
able workload variation. To represent dynamic behavior we forcefully ingest skewness
in the processing of user-defined components by restricting the parallelism count
to be four. Due to dynamic variations in process unit metrics, the available metrics
are far enough to cover all possible values; thus it reduces the predictive accuracy of
topology to 90.90%, which is slightly higher than individual accuracy rates. Surpris-
ingly, for model DKL prediction accuracy rate of individual processing logic compo-
nents varies from 99.65% (among the source component and uni-gram component)

(7)Accuracy = 100− absolute

[

Estimated − Actual

Actual

]

∗ 100

Page 14 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

to 4.585% (at keyWord count edging component). The presence of sparse attributed
metrics leads to 29.89% reduction in prediction accuracy which is slightly lesser than
prediction accuracy of individual processing component. Later, based on the experi-
mental conclusion we found that discussed accuracy is much lower than overall accu-
racy achieved through MSL performance model. The average prediction error rates
vary from 11.54% (among the source and uni-gram component) to 11.96% (at key-
Word count component) and 0.348% (among the source and uni-gram component) to
95.84% (at keyWord count edging component) for MSL and DKL models respectively
as shown in Fig. 8b. Even though DKL prediction model achieves an average accuracy
of 29.89% but overall how it actually performs when its estimated latencies are com-
pared with default dynamic latencies along the latencies estimated with MSL model
are shown in Fig. 8c, d for a regular time frame of 20 min for spouts and bolts compo-
nents respectively. Moreover, the default normalized dynamic execution latencies of
bolts is much lower than the normalized estimated execution latencies of DKL pre-
diction model as shown in Fig. 8d. However, as shown in Fig. 8c there is no significant

PL-S1 S1-P1 P1-P2 P2-P3 P3-Sq

70

80

90

100

Processing Logic Units

A
v
e
ra

g
e

A
c
c
u
ra

c
y

ra
te MSL DKL

(a)

PL-S1 S1-P1 P1-P2 P2-P3 P3-Sq

0

50

100

Processing Logic Units

A
v
e
ra

g
e

P
re

d
ic

ti
o
n

E
rr

o
r

ra
te

MSL DKL

(b)

5 10 15 20

0.5

1

1.5

2
·104

Execution Time

A
v
e
ra

g
e

E
x
e
c
u
ti
o
n

L
a
te

n
c
y
(n

s)

Actual MSL DKL

(c)

5 10 15 20

500

1,000

1,500

2,000

Execution Time

A
v
e
ra

g
e

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(d)
Fig. 8  Performance behavior of a GC-DAG topology over three metrics, a Represents the average accuracy
rate corresponding to the groups of various processing logic units. b Represents the average prediction
error rate corresponding to the groups of various processing logic units. c Represents the average execution
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average
execution latency of various bolts for a regular execution time frame of 20 minutes

Page 15 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

difference among default and estimated normalized dynamic execution latencies of
spouts.

GEMM‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 9. The
average prediction accuracy rate of individual processing logic components are
shown in Fig. 9a that varies from 99.74% (among the source component and matrix
component) to 86.10% (at GEMM component) for MSL model. The performance
assessment of contemporary models would be interesting in presence of unpredict-
able workload variation. To represent dynamic behavior we forcefully ingest skewness
in the processing of user-defined components by restricting the parallelism count to
be six. Due to dynamic variations in process unit metrics, the available metrics are far
enough to cover all possible values; thus it reduces the predictive accuracy of topol-
ogy to 70.41%, which is slightly higher than individual accuracy rates. Surprisingly,
for model DKL prediction accuracy rate of individual processing logic components
varies from 90.03% (among the source component and matrix component) to 67.69%
(at GEMM edging component). The presence of sparse attributed metrics leads to

(a) (b)

(c) (d)
Fig. 9  Performance behavior of a GEMM-DAG topology over three metrics, a Represents the average
accuracy rate corresponding to the groups of various processing logic units. b Represents the average
prediction error rate corresponding to the groups of various processing logic units. c Represents the average
execution latency of various spouts for a regular execution time frame of 20 minutes. d Represents the
average execution latency of various bolts for a regular execution time frame of 20 minutes

Page 16 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

66.18% reduction in prediction accuracy which is slightly lesser than prediction accu-
racy of individual processing component. Later, based on the experimental conclu-
sion we found that discussed accuracy is much lower than overall accuracy achieved
through MSL performance model. The average prediction error rates vary from 0.25%
(among the source and matrix component) to 29.58% (at GEMM component) and
9.96% (among the source and matrix component) to 32.30% (at GEMM edging com-
ponent) for MSL and DKL models respectively as shown in Fig. 9b. Even though DKL
prediction model achieves an average accuracy of 66.181 percent but overall how it
actually performs when its estimated latencies are compared with default dynamic
latencies along the latencies estimated with MSL model are shown in Fig. 9c, d for a
regular time frame of 20 min for spouts and bolts respectively. Moreover, the default
normalized dynamic execution latencies of spouts is much lower than the normalized
estimated execution latencies of DKL prediction model as shown in Fig. 9c. However,
as shown in Fig. 9d there is no significant difference among default and estimated
normalized dynamic execution latencies of bolts.

PL-S1 P1-Sq

70

80

90

100

Processing Logic Units

A
v
e
ra

g
e

A
c
c
u
ra

c
y

ra
te

(1
m

)

MSL DKL

(a)
PL-S1 P1-Sq

0

10

20

30

Processing Logic Units

A
v
e
ra

g
e

P
re

d
ic

ti
o
n

E
rr

o
r

ra
te

(2
m

)

MSL DKL

(b)

5 10 15 20

1

2

3

4

5
·104

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y
(n

s)

Actual MSL DKL

(c)

5 10 15 20

500

1,000

1,500

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(d)
Fig. 10  Performance behavior of a SOL-DAG topology over three metrics, a Represents the average accuracy
rate corresponding to the groups of various processing logic units. b Represents the average prediction
error rate corresponding to the groups of various processing logic units. c Represents the average execution
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average
execution latency of various bolts for a regular execution time frame of 20 minutes

Page 17 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

SOL‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 10. The
average prediction accuracy rate of individual processing logic components are shown
in Fig. 10a that varies from 93.85% (among the source component and emit component)
to 91.73% (at emit component) for MSL model. The performance assessment of con-
temporary models would be interesting in presence of unpredictable workload variation.
To represent dynamic behavior we forcefully ingest skewness in the processing of user-
defined components by restricting the parallelism count to be one. Due to dynamic vari-
ations in process unit metrics, the available metrics are far enough to cover all possible
values; thus it reduces the predictive accuracy of topology to 92.79%, which is slightly
lower than individual accuracy rates. Surprisingly, for model DKL prediction accuracy
rate of individual processing logic components varies from 99.99% (among the source
component and emit component) to 69.63% (at emit edging component). The presence
of sparse attributed metrics leads to 84.81% reduction in prediction accuracy which is
slightly lesser than prediction accuracy of individual processing component. The average
prediction error rates vary from 6.76% (among the source and emit component) to 9.85%
(at emit component) and 0.01% (among the source and emit component) to 73.81% (at

PL-S1 S1-AvS AvS-AB AB-Sq

40

60

80

100

Processing Logic Units

A
v
e
ra

g
e

A
c
c
u
ra

c
y

ra
te MSL DKL

(a)

PL-S1 S1-AvS AvS-AB AB-Sq

0

20

40

60

Processing Logic Units

A
v
e
ra

g
e

P
re

d
ic

ti
o
n

E
rr

o
r

ra
te

MSL DKL

(b)

5 10 15 20

1

2

3
·104

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(c)

5 10 15 20

2,000

4,000

6,000

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(d)
Fig. 11  Performance behavior of a SOLS-DAG topology over three metrics, a Represents the average
accuracy rate corresponding to the groups of various processing logic units. b Represents the average
prediction error rate corresponding to the groups of various processing logic units. c Represents the average
execution latency of various spouts for a regular execution time frame of 20 minutes. d Represents the
average execution latency of various bolts for a regular execution time frame of 20 minutes

Page 18 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

emit edging component) for MSL and DKL models respectively as shown in Fig. 9b. The
MSL model on an average perfectly estimate the default dynamic latencies but scenario
are very different for model DKL as shown in Fig. 10c, d. Moreover, the default normal-
ized dynamic execution latencies of spout is almost similar with DKL and MSL predic-
tion model observations but there exist significant deviation in 15–20 min range which
can be negligible since difference is very minute as shown in Fig. 10c. However, there
exists significant difference as shown in Fig. 10d among default and estimated normal-
ized dynamic execution latencies of bolts with DKL prediction model over a duration of
20 min.

SOLS‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 11. The
average prediction accuracy rate of individual processing logic components are shown in
Fig. 11a that varies from 93.38% (among the source component and sleep component) to
34.40% (at emit component) for MSL model. The performance assessment of contempo-
rary models would be interesting in presence of unpredictable workload variation. To rep-
resent dynamic behavior we forcefully ingest skewness in the processing of user-defined

PL-S1 S1-P1 P1-P2 P2-P3 P3-Sq

70

80

90

100

Processing Logic Units

A
v
e
ra

g
e

A
c
c
u
ra

c
y

ra
te

(1
m

)

MSL DKL

(a)

PL-S1 S1-P1 P1-P2 P2-P3 P3-Sq

0

20

40

Processing Logic Units

A
v
e
ra

g
e

P
re

d
ic

ti
o
n

E
rr

o
r

ra
te

(2
m

)

MSL DKL

(b)

5 10 15 20

1

2

3

·104

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(c)

5 10 15 20

1,000

2,000

3,000

Execution Time

N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n

L
a
te

n
c
y

(n
s)

Actual MSL DKL

(d)
Fig. 12  Performance behavior of a US-DAG topology over three metrics, a Represents the average accuracy
rate corresponding to the groups of various processing logic units. b Represents the average prediction
error rate corresponding to the groups of various processing logic units. c Represents the average execution
latency of various spouts for a regular execution time frame of 20 minutes. d Represents the average
execution latency of various bolts for a regular execution time frame of 20 minutes

Page 19 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

components by restricting the parallelism count to be eight and one respectively. Due to
dynamic variations in process unit metrics, the available metrics are far enough to cover
all possible values; thus it reduces the predictive accuracy of topology to 69.46%, which is
slightly lower than individual accuracy rates. Surprisingly, for model DKL prediction accu-
racy rate of individual processing logic components varies from 92.29% (among the source
component and sleep component) to 31.72% (at emit edging component). The presence of
sparse attributed metrics leads to 66.12% reduction in prediction accuracy which is slightly
lesser than prediction accuracy of individual processing component. The average predic-
tion error rates vary from 1.55% (among the source and sleep component) to 48.05% (at
emit component) and 7.52% (among the source and emit component) to 58.72% (at emit
edging component) for MSL and DKL models respectively as shown in Fig. 11b. The MSL
model on an average perfectly estimate the default dynamic latencies but scenario are very
different for model DKL as shown in Fig. 11c, d. Moreover, the default normalized dynamic
execution latencies of spout is almost similar with DKL and MSL prediction model obser-
vations but there exist significant deviation in 0–20 min range which can’t be negligible as
shown in Fig. 11c with observations of DKL model. However, similar observation exists
with bolts but there exists a huge variations among DKL and MSL prediction model com-
paring with default normalized execution latencies as shown in Fig. 11d over a range from
0 to 20 min.

US‑DAG topology

The experimental conclusion of the contemporary graph is delineated in Fig. 12. The
average prediction accuracy rate of individual processing logic components are shown in
Fig. 12a that varies from 95.37% (among the source component and unique component)
to 70.30% (at merge component) for MSL model. The performance assessment of contem-
porary models would be interesting in presence of unpredictable workload variation. To
represent dynamic behavior we forcefully ingest skewness in the processing of user-defined
components by restricting the parallelism count to be 12, 22 and 5 respectively. Due to
dynamic variations in process unit metrics, the available metrics are far enough to cover
all possible values; thus it reduces the predictive accuracy of topology to 79.56%, which is
slightly higher than individual accuracy rates. Surprisingly, for model DKL prediction accu-
racy rate of individual processing logic components varies from 97.35% (among the source
component and unique component) to 65.53% (at emit merge component). The presence of
sparse attributed metrics leads to 84.82% reduction in prediction accuracy which is slightly
lesser than prediction accuracy of individual processing component. The average predic-
tion error rates vary from 6.34% (among the source and unique component) to 26.60%
(at merge component) and 2.11% (among the source and unique component) to 8.43% (at
merge edging component) for MSL and DKL models respectively as shown in Fig. 12b. The
DKL model on an average perfectly estimate the default dynamic latencies but scenarios
are very different for model MSL as shown in Fig. 12c, d. Moreover, the default normal-
ized dynamic execution latencies of spouts is almost similar with MSL and DKL prediction
model observations but there is small deviation among latencies in MSL observations com-
paring with default observations as shown in Fig. 12c. Unfortunately, there exists a huge
variations among default normalized dynamic latencies and normalized latencies of MSL
prediction model as shown in Fig. 12 d over a range from 2.5 to 20 min.

Page 20 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

Related work
We provide a comprehensive review of the organization and the community-contributed
application workload driven benchmark in this section. It also includes the brief over-
view of crucial research efforts made on several state-of-the-art performance prediction
models in the domain of specialized and generalized big data processing systems.

Big data system benchmarking: inferences and metrics

Karimov et al. [23] measure the performance of three state-of-the-art stream pro-
cessing framework over various events viz. joins, aggregations, queries over increased
windows size including presence of skewness in data, fluctuating workloads and back-
pressure with processing-time and event-time latency as a evaluation metric. Based on
the experimental analysis, author suggest favourable conditions for various framework.
Quan et al. [24] based on the conclusion with three distinct representatives systems pro-
posed that performance response on hardware fluctuates with the change in application
workload. This dynamic variation not only depends on characteristics of workload but
also on the amount of data underlying computing node processing. They also inferred
that there is strong performance relationship among the type of workload running on
which computing node. Han et al. [25] inferred that efficiently benchmarking the huge
data processing system provides accurate measuring of contemporary systems and five-
span of these systems are the most prerequisite important to sustain huge precisions.
They also introduce us with four further classifications about workload input data gen-
eration: ready-made datasets, a synthetic distribution based data generators, real-world
data based data generators and hybrid generators and also about two sub-branches of
benchmarks labeled as the micro and end-to-end benchmarks. Similarly, Han et al.
[26] authors categorized the whole system level evaluation metric into user-perceivable
metrics(how frequently it can collect streams) and architecture metrics (how frequently
it can respond to a streams). Similarly, Veiga et al. [27] using various batch and iterative
workloads evaluates overall performance on the basis of cluster size, Block size, Data
Size, Interconnect Network, Nodes Configuration and execution time on data center
system. Finally, Jia et al. [28] suggests benchmarking with single application will not be
enough to consider various domains of workload.

Big data system benchmarking: performance prediction model

Gupta et al. [29] proposed a theoretical performance prediction model for big data
processing system based on the new active data, historical data. And, with the help of
machine learning algorithms, it generates the metadata for new active data based and
determines the performance level of systems and configure the system based on the pre-
diction using metadata. The major drawback of such model is that they are based on a
static sampling of correlated data. Baru et al. [14] highlight the importance of applica-
tion-level-data benchmarks that are striving to cover all aspects of the application from
ingestion to analysis. Nikravesh et al. [30] provides the autonomic performance indicator
to support scaling in a cloud environment. Authors periodically sample the values from
time-series streams to correlate various workload pattern and accuracy of regression
algorithms viz. multi-layer perceptron. However, based on the experimental analysis the
performance model for stream processing framework exploiting multi-layer perceptron

Page 21 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

neural network not able to work well. The relevant variant to our work is proposed by
Li et al. [31]. Their proposed methodology entirely depends upon reinforcement learn-
ing. The complexity of their approach grows linearly with an increment in searchable
(action) space which makes it unfit for actual use and further discussion on predictable
performance are described here [32].

Discussions and conclusions
In our experiments, one of the most important contribution is the characterize trans-
formation of entire dynamic metrics into five distinct categorization named as mem-
ory metrics, n-Verticals, Communication metrics, Computation metrics and scheduler
metrics. These feature classification helps in precise behavior of entire model as shown
in “Results and inferences” section. Moreover, it can be inferred from experiment
described in “SOL-DAG topology” section that the correct combination of number of
stream managers, parallelism count and number or executors including state-of-the-
art resources available in computing node that helps in maintaining entire topology
health while processing of large streaming data and ends with resource requirement
problem for topology. In this work, we study the problem of predicting the perfor-
mance of data streams in distributed stream processing environment. We proposed a
design, methodology and evaluation of performance prediction framework aiming at
efficient, resource adaptive and high performance distributed streaming platform. The
framework comprising of six functional modules that includes metrics pipeline, data
enrichment, metrics classification, data grid, trigger and prediction model. The metrics
classification module categorize the dynamic topology metrics into seven predefined
class for better performance behavior analysis and data enrichment provides a solu-
tion for missing values if present. The data stream performance prediction module
comprise of two models: MSL and DKL. The self-driven MSL model tries fit classified
dynamic metrics using ridge regularization regression algorithm and fully-automated
DKL model inherited from the state-of-the-art workload management module from
distributed database management system for distributed stream processing systems.
We implemented its base on Apache Heron (version 0.17.1) and evaluate it with pro-
posed Streaming Benchmark Suite comprising five domain specific micro-bench-
marking topologies. To evaluate the proposed methodologies, We forcefully ingest
tuple skewness among the benchmarking topologies in order to setup ground truth
for predictions. From experiments, we found that accuracy of predicting performance
of data streams increased upto 80.62% from 66.36% along with reduction of error
from 37.14 to 16.06%. This shows that our MSL model outperform the state-of-the-
art DSK model and can be used in workload optimization, scheduling and resource
management problems in distributed stream processing systems.
Authors’ contributions
BG conducted the experiments, analyzed the results and drafted the document. AB provided valuable suggestions on
improving the standards of the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Page 22 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

Availability of data and materials
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 June 2018 Accepted: 26 December 2018

References
	1.	 Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J, Bhagat N,

Mittal S, Ryaboy D (2014) Storm@twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on
management of data, SIGMOD ’14. pp 147–156

	2.	 Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015) Apache flink™: stream and batch processing
in a single engine. IEEE Data Eng Bull 38(4):28–38

	3.	 Akidau T, Balikov A, Bekiroğlu K, Chernyak S, Haberman J, Lax R, McVeety S, Mills D, Nordstrom P, Whittle S (2013)
Millwheel: fault-tolerant stream processing at internet scale. Proc VLDB Endow 6(11):1033–1044

	4.	 Apache heron git repository. https​://githu​b.com/apach​e/incub​ator-heron​. Accessed 11 Apr 2018
	5.	 Chun B-G, Condie T, Chen Y, Cho B, Chung A, Curino C, Douglas C, Interlandi M, Jeon B, Jeong JS, Lee G, Lee Y,

Majestro T, Malkhi D, Matusevych S, Myers B, Mykhailova M, Narayanamurthy S, Noor J, Ramakrishnan R, Rao S, Sears
R, Sezgin B, Um T, Wang J, Weimer M, Yang Y (2017) Apache reef: retainable evaluator execution framework. ACM
Trans Comput Syst. 35(2):5

	6.	 Apache aurora git repository. https​://githu​b.com/apach​e/auror​a. Accessed 12 Mar 2018
	7.	 Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016) Borg, omega, and kubernetes. Commun ACM

59(5):50–57
	8.	 Van Aken D, Pavlo A, Gordon G J, Zhang B (2017) Automatic database management system tuning through

large-scale machine learning. In: Proceedings of the 2017 ACM international conference on management of data,
SIGMOD 17. pp 1009-1024

	9.	 Aboulnaga A, Babu S (2013) Workload management for big data analytics. In: Proceedings of the 2013 ACM SIG-
MOD international conference on management of data, SIGMOD ’13. pp 929–932

	10.	 Curino C, Difallah D E, Douglas C, Krishnan S, Ramakrishnan R, Rao S (2014) Reservation-based scheduling: If you’re
late don’t blame us!. In: Proceedings of the ACM symposium on cloud computing, SOCC ’14. pp 1–14

	11.	 Apache pulsar git repository. https​://githu​b.com/apach​e/pulsa​r. Accessed 11 Apr 2018
	12.	 Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S, Patel J M, Ramasamy K, Taneja S (2015) Twitter heron:

stream processing at scale. In: Proceedings of the 2015 ACM SIGMOD international conference on management of
data, SIGMOD ’15. pp 239–250

	13.	 Arasu A, Babcock B, Babu S, Cieslewicz J, Datar M, Ito K, Motwani R, Srivastava U, Widom J (2016) STREAM: the stan-
ford data stream management system. Springer. pp 317–336. https​://doi.org/10.1007/978-3-540-28608​-0_16

	14.	 Baru C, Rabl T (2016) Application-level benchmarking of big data systems. Springer, New Delhi. pp 189–199. https​://
doi.org/10.1007/978-81-322-3628-3_10

	15.	 Sahin S, Cao W, Zhang Q, Liu L (2016) Jvm configuration management and its performance impact for big
data applications. In: IEEE international congress on big data (BigData Congress) 2016. pp 410–417. https​://doi.
org/10.1109/BigDa​taCon​gress​.2016.64

	16.	 Java garbage collection, oracle. https​://docs.oracl​e.com/cd/E1780​2_01/j2se/j2se/1.5.0/jcp/beta1​/apidi​ffs/java/lang/
manag​ement​/Garba​geCol​lecto​rMBea​n.html. Accessed 12 Mar 2018

	17.	 Destounis A, Paschos G S, Koutsopoulos I (2016) Streaming big data meets backpressure in distributed network
computation. In: IEEE INFOCOM 2016—The 35th annual IEEE international conference on computer communica-
tions. pp 1–9. https​://doi.org/10.1109/INFOC​OM.2016.75243​88

	18.	 Ibm cloud private. https​://www.ibm.com/blogs​/cloud​-compu​ting/2017/10/what-is-ibm-cloud​-priva​te. Accessed 12
Mar 2018

	19.	 Poggi N, Montero A, Carrera D (2018) Characterizing bigbench queries, hive, and spark in multi-cloud environments.
In: Nambiar R, Poess M (eds) Performance evaluation and benchmarking for the analytics era. Springer, Cham, pp
55–74

	20.	 Jia Y (2014) Learning semantic image representations at a large scale, Ph.D. thesis, EECS Department, University of
California, Berkeley (May)

	21.	 Hadjis S, Abuzaid F, Zhang C, Ré C (2015) Caffe con troll: shallow ideas to speed up deep learning. In: Proceedings of
the fourth workshop on data analytics in the cloud, DanaC’15. pp 1–4

	22.	 Deepbench, baidu research. https​://svail​.githu​b.io/DeepB​ench. Accessed 12 Mar 2018
	23.	 Karimov J, Rabl T, Katsifodimos A, Samarev R, Heiskanen H, Markl V (2018) Benchmarking distributed stream process-

ing engines. CoRR abs/1802.08496.
	24.	 Quan J, Shi Y, Zhao M, Yang W (2013) The implications from benchmarking three big data systems. In: Proceed-

ings—2013 IEEE international conference on big data, big data , 2013. pp 31–38. https​://doi.org/10.1109/BigDa​
ta.2013.66917​06

	25.	 Han R, John LK, Zhan J (2018) Benchmarking big data systems: a review. IEEE Trans Serv Comp 11(3):580–597. https​
://doi.org/10.1109/TSC.2017.27308​82

https://github.com/apache/incubator-heron
https://github.com/apache/aurora
https://github.com/apache/pulsar
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-81-322-3628-3_10
https://doi.org/10.1007/978-81-322-3628-3_10
https://doi.org/10.1109/BigDataCongress.2016.64
https://doi.org/10.1109/BigDataCongress.2016.64
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/management/GarbageCollectorMBean.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/management/GarbageCollectorMBean.html
https://doi.org/10.1109/INFOCOM.2016.7524388
https://www.ibm.com/blogs/cloud-computing/2017/10/what-is-ibm-cloud-private
https://svail.github.io/DeepBench
https://doi.org/10.1109/BigData.2013.6691706
https://doi.org/10.1109/BigData.2013.6691706
https://doi.org/10.1109/TSC.2017.2730882
https://doi.org/10.1109/TSC.2017.2730882

Page 23 of 23Gautam and Basava ﻿Hum. Cent. Comput. Inf. Sci. (2019) 9:2

	26.	 Han R, Jia Z, Gao W, Tian X, Wang L (2015) Benchmarking big data systems: state-of-the-art and future directions,
CoRR abs/1506.01494. arXiv​:1506.01494​

	27.	 Veiga J, Expósito RR, Pardo XC, Taboada GL, Tourifio J (2016) Performance evaluation of big data frameworks for
large-scale data analytics. In: IEEE international conference on big data (Big Data) 2016. pp 424–431. https​://doi.
org/10.1109/BigDa​ta.2016.78406​33

	28.	 Jia Z, Wang L, Zhan J, Zhang L, Luo C (2013) Characterizing data analysis workloads in data centers. In: IEEE interna-
tional symposium on workload characterization (IISWC) 2013. pp 66–76. https​://doi.org/10.1109/IISWC​.2013.67046​
71

	29.	 Gupta S, Dominiak J, Marimadaiah S (2017) Using machine learning to predict big data environment performance,
U.S Patent 2017-0140278 A1, 18 May

	30.	 Nikravesh AY, Ajila SA, Lung C-H (2017) An autonomic prediction suite for cloud resource provisioning. J Cloud
Comput 6(1):3. https​://doi.org/10.1186/s1367​7-017-0073-4

	31.	 Li T, Xu Z, Tang J, Wang Y (2018) Model-free control for distributed stream data processing using deep reinforcement
learning. Proc VLDB Endow. 11(6):705–718

	32.	 de Assuncao MD, da Silva Veith A, Buyya R (2018) Distributed data stream processing and edge computing: a
survey on resource elasticity and futuredirections. J Netw Comput Appl 103:1–17. https​://doi.org/10.1016/j.
jnca.2017.12.001

http://arxiv.org/abs/1506.01494
https://doi.org/10.1109/BigData.2016.7840633
https://doi.org/10.1109/BigData.2016.7840633
https://doi.org/10.1109/IISWC.2013.6704671
https://doi.org/10.1109/IISWC.2013.6704671
https://doi.org/10.1186/s13677-017-0073-4
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1016/j.jnca.2017.12.001

	Performance prediction of data streams on high-performance architecture
	Abstract
	Introduction
	Background
	Design and implementation of proposed framework
	Overview
	Performance metrics classification
	Memory metrics
	n-Verticals metrics
	Communication metrics
	Computation metrics
	Scheduler metrics

	Data streaming performance prediction model
	Metric pipeline
	Data enrichment

	Experimental evaluation
	Environmental setup
	Benchmark suite
	Grep count directed acyclic graph (GC-DAG)
	GEneral matrix to matrix multiplication directed acyclic graph (GEMM-DAG)
	Unique sort acyclic graph (US-DAG)
	Speed of light compute directed acyclic graph (SOL-DAG)
	Speed of light sleep directed acyclic graph (SOLS-DAG)

	Results and inferences
	GC-DAG topology
	GEMM-DAG topology
	SOL-DAG topology
	SOLS-DAG topology
	US-DAG topology

	Related work
	Big data system benchmarking: inferences and metrics
	Big data system benchmarking: performance prediction model

	Discussions and conclusions
	Authors’ contributions
	References

