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Introduction
Semiconductor integration technology have been steadily developed over the last several 
decades and recently modified into a multicore structure due to problems such as heat 
generation. As a result, multicore technologies of high-performance computing systems 
are emerging as systems interconnect technology, which is a technology for making 
multiple computers into one computer cluster. High-performance computing systems 
(Computer Clusters) using interconnect technology are essential where artificial intel-
ligence, huge data, and SNS are required. Generally in this technique each constituent 
node has been processes by its own operation and communicates with different nodes 
[1]. Therefore, a high-speed computing systems are usually uses a high-speed local 
area network. In this case InfiniBand and Gigabit Ethernet are typical communication 
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networks. Figure  1 shows the percentage of new interconnection-based high-perfor-
mance computing systems in the 6-month period ending in 2017 [2, 3].

In addition to the above-mentioned InfiniBand and Gigabit Ethernet used in high-
performance computing systems, studies are underway to develop a PCIe-based inter-
connection system using the advantages of PCIe. PCIe is widely used as a standard I/O 
interface for connecting processors and I/O system devices. High speed, low power, and 
high efficiency are the salient properties of the PCIe; because of additional properties 
PCIe is considered as good alternatives to the existing network structures. InfiniBand 
and Ethernet networks handle TCP/IP packets that are handled in hardware by a Net-
work Interface Card (NIC) device. The network using PCIe without such processing is 
relatively inexpensive. Table 1 show that the protocol efficiency of PCIeis 5% higher than 
the InfiniBand, and 7% higher than the Ethernet network. The end-to-end latency is 10 
to 30 times less than Ethernet and 2 times less than InfiniBand. It can be seen that the 
price of the interconnection network is cheaper than the port of the interconnection 
network [4].

Recently, there are several representative companies that study PCIe related technol-
ogy, Intel, Dolphinics, and IDT. Dolphinics leverages PCI Express’s performance advan-
tages to provide a solution for creating local networks. Utilizing the advantages of PCI 
Express high throughput and low latency, it enables fast data transfer of storage files and 
data, and realizes system offload. Dolphinics sells the IXS600 Gen3 switch, a PCI Express 
switch, and the PXH812 PCI Express Gen3 Host and Target Adapter, a PCI Express 

Fig. 1  Percentage of interconnection-based high-performance computing. System developed in June–
November

Table 1  Comparison of efficiency of PCIe, Ethernet, and InfiniBand

PCIe Ethernet InfiniBand

Protocol efficiency 93% 86% 88%

End-to-end latency ~ 1 us ~ 10 us to 30 us ~ 1 us to 2 us
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Adpater cards. PCI Express offers low latency and highly efficient switching for high per-
formance applications. Dolphin has implemented a high speed inter-system switching 
solution using PCI Express technology. The IXS600 PCI Express switch provides a pow-
erful, flexible, and Gen2 switching solution. It utilizes IDT’s transparent and NTB (non-
transparent bridging) technology to integrate Dolphin’s software technology to provide 
clustering through I/O scaling and inter-processor communication technology. With 
the IXS600, you can build high-performance computing clusters through multiple PCI 
Express devices. The IXS600 is a switching device in Dolphin’s IX product line, offering 
8-port, 1 U cluster switch with ultra-low latency at 40 Gbps of non-blocking bandwidth 
per port. Each ×8 PCI Express port provides backward compatibility for Gen1 I/O while 
providing maximum bandwidth per device. The IXS600 switch can be copper or fiber-
optic and uses standard iPass connectors [5, 6].

IDT has an extensive product portfolio for building PCI Express networks (switch, 
bridge, signal integrity, timing solutions, etc.). They provide signal integrity products, 
e.g., Retimer, Repeater. They also provide switch devices- A device that supports up to 
64 lanes, 24 ports, a free port configuration, and a multi-root application based on up 
to 8 NTB functions, e.g., switch for I/O expansion, switch for system interconnect. In 
addition, they provide bridge devices, for example, PCIe to PCI/PCI-X Bridge, PCI-X to 
PCI-X Bridge, PCI to PCI bridge, timing related components such as clock synthesizer, 
spread spectrum clock generator, PLL zero-delay buffer, jitter attenuators [7].

In this paper, to implement PCIe based interconnection network system with low 
latency, low power, and RDMA characteristics, we use Socket API, which is mainly used 
in user-level application of each node which provides a way to utilize the existing Socket 
application program while providing higher bandwidth in Ethernet based Socket com-
munication for packet transmission through PCIe Switch device driver and Linux Kernel 
patch. In “Design of enhancing compatibility for socket” section, we describe the design 
and implementation of the system presented in this paper.

Related work
PCIe was developed to replace the PCI parallel bus, and PCIe uses a bus topology to 
enable communication between other devices on the bus [8]. It supports multiple lanes 
of ×1, ×2, ×4, ×8, ×16, and ×32 per link. Data rates are 2 Gbps per lane in PCIe Gen 1, 
4 Gbps per lane in PCIe Gen 2 and 8 Gbps in Gen3, and the bandwidth is 128 Gbps and 
the clock speed is 8 GHz based on the PCIe Gen3 ×16 lane [9].

A PCIe Switch can be a collection of logically connected PCI–PCI bridges. After con-
necting the additional PCI–PCI bridges downstream, one PCI–PCI bridge is upstream. 
Thus, PCIe Switching appears as a hierarchical structure of logical PCI–PCI bridges 
[10]. Figure 2 shows the hierarchical structure provided by one upstream node and the 
downstream node PCIe switch.

In Multi-Host mode, PEX8749 can be configured with up to six upstream host ports, 
each with its own dedicated downstream ports. The device can be configured for 1 + 1 
redundancy or N + 1 redundancy. The PEX8749 allows the hosts to communicate their 
status to each other via special door-bell registers [11]. In failover mode, if a host fails, 
the host designated for failover will disable the upstream port attached to the failing host 
and program the downstream ports of that host to its own domain. Figure 3, shows the 
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hierarchy when a host fails in a situation where each host has two end-points in multi-
host mode. The dotted line is the link to the existing End-Point that Host 1 had. As 
described above, Host 2 is replaced with the upstream to the endpoints of the existing 
Host 1 in which the failure occurred.

When constructing an interconnect network using a PCIe switch, communication 
between each node in a computer cluster uses the PCIe protocol, so that data is not 
encoded or decoded in a multi-layer protocol. Therefore, unnecessary protocol process-
ing in a network such as Ethernet can be reduced [13]. Also, NTB (Non-Transparent 
Bridge) technology enables inter-node communication between different PCI domains. 
The PCIe standard was originally developed for single-host environments. However, as a 
multi-host network becomes necessary, NTB is the solution to control communication 
with other nodes in the PCIe network. Several nodes in the PCIe switch can distinguish 

Fig. 2  PCI bridge hierarchy of PCI switch

Fig. 3  Fail over operation in PCIe switch multi-host environment [12]
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each node using the Offset of the Base Address Register (BAR) [14]. In addition, due to 
the characteristics of using SSC (Spread Spectrum Clock), there is a problem that the 
clock timing conflict and the bus address system conflict. The NTB port logically iso-
lates each node to isolate each system. This problem is solved through the conversion 
of timing and bus addressing schemes [4]. The nodes of each NTB port are related to 
some memory area in their memory, so other remote nodes can directly access (RDMA) 
through address translation [15]. Figure  4 shows the address translation through the 
NTB port between different nodes.

This NTB port feature has the effect of isolating two different systems on the PCIe bus 
[16, 17]. However, since the above-mentioned RDMA is possible, it is also possible to 
communicate with each other through address translation. Figure 5 shows the commu-
nication between NTB ports between systems with different address domains.

The application performance of a computer cluster depends on the network perfor-
mance of the LAN or SAN connecting each node. Generally, in a SAN (System Area 
Network) environment where clusters are configured, it is safe against data loss dur-
ing data transmission and reception. Therefore, functions such as error checking and 

Fig. 4  NTB’s remote memory address translation

Fig. 5  Communication across NTB ports between different address domains
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flow control provided by the TCP/IP protocol act as an overhead. Several communi-
cation protocols such as FM (Fast Message), U-Net, and VMMC (Virtual Memory-
Mapped Communication) have been proposed to solve TCP/IP problems in a SAN 
environment [15]. Based on these protocols, VIA (Virtual Interface Architecture) [18] 
has been proposed for low latency and high bandwidth networks. InfiniBand, RDMA 
over Converged Ethernet, iWARP RDMA Protocol) exists.

A technology commonly used in high-performance networks is Remote Direct 
Memory Access (RDMA). Since the CPU directly accesses the memory of the remote 
node to transmit and receive data, the CPU overhead due to the protocol processing 
can be reduced and the communication performance can be maintained.

VIA is a network abstraction model that supports InfiniBand, RoCE, iWARP tech-
nology, and supports Zero-Copy to minimize RDMA support and buffer-to-buffer 
copy [19]. In addition, VIA communicates by writing and reading data directly to 
the memory area between each node, unlike the existing network where the protocol 
stack operates as software in the Kernel domain.

High-performance interconnect technologies using RDMA use drivers, RDMA 
operations, User-level API, and MPI provided by Open Fabrics Enterprise Distri-
bution (OFED) middleware. To use RDMA APIs such as connectivity, parallel pro-
cessing, and network control in applications, we use functions called Verbs. IP over 
InfiniBand (IPoIB), which is widely used among the above-mentioned high-perfor-
mance interconnection, provides a function to use existing Ethernet-based applica-
tions without major source code modification [20]. The OFED API is available on a 
variety of operating systems, including Red Hat Linux, Oracle Linux, and Windows 
Server.

Traditional TCP/IP-based Socket communication is not suitable for high-perfor-
mance computing systems such as InfiniBand. TCP/IP Sockets depend on the kernel 
to send and receive messages, which increases the latency time by the frequent occur-
rence of Kernel Context Switches. The TCP/IP Socket method copies data from the 
sending application to the kernel buffer and sends it to the NIC kernel buffer. The 
receiving application copies data to the kernel buffer into the NIC buffer and then 
copies the data back to the application’s buffer (Fig. 6).

The TCP/IP communication method consumes CPU resources and memory band-
width as the network speed increases in the process of data recombination and trans-
mission, which causes bottleneck [22]. Nevertheless, many existing applications 

Fig. 6  Process of sending/receiving TCP/IP data through NIC [21]
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communicate with each other through Socket, and SDP (Socket Direct Protocol) is 
used to solve this problem [23, 24].

Single-copy, a technique to prevent unnecessary copying, has been proposed to 
optimize TCP/IP [25]. However, if the physical speed of the network exceeds the giga-
bit level, there is a limit to overcome the overhead caused by the CPU handling TCP/
IP. In recent years, InfiniBand and Ethernet NICs have improved performance by add-
ing a TCP Offload Engine (TOE) function to overcome the drawbacks of TCP/IP. The 
TOE can reduce the cost of the protocol processing by the CPU by directly processing 
the TCP/IP packets processed by the operating system in the NIC. In addition, since 
the NIC handles communication, the communication performance can be maintained 
even when the CPU load increases [26].

Figure 7 is a flowchart of data communication between application programs by a 
ZCopy method in InfiniBand interconnection system. First, a buffer is allocated to 
send data of the receiving application program. If the buffer is large enough, send the 
SrcAvail message to the sender and register the source of the data. The buffer is then 
sent to the receiver and the RDMA Read is started to read the data from the receiving 
application. When RDMA ends, the RDMARdCompl signal is sent to the transmitter 
and the communication is terminated [27].

In “Design of enhancing compatibility for socket” section of this paper, we propose 
a PCIe interconnection-based RDMA with low latency, high protocol efficiency, and 
low cost, which reduces Socket communication overhead in interconnection net-
works based on TCP/IP and SDP protocols such as InfiniBand and Gigabit Ethernet. 
The system designed and implemented in the Socket communication system using 
the communication system will be described.

Design of enhancing compatibility for socket
This section explains device driver implementation and kernel level patch for imple-
menting PCIe interconnection network system using a Socket interface as mentioned 
above. The system to be implemented in this paper aims to operate on Broadcom’s 
PLX PCIe Switch PEX-8749 and PLX PCIe NIC PLX-8749.

Fig. 7  ZCopy read communication processing flow chart
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Overall architecture

When configuring a PCIe interconnection network, each node will send and receive 
data through the PLX PCIe Switch PEX-8749. When the application program of each 
node reads/writes for Socket communication, it DMAs to the memory area of another 
node through the BAR provided by the NTB port and communicates.

Interconnect devices such as InfiniBand and Ethernet are supported by a user-level 
library or device driver that requests a DMA bus address as a relative node, but PCIe 
switches do not have the hardware capability to support Socket communication. 
Therefore, when sending and receiving through Socket, it is necessary to obtain the 
DMA bus address for the other node. In the PCIe Switch, the NTB port has a Scratch-
pad register that can be shared and accessed by two different systems, and a Doorbell 
register that can generate an interrupt between logically isolated systems due to the 
NTB. It also maps the actual physical address area to the memory area allocated by 
the application program. This memory area is used as a memory for Socket communi-
cation. When an application calls Socket API, it reads the memory of the other node 
and sends and receives data to and from each other. Figure  8 shows the process of 
accessing each other’s address area after getting through the NTB port provided by 
PCIe Switch.

In general Socket communication, the application program creates a Socket 
through a system call at the User level and proceeds to the actual read/write using the 
file descriptor for this Socket in the kernel area.

The Socket communication method based on the PCIe switch proposed in this 
paper treats Socket APIs in the application program only for the Socket which needs 
DMA transmission in the read/write function called in the kernel area. In the read/
write function in the kernel, communication is performed using a DMA device by 
branching to a specific port. If the application creates a Socket and binds the speci-
fied port number for Socket communication via PCIe Switch, I/O for TCP/IP through 
the File Descriptor for the device file for I/O in the kernel area, I/O for DMA can be 
confirmed. Figure 9 shows how to determine the communication method according 
to the branch inside the Write function in the kernel area when calling the Socket 
API in this application program. In this case, the application program uses the Socket 
interface without changing a lot of source code, we expect to improve performance.

Fig. 8  Host A and B via NTB access each other’s memory area
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Figure 10 shows the flow of communication in the previously designed system. The 
sender and receiver application program prepares a buffer for data transmission and 
reception, which maps to the BAR register for RDMA to the peer obtained via the 
NTB port. As mentioned in “Related work” section, we use the Scratchpad register 
of the NTB port to map a certain part of the memory area of our own to the memory 
area of the other node and map them to each other. When the data is transmitted 
through the RDMA engine to the specific memory area mapped to the memory of 
the correspondent node which can receive the data, the data is also transmitted to the 
real memory area of the correspondent node. In order to signal the end of the data 
transfer, it is necessary to cause an interrupt to the partner node. To do so, a Doorbell 
register is provided which can generate an interrupt at the partner node. If a bit that 
causes an interrupt to the partner node is set in its Doorbell register to indicate the 
end of data transmission at the node receiving the data, the Doorbell interrupt is gen-
erated at the counterpart node so that the end of the data transfer can be recognized.

When the application program of the transmitting node calls the write() function 
for Socket communication, the data buffer is copied to the kernel area. The receiving 
node’s application program calls the data read() function to wait for the RDMA to be 
written into the memory area mapped to the BAR register of its NTB port from the 
transmitting node. And RDMA writes the data to be sent to the memory area for the 

Fig. 9  Socket branch when DMA is required in write function of Kernel area

Fig. 10  Socket program flow diagram with PCIe switch
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RDMA of the receiving node obtained from the transmitting node through the NTB 
port. Then check whether the DMA is working properly in the kernel write() func-
tion. When the DMA transfer is completed, the send node uses the Doorbell register 
of the receiving node NTB port to terminate the write() function while generating an 
interrupt. This is to prevent the receiving node from reading the data in its RDMA 
memory area until the Doorbell interrupt occurs on the receiving node side. The 
receiving node that received the Doorbell interrupt that the RDMA data transmission 
is completed has the buffer for data reception of the application program mapped to 
the memory area for RDMA as well. Therefore, the data of this area is copied from the 
Kernel area to the data buffer of the application program.

Socket interface access implementation on kernel level

The socket is created in the application program, and the read/write function of the ker-
nel area is actually called through the Socket API read/write interface used at the user 
level. In the function of this kernel area, RDMA should be performed for the port desig-
nated for Socket communication based on PCIe Switch as designed above. When calling 
the read() function and the write() function in the application program in the Socket 
communication, the file descriptor of the socket is brought as a parameter in the read() 
function and the write() function of the kernel area. In order to confirm that the File 
Descriptor is a Socket type file descriptor, it is checked whether it is registered in the 
Socket look-up table. If it is a file descriptor created with Socket, as shown in Fig. 9 to 
read the port number bound in the inet_sk macro supported by Linux and determine 
whether to perform DMA communication. Some modifications to the Linux kernel 
source code fs/read_write.c to be implemented for these kernel patches are required.

Since the DMA communication is performed through the PLX PCIe Switch, the 
device file of the PEX-8749 device is read in order to call the DMA communication func-
tion registered in the file operation of the PLX SDK device driver module, and the FILE 
structure is obtained from this device file. The obtained FILE structure can access the 
functions belonging to the File Operation of the PLX SDK device driver. This file opera-
tion can call the read() function and the write() function implemented for this system 
in the PLX SDK device driver modified to use the RDMA function of the PLX PCIe 
Switch described in the next section. When the Socket application calls the Socket API 
read() and write() APIs, the function that performs the RDMA function of the PLX PCIe 
Switch is called in the kernel area.

To do this, you must first register the address of the PLX PCIe DMA device driver 
in the FILE pointer before starting Socket communication. Figure 11 shows the process 
of acquiring the address of the PLX PCIe device driver. Before starting communication, 
open the PLX PCIe DMA device file through the sys_open() function in the kernel area. 
Get the file descriptor with fdget() function using the number of the file. This address is 
the address of the PLX PCIe Switch DMA device driver. If you are using Socket commu-
nication via PCIe Switch.

The file pointer obtained from the above process contains the address of the device 
driver for the DMA device of the PLX PCIe Switch and is still used when performing 
DMA Socket communication through the PCIe Switch. Figure 12 shows the process of 
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calling the function of File Operation with saved_file->f_op-> write() using this saved file 
pointer in the kernel area.

Socket interface access implementation on device driver

To use the PCIe Switch PEX-8749, PEX-8732 Adapter, and PCIe PLX-8749 NIC, PLX 
provides a PLX SDK device. It is necessary to map the BAR (Base Address Register) of 
the NTB port of the PCIe Switch and the physical memory of the node itself and to map 
the data buffer so that the application can access this memory area. This mapped mem-
ory is used as space for RDMA transmission.

When an application program calls the read() and write() APIs for Socket commu-
nication using DMA, it is mapped to its own memory area using the DMA read/write 
function registered in the File Operation of the PLX SDK device driver DMA can be 
performed in the memory area of the other party.

First, when the PLX SDK device driver is inserted into the kernel, the initialization 
function of the device driver provides an a_init function with an integer return value 

Fig. 11  Procedure for obtaining the file address of the PLX PCIe DMA device driver

Fig. 12  Procedure for accessing registered PLX device file and file operation
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and no parameters. In this initialization function, a function for DMA read/write is reg-
istered and a memory to be used in the PCIe Switch network is allocated. It also allows 
you to register the functions of this device driver’s File Operation, which are the func-
tions of the device driver to be called from within the kernel read() and write().

The implementation of the write() function of the PLX PCIe device driver to use the 
DMA function is as follows. DMA register information before DMA start and channel 
offset information to be used by each node are recorded in a register for DMA func-
tion. This process supports the PLX_DMA_REG_WRITE macro in the PLX SDK device 
driver. Here, the information to be included in the DMA register includes a memory 
area of data necessary for actual transmission, which is input as a parameter of the 
write() function of the application program. In this memory area, data is transferred 
from the application program to the kernel area and copied to the memory area of the 
own node mapped to the real memory area of the partner node through the NTB port. 
Then, DMA transfer is started by setting the Start bit in the DMA register. Figure  13 
shows this process.

The PLX SDK device driver also supports the PLX_DMA_REG_READ macro, which 
can read the information of the register. By using this macro, the In-progress bit indicat-
ing the progress of the channel used for the DMA transfer is confirmed. If cleared, the 
DMA is terminated, if it is still set, it can be seen that the DMA transfer is in progress.

When implementing the system using the method described above, the DMA engine 
operates independently of the CPU, so the application program will normally operate to 
receive and transmit data from read() and write() using the DMA function of the PCIe 
switch.

However, if the data transfer end state of the DMA channel is not known, it cannot 
be known whether or not all the data transmitted from the transmitting node to the 
memory area of the receiving node in the Socket communication is transmitted. This 
causes a situation in which the receiving node can DMA again before the receiving 
node receives all the data, and the receiving node overwrites the existing data before 
reading the existing data in the memory. It is hard to say that Socket communication 
was performed normally. Figure 14 shows the process of simply calling DMA in the 

Fig. 13  Copy and DMA process of data required for DMA in Socket communication
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existing write() system call. Since the CPU does not actually participate in the DMA 
communication, it is difficult to obtain the time required for data transmission, that 
is, the bandwidth.

To solve this problem, the In-progress bit is used to check the progress of the DMA 
register of the channel being used by the DMA register. In the application program, 
the write file operation function of the PLX PCIe Switch device driver, which is called 
by the write() system call, is implemented in such a manner that the DMA status reg-
ister in-progress bit is polled to check whether the DMA is terminated. That is, when 
the DMA transfer to the other node is completed, the write() function is returned to 
complete the data transfer. Figure  15 shows the improvement method using the in-
progress check of this Polling method. Figure 16 shows the source code structure of 
the Write File Operation described above.

Fig. 14  Measurement issues when performing DMA in existing write()

Fig. 15  Improvement plan for checking DMA transfer status
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When the Socket application calls the Socket read() and write() APIs through the 
PLX PCIe Switch device driver, the read() and write() functions in the kernel are called 
and the PLX PCIe Switch’s File Operation function to transmit and receive data. We 
designed and implemented a system for using the Socket interface in a network based on 
PLX PCIe interconnection. The following section describes the results of comparative 
analysis of the performance of such systems.

Experimental results
In this paper, Iperf benchmark (version 2.0.5) similar to Netperf was used for per-
formance evaluation of PCIe based Socket communication system designed and 
implemented in “Design of enhancing compatibility for socket” section. Iperf is an open-
source benchmark for TCP, UDP, and SCTP communications using Socket, which meas-
ures bandwidth according to data length and size [28].

The PCIe interconnection system environment was implemented using a Broad-
com PLX PCIe Switch PEX-8749 and a PLX PCIe NIC PLX-8749 connected to an 
8-lane PEX-8732 Cable Adapter. Table  2 shows the hardware configurations of the 

Fig. 16  Write file operation source code structure

Table 2  Hardware configurations

Main board GIGABYTE GA-H61M-DS2V

Host PC hardware

Processor Intel Core i5-3470 CPU @ 3.20 GHz * 4

Memory Samsung DDR3 1333 MHz 2 GB

Operating systems Linux CentOS 7 64 bit
Kernel : 3.10.0-327.el7 (patched)

Interconnection network configurations

PCIe switch PLX PEX8749 RDK 48 Lane, 18 Port, PCIe 
PCIeGen 3 Switch (Gen 3)

NIC PLX PEX8732 Cable Adapter * 4

Device driver PLX SDK’s Reference Device Driver (patched)
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Intel I5-3470 processor, 2 GB of memory, patch kernel of CentOS 7 Kernel 3.10.0, and 
the PLX SDK device driver.

Two hosts configured with the above environment are connected to the NTB port 
of the PLX PCIe Switch PEX-8749. In order to evaluate the performance of PCIe 
based Socket communication system and Ethernet based Socket communication, 
Iperf Benchmark divided into data bandwidth measurement using RDMA and data 
bandwidth measurement using TCP/IP when calling Socket API. The nodes consist-
ing of two hosts send and receive data using the server-client model as a client node 
transmitting data and a server node receiving data, respectively.

The data size for transmitting and receiving bandwidth is 1  Byte, 2  Byte, 4  Byte, 
8 Byte, 512 Kbyte, 1 Mbyte, 2 Mbyte, and 4 Mbyte, and compared the bandwidth dif-
ference between transmission and reception according to each data length. Through 
the Iperf Benchmark, two hosts act as nodes acting as servers and as clients acting as 
clients, respectively. The node that is acting as the server continues to receive data 
from the client node. It waits until the In-progress bit of the DMA status register 
changes to indicate that RDMA is completed in the client node according to the data 
transfer. When the application prepares the data buffer and confirms the RDMA com-
pletion status, it can calculate the bandwidth using the time difference from the client 
node to the in-progress bit by polling method and the time until the write() function 
is returned.

Figure 17 and Table 3 show the results of the bandwidths measured according to the 
PCIe-based Socket communication and the Ethernet-based TCP/IP Socket communi-
cation, Graph.

As a result of analysis based on Table 3 and Fig. 17, the bandwidth increases until 
the data size sent to the Socket communication becomes larger than the maximum 
size of the DMA buffer. This can provide enough bandwidth to increase the amount of 
data to be sent when the DMA buffer size is sufficient, but if the amount of data to be 
sent reaches the maximum size of the DMA buffer, there will be no buffer space.

In the case of 4 Mbyte of data transmitted through Socket, the bandwidth of PCIe-
based Socket communication system proposed in this paper is 1084 Mbyte/s, which 
is about 96 times higher than 11.2 Mbyte/s bandwidth of Ethernet based Socket com-
munication system respectively.

Fig. 17  Differences in PCIe and Ethernet bandwidth depending on data size
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Conclusion
In this paper, we propose a PCIe-based interface with high-speed, low-power, high 
protocol efficiency using Socket interface instead of MPI standard or PGAS pro-
gramming model used in existing high-performance interconnection systems such 
as InfiniBand and Gigabit Ethernet. We implemented a connection network system. 
When an application calls the Socket interface in a PCIe Switch network that enables 
PCIe interconnection network configuration, RDMA through address switching for 
each node using NTB port is used for communication instead of the existing protocol.

In the implemented PCIe interconnection system, the system for utilizing the Socket 
interface measures performance through Iperf Benchmark open source benchmark tool 
which measures the performance by Socket communication according to the length of 
data with protocols such as TCP/IP, UDP, and SCTP respectively. The PCIe switch was 
used to the Broadcom PLX PCIe PEX-8749 and the PLX PCIe NIC PLX-8749, which 
were connected to the PEX-8732 Cable Adapter 8 lane. The experimental results com-
pared with the bandwidth of Socket communication based on PCIe interconnection and 
Socket communication based on Ethernet. The data size used for Socket write() 1 Byte, 
2 Byte, 4 Byte, 8 Byte,…, 512 Kbytes, 1 Mbyte, 2 Mbyte, and 4 Mbyte.

Although the bandwidth of the PCIe-based Socket communication and the Ether-
net-based Socket communication did not greatly differ between 1 byte and 128 bytes, 

Table 3  DMA and Ethernet bandwidth results according to the data size

DMA
Bandwidth (Mbyte/s)

TCP/IP
Bandwidth 
(Mbyte/s)

1 0.06 0.07

2 0.13 0.13

4 0.26 0.26

8 0.51 0.53

16 1.02 1.06

32 2.09 2.11

64 4.12 4.23

128 8.21 8.46

256 16.4 11.2

512 32.9 11.2

1K 64.7 11.2

2K 132 11.2

4K 230 11.2

8K 376 11.2

16K 547 11.2

32K 734 11.2

64K 876 11.2

128K 971 11.2

256K 1025 11.2

512K 1054 11.2

1M 1071 11.2

2M 1080 11.2

4M 1084 11.2
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the bandwidth of 4  Mbyte was 11.2  Mbyte/s and PCIe-based, the performance is 
about 96 times higher than the bandwidth of 1084 Mbyte/s.

In the future research plan, the polling method is not used in order to reduce the 
overhead due to the DMA end status. To check the data communication synchroniza-
tion in the transmitting node designed in this paper, and the ending state of the data 
transmission is informed to the transmitting node at the receiving node, we can expect 
higher performance if we optimize our system. These device driver level patches will 
be improved in the utilization and performance of PCIe interconnection system using 
Socket interface.
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