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Introduction
The rapid development of wireless communications has brought endless new types of 
services or applications for human beings. The emergence of many kinds of communi-
cation equipments makes the public frequency band more and more crowded [1]. At 
present, most of the wireless communication systems employ fixed spectrum allocation 
mechanism. Only authorized users can be allowed to access the corresponding author-
ized spectrum resources, which will lead to inefficient usage of the licensed spectrum. 
From the report issued by International Telecommunication Union (ITU), there are still 
plenty of free spectrum resources within certain authorized bands at specific temporal 
and spatial scenarios. In cognitive radio (CR) system, by dynamically adjusting trans-
mission power, carrier frequency, modulation and other parameters, SUs can utilize the 
spectrum holes as well as avoid interference with primary users (PUs). By applying cog-
nitive radio technology, the SUs can fully access free authorized bands and apply suitable 
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flexibility in handling spectrum scarcity problem [2]. Meanwhile, spectrum resource 
sharing is regarded as one of the key technologies to ensure the channel quality and the 
effective utilization of authorized bandwidth resources.

Cognitive terminals usually possess the functions of sharing and managing spectrum 
resources and perceiving the surrounding circumstance. Spectrum sensing is one of the 
most important technologies in CR system as well as the premise of channel estimation 
and spectrum resource allocation. CR system can judge whether the current author-
ized user band is available by spectrum detection. Therefore, it is important for efficient 
operation of cognitive radio systems to perceive the working state of authorized chan-
nels accurately [3]. However, the detection performance is seriously affected by ambient 
noise, which can easily lead to detection errors and interference to PUs. To ensure the 
coexistence of the cognitive radio network and the primary network, the absolute prior-
ity of the PUs to access the licensed channel must be guaranteed [4]. If the accuracy of 
spectrum detection is not high, it will cause serious interference to the main network 
users, which will limit the development and application of cognitive radio technology. 
Only by accurately sensing the spectrum usage in wireless environment can it be possi-
ble to provide a reliable basis for the subsequent dynamic spectrum sharing, so that cog-
nitive radio technology can be more widely developed and applied. Therefore, it requires 
that secondary users(SUs) should have a high accuracy spectrum detection function. In 
most of cooperative spectrum detection algorithms, the threshold value of energy detec-
tor is easily affected by noise uncertainty, thus deteriorating the spectrum detection per-
formance [5]. In this paper, we propose a dynamic dual threshold cooperative spectrum 
sensing method to improve detection accuracy and alleviate the sensing failure problem 
under noise power uncertainty.

The remainder of this paper is organized as follows. In “Related work” section, related 
work about spectrum sensing in cognitive radio network is discussed. In “System model 
and proposed method” section, we describe the proposed cooperative spectrum sensing 
scheme in detail, along with the model and all relevant assumptions. The performance 
evaluation and experimental results are shown in “Results and discussion” section, and 
the conclusions are drawn in “Conclusions” section.

Related work
The objective of cognitive radio technology is to allow unauthorized SUs to access free 
authorized bands while causing limited interference to PUs [6]. By sensing the frequency 
band and taking advantage of that band opportunistically, the secondary system can be 
provided with the ability to operate in dynamic and unpredictable environments [7]. 
Hence, the optimization strategies to improve the efficiency and reliability of spectrum 
sensing are crucial research topics.

Owing to the characteristics of simplicity and low computational cost, energy detec-
tion method is taken as the most commonly applied technique [8], and the appropriate 
energy threshold can determine whether the PU is present or not. In [9], the authors 
conduct the derivation to obtain the optimal voting threshold of energy detector in 
cooperative spectrum sensing, and proposed a fast spectrum sensing algorithm. The 
analysis in [10] was focused on decision threshold formula for energy detection of 
narrowband signals, and the optimal threshold of narrowband system was proven be 
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obtained by taking into account of the noise power and the false alarm probability. In 
[11], the authors studied the energy detection based on wideband signal, and proposed 
the optimal decision threshold with closed expression by utilizing the minimum error 
probability criterion.

In view of the problem that the decision threshold is difficult to be determined in tradi-
tional energy detection method [12], the dual-threshold energy detection algorithm has 
been considered in various papers. In [13], Umebayashi et al. proposed a dual-threshold 
energy detection algorithm for hierarchical cooperative spectrum sensing. To reduce the 
communication overhead, they presented a softened hard combination scheme to solve 
the problem of perceived failure as well as improve the detection performance of the 
system. In [14], Bagwari et al. evaluated the performance of the cyclostationary based 
sensing method and adaptive spectrum sensing, and presented a reliable spectrum sens-
ing scheme using dual detectors. To improve the spectrum detection performance and 
reduce the algorithm complexity under low signal-to-noise ratio (SNR), the authors in 
[15] applied wavelet transform spectrum sensing technology into the spread spectrum 
signal sensing systems. However, the sensing performance of the energy detector will be 
affected seriously by the noise uncertainty, and it will result in high error probability of 
spectrum sensing.

In wireless environment, cooperative sensing can reduce the influence of shadow and 
multipath fading effectively [16]. Through the natural spatial diversity gain, the detec-
tion probability will be greatly improved in the complex wireless circumstance, and the 
PU can be better protected. According to [17], Atapattu et  al. proposed a data fusion 
strategy with multiple cognitive relays. Although the difference of transmission chan-
nel for each cognitive node being considered, it requires all SUs to participate in coop-
eration with the result of high transmission overload. In [18], Maleki et al. considered 
the combination of sleeping and censoring to minimize the energy depletion, in which 
the real-time performance of the system may be impacted due to the increase of num-
ber of samples for the sake of credible decision. In [19], Singh et al. presented a coop-
erative spectrum sensing mechanism based on multiple antennas, and they derived tight 
bounds of the probabilities of false alarm and missed detection. However, such scheme 
has high computational complexity and needs more sensing time.

Under the condition of known feature of PU’s signal and Gaussian white noise circum-
stance, the performance of energy detection is proven to be of practical advantage [20]. 
In [21], Tandra et  al. have proposed a robust statistic approach, and derived the min-
imum SNR threshold for robust detection under noise power uncertainty model. The 
impact of noise power estimation error on the decision threshold of energy detection is 
analyzed through theory and simulations. In [22], Deepak et al. discussed the use of filter 
bank method with discrete-time Fourier transform in a dynamic scenario to minimize 
the error probability of spectrum sensing in presence of noise uncertainty. In [23], the 
maximum likelihood estimation method is applied for estimating the noise variance, and 
the performance of the energy detection with estimated noise power is analyzed. As the 
noise power is known, energy detection can achieve robust capability at any low SNR by 
increasing the number of samplings. However, the actual noise power is usually uncer-
tain, and most of researches on adaptive cooperative spectrum sensing do not consider 
the noise power uncertainty.
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System model and proposed method
System model

We consider a fusion center (FC) or base station and N  SUs to participate in coopera-
tive spectrum sensing. FC is responsible for channel allocation and management of all 
cooperative cognitive users [24]. Assuming that the local sensing process of each cog-
nitive user is independent, and the energy detection method is exploited for decision 
making. The PU detection for a given received signal x(k) can be formulated into the 
statistical problem, in which two hypotheses H0 and H1 for receiving signals can be 
represented as the presence or absence of PU. Thus, it can be formulated as follows:

where PU signal s(k) is assumed as complex circular symmetric Gaussian random vari-
able with zero mean and variance σ 2

s  , and noise sample ui(k) is assumed to be a complex 
circular symmetric Gaussian random variable with mean zero and variance σ 2

ui . Besides, 
hi(k) is channel gain between the i-th SU and PU, which is assumed to be a complex cir-
cular symmetric Gaussian random variable with zero mean and variance δi.

By using energy detection method for spectrum sensing, SUs will calculate the 
accumulated energy in terms of M samples of the observation signal of bandwidth W  
during the period of t seconds, and the received energy collected over the observation 

samples at SU i will be given by [25]: Ei = 1
M

M
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According to the central limit theorem [26], if the number of samples N is suffi-
ciently large, the test statistic Ei is asymptotically Gaussian distributed, and its distri-
butions at the i-th SU, under the two hypotheses H0 and H1 , are given as

where Pi = δiσ
2
s  denoting the received PU signal power at the i-th SU.

Dynamic double threshold

In traditional methods of energy detection technology, SUs usually make decisions 
by comparing the received signals with a prior threshold [9]. The decision of H0 or 
H1 depends on whether the received signal power of PU is higher or lower than the 
threshold [27]. According to the above decision rule and given threshold value �i , the 
accuracy of final decision results is closely related to the fusion method, and the false 
alarm probability pf  and detection probability pd can be obtained as following [28]:
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where Q(·) denotes a Gaussian tail function which is defined as 
Q(t) = 1√

2π

∫∞
t exp

(

− x2

2

)

dx.

For a single SU, the error probability includes two aspects: one is the false alarm probabil-
ity when the PU does not exist, and the other is the probability of missed detection when 
the PU exists. Therefore, the objective function can be constructed as follows:

where p(H0) and p(H1) indicate the probabilities of the idle and the busy states of the PU 
respectively, and p(H0)+ p(H1) = 1.

According to the partial derivative of function U with respect to variable �i , we have

Next, the second derivative can be written as:

Since the SUs are generally satisfied with pf < 0.5 and pd > 0.5 , the local false alarm 
probability can be written as:

(4)























pf = Pr{Ei > �i|H0} = Q

�

�

M

2

�

�i − σ 2
ui

σ 2
i

��

pd = Pr{Ei > �i|H1} = Q

�

�

M

2

�

�i −
�

σ 2
ui + Pi

�

σ 2
ui + Pi

��

(5)

U = p(H0)pf + p(H1)(1− pd) = p(H0)Q

(

√

M

2

(

�i − σ 2
ui

σ 2
ui

))

+

p(H1)

[

1− Q

(

√

M

2

(

�i −
(

σ 2
ui + Pi

)

σ 2
ui + Pi

))]

(6)

∂U

∂�i
= −p(H0)

2σ 2
ui

�

M

π
exp



−M

4

�

�i

σ 2
ui

− 1

�2




+ p(H1)

2(σ 2
ui + Pi)

�

M

π
exp



−M

4

�

�i −
�

σ 2
ui + Pi

�

σ 2
ui + Pi

�2


.

(7)

∂2U

∂�2i
= p(H0)M

3
2

8
√
πσ 4

ui

×
�

�i

σ 2
ui

− 1

�

× exp



−M

4

�

�i

σ 2
ui

− 1

�2




− p(H1)M
3
2

8
√
πσ 4

ui

×
�

�i

σ 2
ui + Pi

− 1

�

× exp



−M

4

�

�i

σ 2
ui + Pi

− 1

�2


.

(8)pf = Q

(

√

M

2

(

�i

σ 2
ui

− 1

))

= 1

2
erfc

(√
M

2

(

�i

σ 2
ui

− 1

))

< 0.5.



Page 6 of 21Wan et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:22 

According to the properties of complementary error function erfc(x) , if independent vari-
able x > 0 , the function value is less than 1. As a result, �i > σ 2

ui . Similarly, if x < 0 , the 
value of erfc(x) is greater than 1. Since pd > 0.5 , we can obtain �i < σ 2

ui + Pi . Based on the 
above analysis, we get ∂

2U

∂�2i
> 0 , and it means that there exists a minimum value of U with 

regard to �i.
Suppose ∂U

∂�i
= 0 , the optimal � can be obtained as follows

Traditionally, test statistics is usually conducted with a fixed single threshold, which 
will be ascertained with difficulty. Energy detection is the most commonly used method, 
which is derived from simplicity, without the prior knowledge of the signal, and easy imple-
mentation about hardware. However, the detection performance of the traditional energy 
detection algorithm decreases sharply under the condition of low signal-to-noise ratio. 
Practically, the noise uncertainty problem will increase the possibility of false detection, 
which affects the priority of PU and enhance the communication overheads [29, 30]. Gen-
erally, it is assumed that the noise power at the receiver is deterministic and theoretical 
estimation of noise variance is possible. However, in real environments, noise power will 
vary over time and noise uncertainty exists in practice may cause deterioration of detection 
performance. Especially as the noise uncertainty increases, the uncertainty of the noise will 
lead to the fluctuation of the decision statistic.

In general, it is assumed that the noise power of the receiver is deterministic. How-
ever, in real environment, noise includes not only Gauss white noise, but also some other 
interference [31]. Moreover, the noise power changes with time and the relative position 
of the receiver and receiver in a certain range. This kind of noise instability is called noise 
uncertainty, which can lead to poor detection performance, i.e., either detection probabil-
ity decreases or false alarm probability increases. To mitigate the problem caused by noise 
uncertainty, we proposed an adaptive dual threshold energy detector in accordance with 
the optimal single threshold value obtained. As can be seen as Fig. 1, the dual threshold is 
applied to decide whether PUs are present.

We assume that the range of noise is ±θi dB and the noise uncertainty model in [32] is 
exploited. Then, the actual noise power σ̂ 2

ui is uniformly distributed in the following range:

(9)
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(
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]

Fig. 1 Dual threshold energy detector
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where the real noise power σ̂ 2
u fluctuates on the expected noise power σ 2

u , 
ψi ∈ [10−θi/10, 10θi/10] and ψi > 1.

Therefore, the parameter ψ can be employed to quantify the noise power uncertainty.

For homogeneous SUs, where ψi = ψ in addition to σ 2
ui = σ 2

u , and the upper and 
lower bounds of noise uncertainty are represented as σ 2

H = ψσ 2
u and σ 2

L = 1
ψ
σ 2
u . If 

σ̂ 2
u ∈ [σ 2

u , σ
2
H ] , the actual noise power is higher than the nominal value. In this case, 

the actual false alarm probability will be higher than the preset target value under con-
stant false-alarm rate criterion [33]. It means that the probability of SU accessing idle 
spectrum will decrease, and the throughput of secondary system decreases severely. 
Otherwise, σ̂ 2

u ∈ [σ 2
L , σ

2
u ] and the actual noise power may be significantly lower than 

the nominal value. The detection signal power will be lower than the threshold value, 
which may lead to the probability of missed detection when PU is present. Therefore, the 
threshold value can be modified as following:

where τ =
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If the detected values is greater than the upper threshold �2 or less than lower thresh-
old �1 , signal absent or present will be declared respectively. In addition, the energy 
statistic lying between two thresholds are treated as the “no decision” zone. With the 
increase of noise uncertainty, ψ tends to be infinite and most of the test statistics will 
be in a confused area. In such scenario, all the decision results depend on the previous 
channel observation state while the current channel information does not contribute to 
the decision results. In the following section, the optimal number of cooperative users is 
considered to improve the spectrum sensing performance.

Determination of kopt
Under the condition of dual thresholds, we need to consider the number of nodes in 
determining regions and no decision zones, as well as the impact on perception accu-
racy. In real application, noise power will be affected by other systems and environmen-
tal factors, resulting in the dynamic change of noise variance over time and location in 
a certain range. The noise uncertainty can also lead to serious degradation of detection 
performance. Or, the actual noise power may be significantly lower than the nominal 
value, so the existence of PU can not be detected correctly, leading to missed detec-
tion. Therefore, in order to take into account the accuracy and efficiency of the system, 
it is necessary to theoretically analyze the solution of the voting threshold under the 
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condition that the total error rate of spectrum sensing arrive the minimum. Moreover, 
when the number of cognitive nodes satisfying the dual threshold requirement is insuf-
ficient, appropriate strategies should be taken to ensure the detection accuracy.

In cooperative spectrum sensing, the number of cognitive users is related with the 
sensing performance [34, 35]. However, plenty of participant SUs will not only lead to 
higher computational complexity and system overhead, but also make more detected 
values of cooperative users lie between the fuzzy regions in conventional dual thresh-
old method at low SNR. Owing to the lower overhead and easy to implement, k-out-
of-N rule is regarded as fusion scheme for combining the local binary decisions. Most 
traditional k-out-of-N criterion uses k = ⌈N/2⌉ as MAJORITY fusion rule, and actually 
which is not the optimal manner [36]. In [37], the performance of fusion rules is ana-
lyzed, and the experiment results verify that the total number of cooperated SUs vary 
with time. If the value of k is adapted with the change of N  , the accuracy of spectrum 
detection decision can be effectively improved, especially in the case of seriously dis-
turbed reporting channels.

Based on the definition of single threshold energy detection, the probabilities of PU 
detection and false alarm can be calculated respectively, with respect to the test stat-
ics in decision zone. However, σ 2

u is unknown in the presence of noise uncertainty. To 
maintain the constraint on the false alarm probability for noise variance in the known 
interval, we analyze the false alarm probability and the detection probability in the worst 
case.

Hence, under H0 , the false alarm probability p′f  , channel utilization probability p′a and 
no decision probability Θ0 can be calculated, respectively, as

In addition, under H1 , the detection probability p′d , the missed detection probability 
p′m and no decision probability Θ1 can be given, respectively, as
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Next, the optimal voting value k should be investigated. Under a certain SNR envi-
ronment, it is assumed that n out of N  cooperating SUs are available for transmitting 
their decisions to FC. The number of n is variable with the change of environment. If the 
optimal voting rule for cooperative spectrum sensing with the variable n , the influence 
of noise uncertainty on detection performance can be avoided as far as possible. With 
k-out-of-N rule, the global false alarm probability Qf  and detection probability Qd can be 
estimated as

where n represents the number of SUs who can conduct local decisions.
It is worth noting that high false alarm probability may make SU lose spectrum oppor-

tunities, and excessive missed detection probability will result in certain interference to 
the PU. Therefore, the global error probability can be represented by the probabilities of 
missed detection and false alarm, which can be referred to as constraints to derive the 
optimal voting threshold. Accordingly, we construct the optimization objective function, 
U ′ = p(H0)Qf + p(H1)(1− Qd) , to minimize the global error probability of the cogni-
tive radio network. The desired value of k can be described as

Hence, the objective function U ′ can be expressed as

Let ∂U
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kopt = arg min{(p(H0)Qf + p(H1)(1− Qd)}
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p′f

·
�

1−Θ1
1−Θ0

�

+ (N − n) ln
�

Θ1
Θ0

�

− ln
p(H0)
p(H1)

ln p′d(1− p′f −Θ0)− ln p′f p
′
m











.
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Since p′d ≫ p′f  , 
∂2U ′

∂k2
> 0 . Therefore, the minimal global error probability can be 

obtained when k is equal to kopt.

Credibility of energy statistic

For the energy statistic in no decision zone, it is not appropriate to conduct binary 
hypothesis test to make sensing decision. In order to improve the detection accuracy, 
the filtered samples inside of the range (�1, �2) can be exploited. Since it is impossible to 
give an accurate local decision by relying on those detection values, we consider send-
ing them to the fusion center for further process. Soft fusion will be more reasonable 
choice, which enables the above fuzzy test statistics to participate in the final decision 
[38]. Therefore, the credibility degree can be defined to quantify the reliability of the test 
statistics lying between two thresholds. Specifically, the credibility degree should be dis-
cussed by the two hypothesis as follows.

Under hypothesis H0 , we define the credibility degree of SU i as:

Taking the expressions of µi0 and δ2i0 , it can be observed that the theoretical credibil-
ity is equal to 0. Considering that the uncertainty of the noise and the limited number 
of samples in the actual environment, Ri(H0) should be estimated within a permissible 
error range, i.e., Ri(H0) ∈ [−ξ , ξ ] . ξ represents a small constant, which can be defined 
according to relevant environmental factors.

Similarly, the credibility degree of SU i under hypothesis H1 will be defined as

To distinguish the credibility degree in two cases, Ri(H1) ≫ ξ should be guaranteed 
strictly.

Next, we can evaluate the reliability of the test statistics according to the credibility 
degree. The mean and the variance of the test statistics from SU i can be expressed as

 where j = 0 or 1.
Therefore, for the SUs in the fuzzy region, there exist two kinds of scenarios:

(1) If the detected values lie between the range of (0, �i,opt) , it prefer to declare the 
absence of PU. In this case, the credibility degree will be calculated by formula (24). 
Only to satisfy with Ri(H0) ∈ [−ξ , ξ ] , it indicates that the test statistics is credible.

(25)Ri(H0) =
M

2
δ2i0 − σ 2

uiµi0.

(26)Ri(H1) =
M

2
δ2i1 − σ 2

uiµi1 = Pi

(

Pi + σ 2
ui

)

.

(27)



























µ̂ij =
1

M

M
�

k=1

�

�xi(k)
�

�

2

δ̂2ij =
1

M

M
�

k=1

[
�

�xi(k)
�

�

2 − µ̂ij]2
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(2) Otherwise, the result will be inclined to the existence of the PU as Ei ∈ (�i,opt ,+∞) . 
At this point, Ri(H1) is used to denote the reliability of the test statistics from SU i . 
If Ri(H1) is greater than the parameter ξ , the test statistics can be sent to FC for 
final fusion.

Fusion process

In our dual threshold energy detection, test statistic greater than upper threshold 
or less than lower threshold can obtain local decision. Because the reliability of the 
local test results of different SUs is different. Therefore, we can further improve the 
performance of cooperative spectrum detection by considering the reliability of each 
user’s local detection results. As for the detected values lying between two thresholds, 
we have not ignored them instead of extract useful samples for further fusion, so as 
to increase performance as well as reliability. To minimize the probabilities of false 
alarm and missed detection, the optimal fusion rule is presented as shown in Fig. 2.

The main steps are discussed as follows:

(1) N  SUs perform local spectrum sensing with the energy detector. Each cooperating 
SU will compared its test statistics with the threshold �1 and �2 , and then decide 
whether to make a local decision or send the sample values to FC. The local deci-
sion is made based on the energy test as follows: 

 Those cognitive independent decision results of local energy detection will be sent to 
FC. And then, the FC employs the optimizing k-out-of-N rule to obtain a final deci-
sion.

(2) If 
∑n

i=1 Si ≥ kopt , it means that the local decisions can be trusted and the existence 
of PU can be determined. The final decision can be obtained as: 

(28)Si =
{

0, 0 ≤ Ei < �1

1, Ei > �2
.

(29)FD = 1, if

n
∑

i=1

Si ≥ kopt

Fig. 2 Fusion process
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(3) Otherwise, it demonstrates that the number of decision SUs is not enough, and 
comprehensive decision should be conducted. Further, for the test statistic in fuzzy 
zone, the credibility degree of corresponding SU will be evaluated. After choosing 
the reliable samples, FC employs the maximum ratio combining method for soft 
fusion, which can be expressed as: 

where m is the number of reliable test statistics. The weighted maximum ratio com-

bining factor wi = γi/

√

m
∑

j=1

γj  , γi = Pi/σ
2
ui.

Then, the local decision results and the combinative fusion results obtained by FC 
will be combined for final decision as follows:

Results and discussion
In this section, we evaluate the performance and present some experimental results to 
verify the feasibility of our proposed method. Due to the influence of noise uncertainty 
are significant, especially if the PU’s SNR is below a certain level, we examine the sensing 
performance on the low SNR scenarios. The range of SNR is varied from − 30 to 0 dB. In 
the experiments, the listening channels are assumed to be additive white Gaussian noise, 
and binary phase shift keying is applied for transmitting the hard decision result to FC. 
Moreover, the number of samples M is equal to 400. The probabilities of the idle and 
the busy state of the PU, p(H0) = p(H1) = 0.5 . We have considered a fast-fading chan-
nel such that hi(k) changes after every 10 transmitted PU samples with δi = 1. According 
to the model proposed in [41], noise uncertainty is generated. The results are obtained 
through monte-carlo simulations over 10,000 runs.

Figure 3 shows the result of the global error probability versus k with different values 
of noise power uncertainty. Based on the dual threshold is determined for the energy 
detection process, the minimum error probability can be obtained as choosing the opti-
mum value of k . Because the optimal voting number varies with SNR and detection 
threshold, MAJORITY has more advantages than OR and AND criteria. From Fig. 3, we 
can observe that the smallest numbers of CRs to get the error rate target are 13, 14, and 
15 with different noise uncertainty, respectively. This demonstrates that an optimal vot-
ing rule can minimizes the error rate and the optimization of the dual threshold should 
take into account of the number of nodes in determining regions. Therefore, by using the 
total error rate criterion, it is possible to mitigate the influence of noise uncertainty and 
increase the spectrum sensing accuracy via joint optimization.

(30)T =























1,

m
�

i=1

wiEi > �i,opt

0, 0 ≤
m
�

i=1

wiEi ≤ �i,opt

(31)FD =











1, if
m

n+m
T + n

n+m

n
�

i=1

Si ≥ 1

0, otherwise
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Figure 4 shows the relationship between the optimal k and the number of CRs in 
decision zones with different values of noise power uncertainty. From the experi-
mental results, we can find that the values of n and the optimal k degrades with the 
increase of noise uncertainty. That is because the determination of threshold depends 
on the uncertainty of noise. When noise uncertainty is high, more nodes will be 
located in the fuzzy zone and no longer suitable for making local decision. Also, the 
result proves that CSS method uses k = ⌈N/2⌉ as MAJORITY fusion rule is not the 
optimal manner especially under noise power uncertainty. The above results also 
show that cooperative detection is an effective method to overcome the influence of 
noise uncertainty on detection performance.

The performance of the proposed method is compared with traditional-ED [3], 
Fuzzy-ED [39] and DIsCOVER [40]. The comparisons are performed for different 
SNRs by setting pf ≤ 0.1 . Figures 5, 6 and 7 show the detection probability of above 
methods with different SNR and different values of noise power uncertainty. It can be 
observed that the spectrum-sensing performance is significantly improved by using 
the proposed dynamic dual threshold cooperative spectrum sensing approach com-
pared with the traditional energy detection methods, particularly under very low SNR 
circumstances. Generally speaking, there is negative correlation between the perfor-
mance of energy detection and the degree of noise uncertainty, especially when the 
CR system operates under low SNR scenarios.

As shown in the results, once the noise uncertainty is involved, the performance of 
the traditional approach can not be good enough for spectrum sensing. For instance, 
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Fig. 5 The detection probability versus SNR under noise uncertainty ( ψ = 1.05)
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Fig. 6 The detection probability versus SNR under noise uncertainty ( ψ = 1.2)
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when the parameter of noise power uncertainty is set to 1.05, traditional-ED can 
maintain detection rate of 65.2% under − 12 dB SNR. However, when the uncertainty 
factor is equal to 1.2, the detection rate under the same scenario is reduced to 41.5%. 
By investigating the effect of the noise power uncertainty on decision threshold, 
Fuzzy-ED and DIsCOVER can demonstrate better performance in aspect of robust 
detection accuracy even under high noise uncertainty, which are shown in Fig. 6. As a 
comparison between those methods, it is clearly shown that our proposed scheme can 
achieve better performance than Fuzzy-ED by 14.3% and than DIsCOVER by 32.7%, 
respectively, at low SNR even in the worst case. That is attributed to the fact that the 
threshold of energy detection in the proposed approach can be adjusted dynamically 
according to the detected SNR when interference and noise fluctuate. The final detec-
tion performance did not deteriorate obviously due to the change of interference and 
noise, and it demonstrates that the applied dynamic detection threshold can mitigate 
the influence of interference and noise uncertainty.

Figures 8, 9 and 10 show the detection probability versus probability of false alarm for 
those methods with noise uncertainty under − 12 dB of SNR values respectively. Low 
false alarm probability enables SUs to access idle authorized bands effectively and greatly 
improve the utilization of  spectrum resources. However, the detection probability has 
also been greatly reduced and it results in the chance of PUs being disturbed by SUs. 
The experimental results reflect the essential trade-off between the detection probabil-
ity and the probability of false alarm. Under low noise uncertainty, such as ψ = 1.2 and 
1.5, the detection performance in traditional-ED declines significantly. By comparison, 

-30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

 D
et

ec
tio

n 
pr

ob
ab

ili
ty

 

Proposed method
DIsCOVER
Fuzzy-ED
Traditional-ED

Fig. 7 The detection probability versus SNR under noise uncertainty ( ψ = 1.5)
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Fig. 8 The detection probability versus false alarm probability ( ψ = 1.05, SNR = − 12 dB)
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Fig. 9 The detection probability versus false alarm probability ( ψ = 1.2, SNR = − 12 dB)
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Fig. 10 The detection probability versus false alarm probability ( ψ = 1.5, SNR = −12 dB)

-25 -20 -15 -10 -5
0

5

10

15

20

25

SNR

 T
he

 n
um

be
r o

f s
am

pl
es

 (×
10

 4
) 

Proposed method
DIsCOVER
Fuzzy-ED
Traditional-ED

Fig. 11 The number of samples required to obtain the target performance



Page 19 of 21Wan et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:22 

our proposed approach can exhibit robust detection performance even in the worst 
case, such as ψ = 1.5. It implies that the thresholds for energy detection in our proposed 
method can be determined dynamically according to noise uncertainty, and the opti-
mal function is used to extract the appropriate trusted nodes to compensate for the 
deficiency of deterministic decision-making. As a result, it can achieve higher detection 
probability than other schemes under the same false alarm probability.

Besides, Fig. 11 shows the number of samples required by different schemes to obtain 
the same target performance of pd = 0.9 and pf  = 0.1 under different SNR conditions. It 
is clearly shown that the number of samples required by the proposed scheme is much 
lower than that other methods to obtain the same sensing performance especially in low 
SNR conditions. At SNR = − 25 dB, the proposed scheme succeeds to reduce the num-
ber of required samples compared to traditional-ED by 68.9%, 34.3% and 25.4% using 
Fuzzy-ED and DIsCOVER, respectively to obtain the same target performance. The 
results can be considered as a significant complexity advantage of the proposed scheme 
because using a large number of samples are not preferred in the design of cooperative 
spectrum sensing because they will decrease the spectrum efficiency.

Conclusions
To solve the problem of low spectrum sensing accuracy under noise power uncertainty, 
an effective dynamic dual threshold cooperative spectrum sensing method was formu-
lated, and an optimizing combinative fusion rule was designed by tracking optimal vot-
ing threshold and credibility of SU’s energy statistic jointly. Simulation results show that 
the threshold of energy detection in the proposed approach can be adjusted dynamically 
according to the detected SNR when interference and noise fluctuate. And it can achieve 
higher detection probability than other schemes under the same false alarm probability. 
In future work, we will study the cooperative work of nodes in cognitive wireless sensor 
networks, and design more energy-saving spectrum sensing schemes on the premise of 
guaranteeing detection performance.
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Appendix
Derivation of Qf  and Qd in Eq. (17)
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