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Abstract 

Multimodal sensors in healthcare applications have been increasingly researched 
because it facilitates automatic and comprehensive monitoring of human behaviors, 
high‑intensity sports management, energy expenditure estimation, and postural 
detection. Recent studies have shown the importance of multi‑sensor fusion to 
achieve robustness, high‑performance generalization, provide diversity and tackle 
challenging issue that maybe difficult with single sensor values. The aim of this study 
is to propose an innovative multi‑sensor fusion framework to improve human activity 
detection performances and reduce misrecognition rate. The study proposes a multi‑
view ensemble algorithm to integrate predicted values of different motion sensors. 
To this end, computationally efficient classification algorithms such as decision tree, 
logistic regression and k‑Nearest Neighbors were used to implement diverse, flexible 
and dynamic human activity detection systems. To provide compact feature vector 
representation, we studied hybrid bio‑inspired evolutionary search algorithm and 
correlation‑based feature selection method and evaluate their impact on extracted 
feature vectors from individual sensor modality. Furthermore, we utilized Synthetic 
Over‑sampling minority Techniques (SMOTE) algorithm to reduce the impact of class 
imbalance and improve performance results. With the above methods, this paper 
provides unified framework to resolve major challenges in human activity identifica‑
tion. The performance results obtained using two publicly available datasets showed 
significant improvement over baseline methods in the detection of specific activity 
details and reduced error rate. The performance results of our evaluation showed 3% to 
24% improvement in accuracy, recall, precision, F‑measure and detection ability (AUC) 
compared to single sensors and feature‑level fusion. The benefit of the proposed multi‑
sensor fusion is the ability to utilize distinct feature characteristics of individual sensor 
and multiple classifier systems to improve recognition accuracy. In addition, the study 
suggests a promising potential of hybrid feature selection approach, diversity‑based 
multiple classifier systems to improve mobile and wearable sensor‑based human activ‑
ity detection and health monitoring system.
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Introduction
In recent times, sensor technologies for health monitoring have advanced greatly due to 
the decrease in the cost and availabilities of sensor-embedded devices. The implementa-
tions and analysis of sensor data generated by these devices are vital in wide areas of 
applications such as smart homes, cyber-physical applications, assisted living, security, 
elderly care, lifelogging, and sports activities. In health-based applications, sensor data 
are analyzed to identify various simple and complex activities such as walking, running 
and doing basic household activities or operating industrial machinery [1]. In addition, 
sensor data analytics provide a mechanism to detect fall and inaccurate posture in the 
elderly population that may present a high risk of fall and Identification of what consti-
tutes actual fall would aid prevention with their negative health cost tendencies [2].

Generally, human activity identification has been explored in various sensors types. 
These include wearable, video, ambient and smartphone-based methods [1, 3]. How-
ever, video-based methods are affected by lightening variability, inability to differentiate 
between target and non-target information during data collection, and issue bother-
ing on user privacy. Besides, ambient sensors devices deployed for collections of data 
such as sound, pressure, temperature and vital signs are mostly installed in particular 
locations and may not be effective for ubiquitous health monitoring [1]. Lately, the use 
of wearable and smartphone embedded sensors for human activity identification have 
also attracted high interest among researchers. Wearable and smartphones are ubiqui-
tous devices with varieties of built-in sensors such as accelerometers, GPS, gyroscopes, 
magnetometer, microphones, etc. for consistent monitoring of physiological signals, 
comprehensive health check, indoor localizations and pedestrian navigations [3, 4]. 
Applications of these devices for identification of various activity details are as results 
of their pervasiveness, continuous tracking of human activity details and provision of 
continuous monitoring through cyber-physical systems. Therefore, wearable and smart-
phone devices provide a better alternative for ubiquitous and continuous monitoring of 
activity details.

Although, there are many studies in human activity detection and health monitoring 
[5–9], they mainly focus on the use of several classification algorithms over extracted 
feature from single sensor modality. Moreover, this approach is built on the assump-
tion that various sensor modalities provide the same statistical properties. In contrast, 
different sensor modalities embedded in mobile and wearable devices provide various 
statistical properties that ensure accurate detection of activity details. For instance, a 
motion-based sensor such as accelerometer measure acceleration forces that dynamically 
sense movement and vibration and ensure dynamic detection of movement patterns. On 
the other hand, gyroscope sensor measure angular velocity and orientation that provide 
complementary information for the detection of activities of similar patterns and strong 
displacement activities [10]. Furthermore, the magnetometer sensor helps to eliminate 
the effects of gravity, ensure independent device orientation, and differentiate between 
sporadic and static activities [11, 12]. Other sensor modalities embedded in mobile and 
wearable devices such as pulse rate, location-based sensor (GPS), altimeter, barometer, 
pressure, and heart rate are inclined to health applications such as energy expenditure 
estimation, strength training during vigorous exercise, mental load identification, health 
status monitoring, and disease management in elderly. Therefore, the use of a single 
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machine-learning algorithm over concatenated feature vectors for human activity detec-
tion might limit their performances. Also, it difficult to understand the contribution of 
each sensor modalities and find optimal features for activity classification. Finally, the 
approach may result in increased misclassification rate and inability to handle high 
dimensional data for comprehensive physical activity detection [3]. According to recent 
comprehensive evaluations of several classification algorithms [13, 14], no single classifi-
cation model is sufficient for a particular human activity detection task.

To provide enhanced performance and diversity in recognition of human activity 
details, multi-sensor fusion strategies have been proposed in recent studies [15, 16], in 
which various sensor modalities outlined earlier are integrated using raw sensor signal, 
extracted features or decisions predicted by individual classification algorithms. The 
central ideas of fusion protocols are to incorporate diverse sensor modalities to increase 
reliabilities, robustness and enhanced generalization of human activity detection frame-
works. In addition, multi-sensor fusion methods help to minimize uncertainty and 
effects of indirect captures which is quite challenging to eliminate with only single sen-
sor modality [17].

Among the various methods for multi-sensor fusion, multiple classifier systems [3] 
that fuse several diverse machine learning algorithms to arrive at superior decisions 
than single classifier provide the best alternative. Multiple classifier systems methods are 
highly recommended to resolve issues on complexity, high dimensionality, and disparity 
in sensor data. This would result in improved accuracy, robustness and generalization of 
activity classification framework. Typical multiple classifier system methods that have 
played a vital role in human activity detection and health monitoring include bagging, 
boosting, sensor feature manipulation, model initialization and stacking ensemble [3, 
18]. These methods take a random sampling of the training data or different weak clas-
sification algorithms to create diversities of opinions integrated through voting, fuzzy 
decision rule, Dempster–Shafer theory or Random committee.

However, few studies [16, 19, 20] have address the issue of multiple classifier system 
methods for human activity identification by utilizing diverse multimodal sensor data 
and classification algorithms. Specifically, these studies only developed protocols to inte-
grate multiple accelerometer sensors attached at different body locations, which limit 
their implementation for robust activity recognition. Furthermore, accelerometer signals 
are sensitive to sensor location, drift and are ineffective for identification of dynamic 
or orientation based activities [21]. In contrast, this study utilizes motion sensors such 
as accelerometer, gyroscope, and magnetometer commonly found in wearable and 
smartphones devices to develop high performance, robust and efficient human activ-
ity recognition framework using multiple classifier system methods. Based on extensive 
comparative analysis, the paper proposes a robust multi-view stacking ensemble algo-
rithm to detect common and complex daily activities. Stacking ensemble [22] is a multi-
ple classifier method that exploits the predictive values of base classification algorithms 
to improve the generalization ability of human activity recognition framework. There-
fore, multi-view stacking ensemble integrates data from multiple heterogeneous sources 
to build robust and efficient systems [23]. In this case, each sensor modality (accelerom-
eter, gyroscope, and magnetometer) depicted as heterogeneous data represents different 
entities and feature space. The motivations for using the proposed multi-view stacking 
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ensemble algorithm is, to utilize complementary but distinct feature vectors from each 
sensor modalities and diversity base classifiers to build robust, flexible and efficient 
activity identification system.

Although recent study [18] have shown that the use of multi-view stacking ensemble 
methods can greatly improve human activity identification for mobile and wearable sen-
sor data. However, there are still issues to tackle in order to implement a comprehensive 
and robust activity detection framework. First, current multi-view stacking ensem-
ble algorithm utilizes the same classification algorithm as base classifiers to train each 
view and combined the predictive values with the same classification algorithm. In a 
recent study in other domain [24], multi-view stacking ensemble produces robust and 
efficient results with the implementation of diverse classification algorithms. Moreover, 
this paper utilized computationally efficient classification models such as decision tree, 
k-Nearest Neighbor, and logistic regression to implement the proposed activity detec-
tion framework. Second, many datasets for human activity recognition show high level 
of class imbalance [6]. Class imbalance problem is a difficult issue in human activity 
identification as it may lead to performance results that produce bias predictive values 
towards the majority activity classes and low performance towards the minority activ-
ity classes. And this issue frequently occurs in human activity identification and health 
monitoring after feature selection to reduce the size feature vectors [6]. The dataset used 
in this paper show some level of class imbalance, in which activity classes such as jump-
ing, ascending and descending stairs have less number of instances compared to walk-
ing activity frequently performed in real life. To solve the problem, we apply Synthetic 
Minority Over-Sampling Technique (SMOTE) to the sensor data to increase the minor-
ity class and this approach improves the performance of our activity identification sys-
tem [25]. Finally, the use of irrelevant feature vectors in human activity classification task 
would lead to overfitting, low performances and increased computation time. The paper 
proposes to implement a bio-inspired meta-heuristic evolutionary search algorithm 
integrated with correlation-based feature selection to produce compact feature vectors.

To overcome the weakness of existing multi-view stacking ensemble method and 
influenced by work done by [18], this study proposes diversity and multi-modal based 
human activity detection by incorporating enhanced methods to improve performance 
generalizations. As such, the goal of the paper is to evaluate the impact of the proposed 
multi-view stacking ensemble algorithms to improve the performance of human activ-
ity detection systems. In addition, we provide comprehensive comparison of the pro-
posed methods against single sensor modality, feature-level fusion and three baselines to 
show significance. The experimental results and comparison provide practical applica-
tions for robust activity detection and monitoring, and serves as references for further 
implementation of multi-view based human recognition system. In addition, the exten-
sive comparison in the paper will act as start-of-art methods to evaluate and compare 
future implementation of human activity detection framework, multi-sensor fusion and 
multiple classifier systems.



Page 5 of 44Nweke et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:34 

Contributions

The major contributions of this paper are presented below:

1. To propose a robust and efficient multi-view stacking ensemble algorithm for human 
activity identification and health monitoring. The developed algorithms are in three 
phases of implementations. First, k-Nearest Neighbors and decision tree were used 
as base classifiers to train each view in the dataset and k-Nearest Neighbors as meta-
classifier (k-NN–DT–k-NN). Second, logistic regression, k-Nearest Neighbors and 
decision tree were used as base classifiers and logistic regression was used as meta-
classifier (LR–k-NN–DT–LR). Finally, logistic regression, k-Nearest Neighbors and 
decision tree were deployed as base classifiers and average performance results of 
k-Nearest Neighbors and logistic regression as meta-classifiers (k-NN–DT–LR–
(k-NN–LR)); we built the models after an extensive evaluation of the four single clas-
sification algorithms used in this paper. We compare both the proposed multi-view 
stacking methods, feature-level fusion, and single classifier performances;

2. To evaluate the impact of bio-inspired metaheuristic evolutionary search algorithm 
integrated with correlation based features selection algorithm to produce compact 
feature vectors for implementation of computationally efficient human activity iden-
tification framework.

3. To demonstrate the impact of Synthetic Minority Over-Sampling Technique 
(SMOTE) to balance the minority activity classes and reduce bias towards majority 
activity classes.

4. To provide analysis of the recent approaches for multi-sensor based human activity 
recognition.

5. Extensive experiments to explore the effectiveness of the proposed methods using 
two publicly available datasets and compare the significance of the multi-view stack-
ing ensemble with weighted majority voting, Bagging and Random Subspace ensem-
ble [16, 26, 27] based multiple classifier system methods.

Outline

The rest of this paper is structured as follows. “Review of related works” section pre-
sents the background and related works. “Problem formulation” section describes prob-
lem formulation for human activity identification using multi-view stacking ensemble 
methods. “Proposed methodology” section presents the multi-view stacking ensemble 
algorithm architecture that includes signal processing, feature extraction and normali-
zation, feature selection and proposed algorithms. “Experiments” section discusses the 
experimental setups; the results obtained at each evaluation and compare the multiple 
classifier system methods with existing methods. “Conclusion and future works” section 
concludes the study.

Review of related works
Human activity recognition, detection, identification and monitoring are terms used 
interchangeably by various studies that implement approaches to assess the level of 
physical activities undertaken by individual using motion sensors [3, 28, 29]. In addition, 
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the process encompasses procedures for implementation of mobile and wearable sensors 
based activity assessment using various sensor modalities. These procedures include 
data collection; signal processing, feature extraction, feature selection and activity clas-
sification. For instance, Biagetti et al. [30] proposed wireless architecture for data acqui-
sition and monitoring of sport activities using surface electromyography (sEMG) and 
accelerometer sensors. The authors achieved 83.7% accuracy using k-Nearest Neighbor 
classifier. In a recent study, Bhattacharjee et al. [31] evaluated various machine learning 
algorithms for daily activity monitoring. Machine learning algorithms evaluated using 
motion sensors collected with smartphone device include support vector machine, per-
ceptron neural networks, backpropagation neural networks and recurrent neural net-
works. Further information on human activity monitoring using various sensor modality 
are reported in recent studies [3, 32]. In this paper, our review is focused on studies that 
developed protocols to integrated data, features and multiple classification algorithms 
for the purpose of activity monitoring and assessment.

A number of fusion methods have been proposed for the implementation of compre-
hensive human activity identification and monitoring using multiple sensors in recent 
years. These approaches are grouped into data-level, feature-level, and multiple classifier 
(decision fusion) frameworks. These methods integrate different sensors, feature vectors 
and classification algorithms for the purpose of human activity detection, assessment, 
prediction and monitoring. The data and feature-level fusion discussed in this section 
are those related to human activity recognition and monitoring using motion sensors of 
various modalities. In addition, the multiple classifier system methods are those related 
to activity prediction and classification. Moreover, we discuss the sensor used, the num-
ber of subjects for data collections, number of activities, sensor types used, strength, 
weakness of each method. Table 1 summarizes the various metrics of each paper imple-
mented recently for human activity detection in the area of data fusion, feature-level 
fusion, and multiple classifier systems.

Data‑level fusion

The use of a single source of information for human activity identification and health 
monitoring is challenging for effective recognition of complex activity details, compre-
hensive health monitoring and follow up recommendation [3]. Therefore, data or sen-
sor level fusion is required to ensure effective activity classification. Consequently, data 
level fusion methods integrate raw sensor data obtained from various sensor modalities 
to improve performance efficiency and reliability. Recently, various methods have been 
implemented to fuse multiple sensors. Some of these methods include Dempster–Shafer 
theory (DST), Bayesian networks (BS), Kalman filtering, particle filter and graph-based 
theory [3, 33]. For instance, Tolstikov et al. [34] proposed Bayesian and Dempster–Shafer 
theory to combine various binary sensor data for daily activity detection of elderly citi-
zens. The authors processed the sensor separately with dynamic Bayesian network and 
Dempster–Shafer theory giving rise to different operational efficiency and accuracy. 
Similarly, Amoretti et al. [35] evaluated the use of Bayesian Network for the fusion of dif-
ferent sensor modalities in ambient assisted livings environments. Tunca et al. [10] pro-
posed the fusion of motion sensors (accelerometer and gyroscope) data using Kalman 
filtering for pathological gait analysis. Other modified versions of Kalman filtering have 
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also been implemented such as extended Kalman filtering, Quaternion based extended 
Kalman filtering and Rao-Blackwellization unscented Kalman filtering to deal with vari-
ous challenges such as sensor orientation, postural instabilities and sensor placements in 
human activity detection [36, 37].

Furthermore, Qiu et al. [4] proposed an extended Kalman filtering approach to inte-
grate motion sensors for pedestrian navigation application and noted that such method 
provides a robust algorithm for human activity detection. Sebbak et  al. [38] proposed 
a Dempster–Shafer theory method to fuse varieties of sensor modalities for human 
activity identification and comprehensive health monitoring. The use of Dempster–
Shafer theory helps to reduce uncertainty and imprecision in sensor representation and 
increases reliability. While Phan et al. [39] developed a graph-based theory to integrate 
social sensor and physical sensor data for context-aware activity recognition in order to 
reduce computation complexity in mobile-based implementation.

The main advantages of data-level fusion are the ability to provide simple, real-time, 
computationally efficient and problem independent implementation of human activ-
ity recognition [33]. However, some of the data level fusion methods are challenging to 
handle long sequence activity at real-time (such as Dempster–Shafer and Bayesian the-
ory). In addition, data-level fusion is sensitive to sensor positions, noise and sometimes 
impractical to implement in real-time [40].

Feature‑level fusion

Integration of feature vectors extracted from various sensor modalities is the most 
implemented fusion methods for human activity recognition. Feature-level fusion meth-
ods combine features extracted from mobile and wearable sensors such as ECG, GPS, 
accelerometer, gyroscope, magnetometer, visual sensors, etc. using various machine 
learning algorithms. The main attractions of feature-level fusion are the ability to fuse 
sensor from diverse devices and less sensitive to noise. In the last few decades, various 
studies have been published for human activity classification using feature level fusion. 
Here, this paper only discusses recent implementation while further discussion can be 
found in a recent review in the area [3, 7].

Sensor fusion using feature concatenation methods are simple to implement with 
less computation complexity and various studies in human activity recognition have 
proposed several techniques in these regards for inertial sensor and multimodal sen-
sor fusion. For instance, Spinsante et al. [5] investigated frameworks for monitoring of 
physical activities in the workplace to minimize sedentary lifestyle by fusion of motion 
sensors using a decision tree classification algorithm. The techniques categorized the 
activities into an active or non-active, developed a mechanism for feedback update, and 
achieved high-performance accuracy. Also, to recognize concurrent activities, Chen and 
Wang [8] proposed a hierarchical algorithm for the fusion of accelerometer and gyro-
scope. Concurrent activities are performed simultaneously and include walking while 
brushing teeth, making a phone call while preparing a meal or watching TV and such 
activities require sensor of multi-modalities to recognize. In [41], the authors proposed 
aggregation of features extracted from inertial motion sensor for real-time posture 
detection and how determine the correlation between posture and action. Further-
more, the method was deployed to correct the effect of activity drift in pre-impact fall 
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detection, recognition of transition activities, human motion tracking, real-time context-
aware navigation, and pedestrian location navigations. Zdravevski et al. [42] developed 
enhanced and real-time multimodal sensor-based activity detection and monitoring 
using logistic regression with a fusion of inertial sensors and physiological signals. Fea-
ture concatenation methods that involve the fusion of vision based sensors and inertial 
sensors have also been proposed using machine learning for human activity detection 
and health monitoring. The fusion methods enable identification of mobility changes, 
complex and concurrent activity details and behaviour tracking [43]. However, each sen-
sor modalities provide different statistical properties for recognition of particular activ-
ity details and maybe not be optimal to aggregate these features before applying learning 
algorithms [44]. Moreover, the fusion of vision-based sensors with other sensor modali-
ties is still challenging due to issues bothering on privacy and lack of scene semantics.

Recently, Fong et al. [45] proposed shadow features for efficient activity classification 
and health monitoring. The proposed feature vectors were computed from the dynamic 
nature of the human body motion and machine-learning algorithms were applied to 
infer dynamic body movement and underlying momentum of activity details. The main 
improvements of the proposed shadow features over previous studies are the incre-
mental nature, simplicity and low computation time of shadow features for mobile and 
wearable device implementation. Shoaib et al. [9] evaluated the fusion of motion sensor 
for complex human activity detection using machine-learning algorithms. The authors 
extracted computationally efficient feature vectors from accelerometer, gyroscope, and 
magnetometer and combine these features using Naïve Bayes classifiers. On the other 
hand, Köping et  al. [46] proposed comprehensive frameworks to integrate varieties of 
sensor modality by utilizing a codebook feature learning approach. The proposed frame-
work integrates features extracted from smartphones, smartwatches, and smart glasses. 
The use of a codebook approach to extract underlying sensor data helps to summarize 
the local characteristics of the data and thereby improve activity detection accuracy. In a 
related method, Nishida et al. [47] evaluated a Gaussian mixture model-based fusion of 
accelerometer and acoustic sound for human activity recognition. Feature vectors were 
extracted from the sensors separately and then trained with a Gaussian mixture model, 
while combination was done using a weighted likelihood estimate to recognize indoor 
and outdoor activities. Also, San-Segundo et al. [48] evaluated motion sensor data fusion 
using features computed from time and frequency domain transformation of each sen-
sor data. The authors modelled time variation in activity details that makes the algo-
rithm robust against degradation. In addition, they propose long short-term memory to 
model long-term dependencies in activity variation.

In addition, a hybrid approach that combine conventional feature and automatic fea-
ture representation was proposed by Li et  al. [49], in which the authors comprehen-
sively evaluated both handcrafted features extraction methods and deep learning based 
features for human activity recognition. The authors concluded that the fusion of two 
deep learning algorithm (CNN and LSTM) provide better performance results. Fur-
thermore, Dobbins et al. [6] propose a fusion of features extracted from multiple accel-
erometers attached at different body position for comprehensive health monitoring 
and activity recognition using 10 classification algorithms. The proposed method was 
enhanced by integrating visualization protocol to enable real-time activity recognition 
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using smartwatches. Finally, Xu et al. [50] proposed three-phase multi-level complemen-
tary feature learning approach to integrate low-level, mid-level and high-level features 
extracted from the motion sensor using kernel-based support vector machine. More-
over, evaluation of the proposed approach on three publicly available datasets shows 
enhanced performance improvements against existing low-level methods.

However, issues such as feature incompatibility, robustness to sensor failure and vul-
nerability to uncertain noise or interference due to variation sensitivity greatly reduce 
the performance of feature-level fusion methods. Furthermore, finding optimal features 
and feature extraction methods require extensive domain knowledge which is time-con-
suming [19]. Besides, there may be an issue related to high computation time from the 
extraction of semantic-based features and dictionary that results to inclusion of irrel-
evant features. The above challenges and limitations have made the use of feature-level 
fusion and single machine learning impractical for robust and efficient implementation 
of human activity detection system.

Multiple classifier systems

Recently, multiple classifier system methods that integrate decisions obtain from differ-
ent machine learning algorithms to improve activity identification and comprehensive 
health monitoring have received great deal to research efforts [3]. The use of deci-
sion fusion approaches for human activity identification is necessitated by the need to 
improve the performance accuracy, robustness, efficiency, and generalizability of the 
single classification algorithm. Hence, multiple classifier systems fusion is appropriate to 
handle complex activity details, high dimension sensor data, and uncertainty by deploy-
ing systematic integration of individual classifier to produce consensus opinions. In 
addition, multiple classifier system methods combine heterogeneous and homogeneous 
classifiers to reduce the ambiguity that is unlikely when such classifier is used alone [15]. 
Moreover, multiple classifier system methods for human activity classification provide 
a mechanism to resolve issues related to diagnostic errors using classifier diversity, bias 
and variances, reduce computation complexity and better algorithm representation [3]. 
Therefore, integration of multiple decisions from individual classifier minimize issues 
related to overfitting, increase the probability of finding optimal solutions and enable 
efficient implementation of learning algorithms. Implementation of multiple classifier 
system would help to resolve issues such as pattern variations, signal degradation, sensor 
failures, and spatial variability of data, environmental fluctuation and insufficient com-
putation resources can be minimized by the use decision fusion approaches for human 
activity classification [33, 51].

Here, we review some of the studies that recently developed multiple classifiers for 
human activity detection to set the stage and need for multiple classifier systems when 
developing human activity detection and health monitoring system. Gjoreski et al. [27] 
proposed multiple context decision ensemble for energy expenditure estimation from 
physical activity details. The authors trained multiple regression-based algorithms on 
different contexts (features) extracted from multiple sensors and combined the individ-
ual approach using majority voting. The proposed multiple context ensemble approach 
outperformed other ensemble algorithms such as Random space and bagging ensemble 
methods. Chowdhury et al. [19] proposed posterior adapted class label fusion method to 
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integrate multiple accelerometer sensor data attached at different placement positions of 
the body. The proposed method calculates class weights for each model and then fine-
tuned these weights based on score functions using the posterior probability of the pre-
dicted class labels. Then, the class label with the highest score was selected as the final 
prediction. In their recent implementation, the authors further [26] evaluated different 
methods to combine decisions predicted by classification algorithms for human activity 
recognition. These include weighted majority voting, Naïve Bayes combiner and Behav-
ior Knowledge Space (BKS) using multiple accelerometer sensor data. They noted that 
the majority voting outperformed ensemble learning approach such as random forest 
and bagged decision tree.

In a related study, Catal et al. [52] evaluated ensemble methods to integrate decisions 
generated with classification algorithms such as decision tree, multi-layer perceptron 
and logistic regression for human activity identification using accelerometer sensor data 
collected from 36 subjects. The evaluation showed the impact of decision-level fusion 
for human activity classification as the authors achieved 98% accuracy with an average of 
probability fusion method. Tripathi et al. [53] investigated the fuzzy decision rule algo-
rithm that uses simple combination rule for adaptive based human activity identifica-
tion. The authors formulated new classifier as a batch of new activity details. In addition, 
Peng et al. [54] proposed hierarchical complex human activity recognition frameworks 
by fusion of acceleration and physiological signals. The paper utilized diverse feature 
vectors computed from various sensor modalities such as acceleration and physiological 
signals by exploiting their differing modalities. Moreover, clustering algorithms were uti-
lized to generate a component of complex activities and topic model to generate latent 
semantic of complex activity details. The output of the final classification is combined at 
the classifier level. They noted that the approach helps to reduce information loss and 
burden of data annotation. Guan and Plötz [55] implemented epoch bagging method 
for human activity identification by utilizing probabilities selection of the subset of the 
original data for mini-batch based training of Long Short Term Memory and stochastic 
based gradient descent learning. The main advantage of the approach is the ability to 
generate robust decision from each epoch values to improve the performances of the 
human activity detection framework.

Recently, a hierarchical algorithm that integrates sensors trained separately using each 
machine learning algorithm was developed by [56, 57]. The hierarchical fusion method 
train acceleration sensor attached at different body positions and combine the feature 
vectors with an asymmetrically weighted decision provided by each sensor with recall 
and precision as metrics for inclusion and rejection. The proposed method helps to 
resolve the problem of sensor anomalies and failures. Nonetheless, the methods were 
only applied on accelerometer sensor attached on different body locations. Besides, 
accelerometer is inefficient in recognition of the activity of similar patterns such as 
descending or ascending stairs or concurrent activities that include reading while watch-
ing TV, cooking while making calls [58]. Also, Peng et  al. [59] proposed hierarchical 
complex activity recognition by fusion of accelerometer, location, and vital sign data. 
The data were processed and learned separately and combined at the classifier level in 
order to achieve generalizability and independence of different activity contexts. While 
Saha et al. [16] propose a two-phase ensemble algorithm for human activity recognition 
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by exploiting position specific condition to improve performance results. Therefore, the 
training and testing data were drawn from different placement positions.

One of the early studies for multi-view stacking ensemble for human activity recog-
nition was proposed by [18] to independently combine feature vectors extracted from 
the accelerometer and acoustic sound sensor. In this case, each of the accelerometer and 
sound sensor was trained with Random forest as the base classifier and the predicted 
labels of each sensor were combined using Random Forest Meta-classifier. They noted 
that the stacked generalization fusion approach helps to preserve the statistical charac-
teristics of each sensor thereby enhancing the performance accuracy and reliabilities of 
the activity recognition system. However, acoustic sensor data are ineffective in recog-
nition of different activity details such as ambulatory activities, health monitoring and 
assisted living for the elderly and fall detection. Others include fitness tracking for effec-
tive living, postural identification and mobility changes [4, 9, 60]. Identification of these 
activities provides comprehensive health condition and well-being in people with spe-
cial need and their health status for caregivers. The under-listed activities are accurately 
and effectively performed using motion sensors that involve whole body motion or local 
interactions with the sensor attached to the objects. Therefore, the acoustic sound sen-
sor is only deployed for differentiating between indoor and outdoor activities [47].

Second, this present paper differs distinctly from previous studies by proposing an 
innovative and unified framework for the evaluation of feature-level and multiple clas-
sifier systems for human activity recognition. The paper comprehensively evaluates 
the impact of class imbalance issues and meta-heuristic feature selection approach for 
selection of relevant and compact feature vectors to enhance human activity recogni-
tion framework and reduce computation time. Third, the paper implement diversity 
based multi-view stacking ensemble algorithm to improve human activity detection by 
the integration of different classification models at both base classifiers and meta-clas-
sifier level. The use of different classification models for multi-view stacking ensemble 
algorithm provides flexibility, enhanced performance generalization, robustness, reduce 
uncertainty and ambiguity by classifier-level fusion of outputs generated by various clas-
sification model. Finally, the paper provides an extensive evaluation of the proposed 
methods using challenging motions sensor data and the performance results indicated 
improvement over baseline methods. The summary of recent studies on human activity 
recognition using data fusion is presented in Table 1.

Problem formulation
This paper aims to investigate how to improve the performance of human activity detec-
tion algorithm through a multi-view ensemble approach. To achieve that, the paper 
extensively investigated two fusion methods for human activity recognition. The meth-
ods investigated are feature-level fusion and multiple classifier systems as discussed in 
“Review of related works” section. In feature level fusion, features extracted from accel-
eration ( acci ), gyroscope ( gyri ) and magnetometer ( magi ) sensors were concatenated and 
trained with a single classification algorithm. The input to the activity detection frame-
work are feature vectors extracted from each sensor modality. The concatenated features 
Fi and activity classes bi are represented in the expression in Eq. (1).

(1)Fi =
(

acci ⊕ gyri ⊕magi, bi
)
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Then, the classification algorithm is used to map the training feature vectors to the 
activity classes and this process is shown in Eq. 2,

where M is the classification algorithm and bi is activity classes.
However, the use of a single machine-learning algorithm on concatenated features 

would fail provide an efficient and robust activity detection framework. Therefore, the 
paper further proposed a second evaluation method termed multi-view stacking for 
human activity recognition. This multiple classifier system (ensemble algorithms) meth-
ods train the feature vectors extracted from the individual sensor (accelerometer, gyro-
scope, and magnetometer) using different classification algorithms and then fused the 
intermediate output at the classifier level. Given the motion sensor data, Xs = (F , b) that 
represent the training feature vectors generated from the motion sensor at each time 
windows. Where F  is the feature vectors and b is the activity classes.

Here, the motion sensor represents the accelerometer, gyroscope, and magnetometer 
sensor data described earlier. The aim is to develop an innovative evaluation proce-
dure to build adaptive decision fusion for human activity detection. Following the same 
approach as depicted in [59], we detail the problem formulation as follows.

represent the accelerometer, gyroscope, and magnetometer while bi representing the 
activity details (Eq. 3). The training data (features from each sensor), Xs are trained with 
M number of base classifiers, where M = {m1, . . . . . . ,mn} represents individual classi-
fiers. We have two or three base classifier combination in three implementation proce-
dures. The predicted class label after training the first-level classifier is shown in Eq. (4)

where Mn(x) is the prediction probabilities returned by each base classifiers Mn when 
input Xs is trained with an activity label b.

Then, the output prediction probabilities generated by each base classifiers are then 
combined with the meta-classifier as shown in Eq. (5).

where P =
{

M1(acc),M2(gyr),M3(mag)
}

 and MSC is the multiple classifier systems. 
“Decision fusion using multi-view stacking ensemble method” section presents further 
explanation of procedures for training the multi-view stacking method for human activ-
ity detection.

Proposed methodology
The proposed multiple sensor modalities fusion for human activity identification consist 
of six steps as depicted in Fig. 1.

These steps include data collection, signal processing, feature extraction and normal-
ization, feature selection and classification of physical activity details. The experimen-
tal evaluation steps consist of (1) single sensor analysis, (2) sensor fusion using feature 
concatenation and (3) multi-view stacking that combine the predictive probabilities of 
different sensor modalities before fusion. In addition, the study evaluates the impact of 

(2)M : Fi → bi,

(3)F =
(

acci, gyri,magi, bi
)

,

(4)b ← arg maxMn(x),

(5)MSC : P → b,
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class imbalance by using Synthetic minority over-sampling techniques (SMOTE) to bal-
ance the activity classes with less number of instances.

The first step in human activity detection is data collection (Fig. 1). Here, two datasets 
collected with wearable devices named Dataset 1 and Dataset 2 were used in this study. 
The datasets contain different data of various modalities and include accelerometer, 
gyroscope, and magnetometer collected at a frequency of 204.8 Hz and 50 Hz respec-
tively. Sensor data collected with mobile and wearable sensor are corrupted with sen-
sor impurities due to signal degradation, therefore the signal processing help to remove 

Fig. 1 Proposed human activity detection framework
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noise before feature extraction as shown in the step. The third step of the process is fea-
ture extraction.

Feature extraction is the most important aspect of human activity recognition as the 
process helps to transform the raw signal into descriptive feature vectors. Here, differ-
ent features broadly categorized into time and frequency domain were extracted from 
the raw sensor data. These features were then normalized to limits the features to cer-
tain ranges and that have shown to enhance classifiers’ performances. “Feature extrac-
tion and normalization” section provide further explanation on the feature extraction 
process.

Furthermore, most of the features extracted may not contribute positively for activity 
identification; the paper proposes a combination of bio-inspired metaheuristic feature 
selection aided by correlation based features selection to select the most discriminant 
features before activity classification. “Feature selection” section provide full descrip-
tion of feature selection processes adopted. The final steps depicted in the proposed 
method are single sensor analysis, feature-level fusion and multi-view stacking ensemble 
approach. In single sensor analysis, feature vectors extracted from each sensor modality 
and placement is fed to classification algorithm to build model for activity detection. On 
the other hand, feature-level fusion stage integrate feature vectors extracted from the 
sensor modalities before activity detection using machine-learning algorithms. Finally, 
multi-view stacking approach integrate decision from different classification algorithms 
and sensor modality. “Decision fusion using multi-view stacking ensemble method” 
section describes the multi-view stacking ensemble algorithms. We applied these steps 
simultaneously to all the positions utilized in experimental settings. The positions con-
sidered in this study include the ankle, chest, and wrist.

In Fig. 1, these steps are depicted in details.

Signal processing

Wearable and mobile inertial sensors (accelerometer, gyroscope, and magnetometer) 
based human activity classification requires sequence of procedures to process the sen-
sor data before actual activity classification using different machine learning algorithms. 
Raw sensor data are corrupted by signal artifacts such as noise, missing values due to 
signal degradation or loss of battery life. We converted the raw sensor data, made of 
three axes (x, y, z) to time series and then filtered to remove noise. Filtering is important 
in human activity classification framework in order to remove low-frequency data, the 
geometric bias of sensor dimension, improve correlation and linear relationship between 
each data point [16]. In this study, linear interpolation was used to input missing val-
ues and the values at the end of the activity sequence were replaced with the previous 
activity data. This approach is very effective data transformation and signal processing 
method in human activity recognition system [11, 19]. To reduce computation time and 
accurately recognize activity details, data segmentation approach was applied on the raw 
sensor data to divide the data into a series of segments. The sliding window approach is 
considered in this study for its effectiveness in human activity detection [61].

The most important consideration in the sliding window approach is how to set the 
window size and this has proven to be important in recognition of certain activity 
details [62]. Here, the paper empirically set the window size and utilize previously tested 
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window sizes to enable accurate comparison with other published works in human activ-
ity recognition. For Dataset 1, we adopted the procedure recommended in the original 
research [63] to segments the data using 5 s (1024 samples with 204.8 Hz sampling rate) 
with 50% overlapping at each window size. While Dataset 2, a window size of 2-s (100 
samples with 50 Hz sampling rate) was used as recommended in [19] without overlap-
ping to accurately capture the activity details. We choose the small window sizes because 
most of the activities involved in the study are ambulatory activities that require small 
window sizes to recognize. These include activities such as walking, descending stairs, 
running or jogging [42, 64]. Each of the sensor modality (accelerometer, gyroscope, and 
magnetometer) used in this study were separately processed by applying the linear inter-
polation function L() and data segmentation function Sg() developed and then saved for 
feature extraction.

Feature extraction and normalization

Feature extraction process reduces the signal into feature vectors that are discriminative 
enough to describe the activity details, minimize activity classification error and reduce 
computation time. In human activity classification, several features have been proposed 
for human activity detection which can be broadly classified into time and frequency 
domain features [65]. Time domain features involve the extraction of signal or statisti-
cal metrics from raw signals and show how signal changes with time. The main advan-
tages of time domain features are their ability to provide low computational time and 
are applicable for online and real-time activity detection. In contrast, frequency domain 
features help to show the distribution of signal energy and are efficient for recognition 
of repetitive activities [6, 9]. Therefore, given window sizes of dt seconds ( N = fs × dt 
samples), we extracted different feature vectors to characterize the original signal and 
present a compact representation of the activities performed at each window samples. 
Here, fs represent the sampling frequency of each inertial signal used in this study. For 
each 3-axis of the motion signal (accelerometer, gyroscope, and magnetometer), we 
extracted 18 feature vectors of both time and frequency domain listed in Table 2. Fifty-
four features were extracted from each motion sensor. From Dataset 1, these features 

Table 2 List of extracted features from each sensor modality

Feature Formula Feature Formula

Mean (µ) s = 1
N

∑N
i= 1 si

Root mean square ( Rms) rms =

√

1
n

∑N
i=1 (si)

2

Median ( Me) mediani(si) Peak amplitude ( Pa) max(si)−min(si)

Maximum ( Ma) maxi(si) Pitch angle ( Pk)
arctan

(

xi√
y2+x2i

)

Minimum ( Mi) mini(si) Signal power ( Sp)
∑N

i=1 s
2
i

Harmonic mean ( Hm) 1
N

∑n
i=1

1
si

Kurtosis ( Kr) E
[

(si − s)4
]

/E
[

(si − s)2
]2

Standard deviation ( σ)
σ =

√

1
N

∑N
i=1

(

si −
_
s
)2 Skewness ( Sk)

E

[

(

si−s
σ

)3
]

Variance ( σ 2) σ 2 =

∑

(si−s)2

N
Energy ( E)

∑N
i=1 [si ]

2

length(si)

Coefficient of variation ( Cv) σsi
µsi

Entropy ( H) −
∑N

i=1 [Si ] log [Si ]
length(Si)

Interquartile range ( Ir) Q3(si)− Q1(si) Mean frequency (µF) ∑N
i=1 (isi(F))

/

∑N
j=1 sj(F)
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were extracted from accelerometer and gyroscope placed on the ankle, chest, and wrist. 
Therefore, we computed 324 feature vectors from Dataset 1. We extracted the same set 
of features from Dataset 2 (accelerometer, gyroscope, and magnetometer) placed at the 
ankle and wrist. In total, 324 feature vectors were extracted from Dataset 2. The feature 
sets extracted have been subdivided into different categories [66] as explained below.

a. Time domain features: Time domain features extract statistical or mathematical 
quantities from raw signals in order to depict signal characteristics. The time domain 
feature vectors extracted from raw sensor data are a measure of central tendencies, 
degree of variation and distribution of signal shape.

 i. Measure of central tendency These features describe how the signal is close 
to the central values and depict the location of the central points. Features 
extracted as measure of central tendency include mean, maximum, minimum, 
median and harmonic mean of each 3-axis of the raw signal. These features 
require less computation time to process with minimal computational require-
ment. Furthermore, measure of central tendency based features have shown 
significant performance improvement for posture recognition, differentiation 
of static and dynamic activities and energy expenditure estimation [3, 65].

 ii. Measure of variability These feature set represent degree at which the motion 
sensor signals are distributed over a distances between the central points. 
The higher the degree of variation, the worse the distribution of the raw sig-
nals. The feature extracted as measure of variabilities are standard deviation, 
variance, coefficient of variation, interquartile range, root mean square, signal 
magnitude area, magnitude of area under the curve, pitch angle, signal power 
and peak amplitude. Measure of variability based features have low computa-
tion cost and important to determine the stability and probability distribution 
of raw signals [65, 66].

 iii. Distribution of shape Signal based feature helps to understand the shape and 
distribution of the raw sensor signal. The distribution of shape-based features 
computed from the raw sensor signal includes skewness and kurtosis. Skew-
ness measures the asymmetric probability distribution of the signals while kur-
tosis determines the flat or spike of the sensor data distribution. Distribution 
of shape-based features have extensively shown impressive results in human 
activity detection, health monitoring and related applications [3, 19, 66].

b. Frequency-based features: Frequency based features are important for the analy-
sis of repetitive activities. In addition, they are required in human activity recogni-
tion. Here, the raw signal data were transformed into the frequency domain using 
the Fast Fourier Transform (FFT) function. From the frequency domain data, we 
extracted different feature vectors. Feature vectors extracted from the transformed 
data include energy, entropy and weighted mean frequency of the transformed signal 
data. Entropy provides a means to differentiate between signals with the same energy 
but corresponds to different activities. These features were extracted following the 
procedure explained in [19]. Moreover, the features have been previously used for 
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the detection of activities such as cycling, jogging, running and so on [65]. All the 
feature vectors extracted from both Dataset 1 and Dataset 2 are listed in Table 2 with 
their corresponding formula used to calculate each feature.

After the feature extraction process, the computed features were then normalized to 
zero mean and unit variance in order to reduce the features to certain ranges. This pro-
cess has proven to be effective for improved classification accuracy in the human activity 
detection system especially for features with dynamic range. The Z-score normalization 
procedure [26, 67] was utilized in this study. The mean value of the feature vectors was 
subtracted from the individual signal data point and divided by the standard deviation. 
The Z-score normalization is shown in Eq. (6) below, where x̄ and σ represent the mean 
and standard deviation of each data point respectively.

Feature selection

However, not all the extracted feature vectors from each sensor modality used in this 
study (accelerometer, gyroscope, and magnetometer) shown in Table 2 may be useful for 
developing effective and efficient activity detection framework. The use of unnecessary 
feature would lead to overfitting, low performance and high computation time [3, 26]. 
Therefore, we deployed feature selection methods to reduce the features and increase 
performances. In this case, optimal features vectors were selected by utilizing different 
feature selection methods [68]. However, choosing the best feature selection methods 
to reduce the dimensionality of the data is still challenging as different feature selec-
tion approach works differently in different training data. For this reason, we created 
an intersection of two feature selection methods. Here, the study proposes bio-inspired 
meta-heuristic (evolutionary search algorithm) integrated with correlation-based fea-
ture selection to select the most appropriate feature vectors and reduce redundancy 
and computation time. The evolutionary search algorithm is a meta-heuristic and wrap-
per-based feature selection method while the correlation-based feature is a filter based 
method. The combination of these two feature selection methods would help to select 
the most discriminative feature vectors. First, we applied correlation based features 
selection on the training data to estimate the correlation between each class and feature 
vectors. The features were ranked based on the correlation and features with correlation 
threshold of > 0.15 were selected to be used for further dimensionality reduction using 
bio-inspired metaheuristic feature selection approach. Correlation-based feature selec-
tion approach is fast and efficient to select discriminant feature vectors and to effectively 
rank the computed features. To further improve the features and classification results, 
correlation-based features are integrated with Bio-inspired feature selection (evolution-
ary search algorithm) to further reduce the dimensionality of the data. Using correlation 
based features with selection criteria, we selected some feature vectors, but these feature 
vectors may not be representative enough to ensure accurate activity classification. On 
the other hand, an evolutionary search algorithm is a form of the meta-heuristic search 
algorithm that simultaneously explores several points in search space and navigates 
the search space stochastically to avoid being trapped in local minima. Therefore, the 

(6)x′ =
xi − x̄

σ
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evolutionary algorithm maintains an individual population over the training instances 
and time as depicted in Eq. (7)

where x represent the potential to the problem at hand. Evolutionary search algorithm 
exploits biologically inspired mechanism inform of recombination, mutation, fitness, 
and selection to iteratively select the best training instances for activity classification and 
health monitoring [69, 70]. The processes for developing an evolutionary algorithm for 
feature selection are described below:

1. For initial set value t = 0 , construct new population values p(t) =
{

xti , . . . . . . , x
t
n

}

 
that represent a set of starting point to explore evaluation instances;

2. Evaluate each selected features to give their abilities to predict the intended target 
which is some measure of its fitness;

3. Select a new population over training instances p(t + 1) by stochastically selecting 
the individual from the initial population p(t);

4. Some of the new population are further transformed by means of genetic operators 
to form new solutions.

5. Step 1 to 4 are recursively repeated until certain criteria are reached. These crite-
ria include reaching the number of iteration, given fitness score is achieved or the 
evolutionary algorithm converges to near-optimal solutions. The termination criteria 
depend on the one that is achieved first.

The parameters used in choosing the best feature sets for human activity classifica-
tion using an evolutionary algorithm are default parameters in WEKA machine learn-
ing toolkits to ensure reproducibility. The list of the selected features using evolutionary 
algorithm (EA) and correlation-based feature selection methods are shown in Appendix. 
The selected feature vectors were used to develop the proposed feature-level and deci-
sion-level fusion through multi-view stacking.

Activity class imbalanced distribution

In various real-world applications such as medical diagnosis, fraud detection, activ-
ity detection, and health status monitoring, data are expected to be imbalanced. In this 
case, a certain activity that is frequently performed in nature has majority classes while 
less performed activities have less number of classes. Such imbalanced class distribution 
tends to overwhelm the minority classes and produce accuracy that is skewed towards 
the majority classes [6]. Class imbalanced occur when there is a high variance between 
the majority activity classes and minority activity classes. Therefore, balancing the train-
ing data would improve the classification algorithm performances. Two methods com-
monly used for solving the class imbalanced problem are the Random under-sampling 
(RUS) and Synthetic Minority Oversampling Techniques (SMOTE) [71]. Random under-
sampling methods reduce the majority classes to equal the number of minority classes. 
However, it may lead to loss of important information when Random under-sampling is 
applied to balance the dataset. On the other hand, SMOTE generates new training data 
from the nearest neighbor of the line joining the minority classes. The approach aug-
ments the training dataset of the minority classes by randomly generating new instances 

(7)p(t) =
{

xti , . . . . . . , x
t
n

}

,



Page 21 of 44Nweke et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:34 

from the original training data and avoid over-fitting. Here, we utilize the SMOTE [25] 
to increase the minority activity classes following a recent study in human activity recog-
nition [6]. We oversampled the minority classes such as Descending stairs, Jumping and 
descending stairs to solve the problem related to imbalanced dataset [71]. Figure 2 shows 
the activity class imbalanced distribution in Dataset 1.

To access the impact of class imbalance on the dataset and proposed method, area 
under the curve (AUC) that performance was introduced. Area under the curve is more 
robust than other performance metrics such as accuracy, recall and F-measure in class 
imbalance scenario. Moreover, AUC is independent of data skewness and class activity 
distributions. In addition, area under the curve has been used to assess the impact of 
class distribution in human activity identification and related applications [6, 71].

Classification algorithms

In human activity classification, it is difficult to build accurate and effective decision 
fusion using the single classification model. Therefore, this paper first evaluates the indi-
vidual classifier on the sensor modalities used in our study and then, the same classifiers 
were used to build the feature-level fusion and multi-view stacking ensemble methods. 
Moreover, it is challenging to identify all the activity details using a single classification 
algorithm. To this end, classification algorithms that have been used for human activity 
detection to ensure accurate evaluation and comparison were selected. The classification 
algorithms used in this study include the decision tree (J48), support vector machine, 
k-Nearest Neighbors (k-NN) and logistic regression [3, 16]. These classification algo-
rithms were chosen because they have produced improved performance results in human 
activity detection and similar tasks [3, 16, 24]. Moreover, each classification algorithm 
has different philosophy implementation for the learning process and selecting appropri-
ate classification algorithm is important for building robust and efficient human activ-
ity detection system. In subsequent sections, these classification algorithms are discussed 
and their parameter tuning values are presented in Table 5, “Experimental setup” section.

Decision tree (J48)

Decision tree provide learning and classification algorithm that recursively divide train-
ing data or features from sensor modalities into node segments made up of root node, 
internal splits, and leaves [72]. A decision tree is a non-parametric algorithm that does 

Fig. 2 Class distribution of Dataset 1
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not require assumption on the training feature distribution and can model the non-
linear relationship between the training feature vectors and activity classes. Various 
classes of the decision tree have been extensively proposed for human activity detec-
tion in recent studies due to its algorithm efficiency and easy to understand process. In 
addition, the decision tree allows the easy and rule-based hierarchical representation of 
activity details [73, 74]. In this study, we implemented the J48 decision tree.

Support vector machine (SVM)

Support vector machine (SVM), developed by [75] provide powerful classification algo-
rithms based on statistical learning theory and employ the use of hyperplane that sepa-
rates the training data using maximal margin [76]. Given a training instance of feature 
vectors extracted from different sensor modalities XS{x1, x2, . . . . . . , xS} , support vec-
tor machine optimally separate the classes into different activities. However, the sup-
port vector machine requires large training examples to avoid overfitting and extensive 
parameter tuning in order to obtain high-performance generalizations [42].

K‑Nearest Neighbors (k‑NN)

k-Nearest Neighbors is a non-parametric and lazy learning algorithm that use instance-
learning methods to store instances and classifiers new training data using similarity 
index measure such as Euclidean distances. k-NN is one of the simplest and most effec-
tive algorithms for human activity recognition and has provided competitive performance 
and pattern recognition problems [3, 77]. Furthermore, k-NN is effective in handling large 
training features that are too large to fit into memory and use simple Euclidean distance 
to measure the similarities between training and testing feature vectors in human activity 
recognition [9, 42]. K-Nearest Neighbors learning activity patterns from training features 
vectors by comparing the similarity between specific test data sample with a set of train-
ing instances based on the closest neighbor k-values that shows the number of neighbors 
utilized to determine the classes. With the above process, k-Nearest Neighbors provide a 
faster and more accurate recommendation with desirable quality for activity recognition. 
In our implementation, the value of k was set to 10, although we tested other values of k, 
but k = 10 provided the best result using our datasets.

Logistic regression (LR)

Logistic regression is fast, simple and compact classification model that has been exten-
sively applied for human activity detection and health monitoring [16, 74]. Logistic regres-
sion provides an easy interpretation of the model and importance of feature vectors. 
Moreover, the model is easily parallelizable. In logistic regression model, the relationship 
between training data and activity detail are modeled in order to accurately detect activity 
classes. The input values are linearly combined using weights or coefficient values in order 
to make predictions on the training data. In addition, logistic regression model has pro-
vided an efficient algorithm for human activity classification in recent years [78].

Decision fusion using multi‑view stacking ensemble method

Recently, data fusion and multiple classifier systems frameworks have been acknowledged 
as the most effective mechanism to enhance the reliabilities, robustness, and generalizability 



Page 23 of 44Nweke et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:34 

of human activity identification systems. With a data fusion approach, issues bothering on 
data uncertainty, and the effect of direct captures that are challenging to eliminate with sin-
gle sensor modalities are minimized [3]. As earlier pointed out, multi-sensor development 
of human activity identification can be achieved at three levels, which includes data fusion, 
feature level fusion, and multiple classifiers approaches. These fusion mechanisms provide 
means of integrating multiple sensor modalities for comprehensive human activity moni-
toring and other related applications. However, existing studies in multiple sensor fusion 
majorly explore feature level fusion that combines features extracted from multiple sen-
sors and fed to a single machine learning algorithm for human activity detection. The main 
drawback of such method is the inabilities to learn sensor specific activities and statistical 
properties for effective activity monitoring. In addition, there is an issue bothering on feature 
incompatibility that highly decreases performance results [7, 79]. Therefore, it is challenging 
to understand the performances of each sensor modalities in human activities detection.

Furthermore, these methods are unable to handle a long sequence of complex activity 
details. In addition, feature incompatibility and signal variation greatly affect algorithm 
performance in the feature level fusion approach using single classification algorithms. 
In order to improve the performance results of human activity detection, this paper pro-
poses decision fusion using multi-view stacking method. In decision fusion method, deci-
sions produced by multiple classifiers are integrated to handle complex systems, high 
dimensional data and reduce uncertainty especially in heterogeneous sensor scenario 
[3]. Specifically, the paper proposes multi-sensor fusion through stacking ensemble of 
heterogeneous classifier fusion to improve human activity detection algorithms. Stack-
ing ensemble (stacking generalization) first proposed in [22] is efficient multiple classifier 
system for decision fusion of data of different modalities to achieve diversity and reduce 
misclassification rate. The underlying concept of staking is how to combine the decision 
obtain from heterogeneous or homogeneous classifiers with meta-classifiers to improve 
performance [80]. Therefore, the proposed multi-sensor fusion involves multiple stages 
that involve choosing the base classifiers, training the base classifiers on the training data 
and then Meta classifier to integrate the results of the base classifiers [24]. The base clas-
sifiers are set of classification algorithms, M1, . . . . . . ,Mi and meta-classifier(s) Mi+1 are 
trained on the prediction of the base classifiers. The rationale is to improve classification 
results by training the metal learner on the misclassification of the base classifiers.

Therefore, given S number of different sensor modalities in which feature vectors are 
extracted and represented as XS , in this case from the accelerometer, gyroscope and mag-
netometer sensors. For each sensor modality in the training data, the training data is trained 
with K-fold cross-validation (in our case tenfold cross-validation was used) to generate the 
input training data for Meta classifiers. The base classifiers used in our case are the deci-
sion tree (J48), k-Nearest Neighbors (k-NN) and logistic regression (LR). Given the fea-
tures vectors from each sensor where xaba which represent the attribute instances and class 
labels (activities) of each sensor modality. Then, by applying K-fold cross-validation, each 
sensor data is divided into nearly equal blocks and trained using one of the base classifiers 
M1, . . . . . . ,Mi and the output concatenated to train the Meta-Learner MI+1 . Furthermore, 
randomly dividing the training data into K equal part gives rise to XS1,XS2, . . .XSK and for 
each K-fold cross-validation, the base classifiers (k-NN, decision tree and logistic regres-
sion) were trained on X (−k)

S = XS − XSk and tested on XSk respectively [81].
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The output predicted values of each K-fold PStk comprised of the output predicted 
probabilities of each class and predicted class label of each base classifier is then gener-
ated and trained with Meta classifier(s) Mi+1 . With training and testing for K-fold cross-
validation, the prediction outputs for all sensor modalities are pooled together into 
[PStk = PA11, . . . . . . ,PStk ]b where t represent the classifier index, k is the test part of the 
K-fold cross-validation and b is the total number of classes (in our case, eight activity classes). 
The pooled output predicted probabilities along with the predicted labels and true class 
labels for all the sensor modalities are represented as 

[

PSik = PA11, . . . . . . ,PSik ,Xs, ya
]

b
.

During the testing stage, given the feature vector from each sensor modalities, the 
same procedures were followed to generate the output predicted probabilities using 
the base classifiers. Then, the output predicted probabilities are then fed to the Meta 
classifier to produce the final activity detection results. The multi-view stacking pro-
cess is shown in Algorithm 1. The major issues in developing adaptive stacking ensem-
ble method are the choice of base classifiers and Meta classifier that would provide the 
best empirical results [82]. Wolpert [22] noted that there is no specific base classifier 
and Meta classifier for building score based stacking method [24]. Other studies have 
also empirically evaluated the choice of base classifiers and Meta classifier in multi-view 
stacking implementations. In a recent study, Ahmed et al. [24] observed that score based 
stacking ensemble performed excellently well with a combination of the heterogene-
ous classifier at both base classifier and meta-classifier level. To ensure effective imple-
mentation, we propose a heterogeneous classifier based multi-view stacking method for 
human activity identification. Here, three stacking methods were constructed to under-
study their impact on human activity detection system.
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These include:

• Multi-view stacking with k-NN, J48, and k-NN (MST-k-NN–J48–k-NN): k-NN and 
decision tree were used as based base classifiers and k-NN as the Meta classifier;

• Multi-view stacking with LR, k-NN, and J48 (MST-LR–k-NN–J48–LR): LR, k-NN, 
J48 were used as base classifiers and LR as the Meta classifier.

• Multi-view stacking with LR, k-NN, J48 and (k-NN-LR): (MST-LR–k-NN–J48 
(k-NN–LR)): LR, k-NN, and J48 as base classifiers and LR and k-NN as the Meta 
classifier. The final result is the average of the prediction of the two classification 
algorithms.

In each experimental configuration, tenfold cross-validation was used on the train-
ing data to generate the meta-level classifier data. This approach is important to avoid 
overfitting the training data [18]. Algorithm 1 shows the generic process for training the 
stacking generalization approach adopted in our experiments.

Experiments
This section presents the experimental implementation of feature-level fusion and 
multi-sensor fusion using multi-view stacking methods for human activity recognition. 
Furthermore, the impact of increasing the minority class by apply Synthetic Minority 
Over-sampling (SMOTE) is also evaluated. Moreover, the section presents the datasets, 
model validation, experimental setup, and performance evaluation.

Datasets description

Dataset 1: This dataset was first collected and analyzed in [63] for hierarchical multi-
sensor based classification of activity of daily living using Shimmer sensor nodes placed 
on the right ankle, chest, right hip and right wrist. All the sensors used in the experi-
ment were a motion sensor that records 3D accelerometer and 3D gyroscopes while 19 
subjects perform 13 activities of daily living. These activities include sitting, lying, stand-
ing, washing dishes, vacuuming, sweeping, walking, ascending stairs, descending stairs, 
treadmill running, bicycling on the ergometer (50 w), bicycling on the ergometer (100 w) 
and rope jumping recorded at a sampling rate of 204.8 Hz. The range of the accelerom-
eter used in the experiment was ± 6 g. The range of gyroscope was ± 500 °/s for sensor 
nodes placed on the chest, hip and wrist and ± 2000 °/s for sensor nodes on the hip. Our 
study utilizes the sensor placed at the ankle, chest and wrist and subsets of the activi-
ties for evaluation of our proposed multi-sensor fusion based on multi-view stacking. 
The subset of activities used includes sitting, lying, standing, walking, ascending stairs, 
descending stairs and jumping using a segmentation window size of 5 s (1024 samples 
for each sensor data) with 50% overlapping at adjacent windows. This was the original 
window size segmentation used in the evaluation of the data in hierarchical multi-sensor 
based classification of activity of daily living [63] with a mean classification rate of 89.6%. 
Details of the two datasets used in our experimental evaluation are presented in Table 3.

Dataset 2: Dataset 2 was collected in [83, 84] as a benchmarked dataset for implemen-
tation of an open framework for agile development of mobile health applications. The 
dataset provides a framework to build tools that support multidisciplinary mobile health 
applications. Moreover, the dataset provides multimodal human activity data comprises 
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of accelerometer, gyroscope and vital sign data collected from ten subjects while per-
forming 12 physical activities while Shimmer2 sensor device was used to record the data 
from each subject in the experiment. During data collection, the motion sensors were 
placed on the subject’s left ankle, right wrist, and chest. The sensor placed on the chest 
also provided 2-lead electrocardiography (ECG) measurement for health monitoring to 
ascertain the effect of exercise on the participants. The sampling rate used for sensing 
activities was 50 Hz in which the sensor monitor 3D acceleration ( ± 6 g) placed on the 
ankle, chest, and wrist, 2-lead electrocardiography (ECG), 3D gyroscope placed on the 
ankle, chest, and wrist, and 3D Magnetometer on the ankle and wrist. The subjects wore 
the sensor while performing activities that included standing still, sitting and relaxing, 
lying down, walking, climbing stairs, and waist bends forward, frontal elevation of arms, 
knees bending (crouching), cycling, jogging, running and jumping front and back. These 
activities were performed for 1 min range and some were performed 20×. In this paper, 
we analyze accelerometer, gyroscope and magnetometer sensors placed at the ankle and 
wrist for multimodal data fusion approach. However, 2-lead ECG measurement is not 
analyzed in our study in line with the original experiments. In addition, subsets of the 
data sets were considered in our experiments, these include Standing still, sitting and 
relaxing, lying down, walking, climbing stairs, cycling, jogging and running.

Experimental setup

The signal preprocessing, data segmentation, features extraction and normalization dis-
cussed previously were implemented in MATLAB 2016 (reference https ://in.mathw orks.
com/) for each activity sequence and combined into master feature vectors (MFVs). The 
extracted master feature vectors were stored as .csv files and converted to attribute rela-
tion file format (.arff). Then, the dimension of the master feature vectors was reduced 
to select the most discriminant features by applying the correlation-based features and 
followed by Evolutionary search algorithm to further reduce the feature vectors. The 

Table 3 Summary of datasets used and data processing methods

Dataset 1 Dataset 2

Sensors Shimmer sensor devices containing 3D 
accelerometer, 3D gyroscope

Shimmer2 sensor device IMU containing 
3D accelerometer, 3D gyroscope, 3D 
magnetometer and 2‑lead electrocar‑
diography (ECG)

Placement Right ankle, chest and right wrist Ankle and wrist

Physical activities performed sitting, lying, standing, washing dishes, 
vacuuming, sweeping, walking, 
ascending stairs, descending stairs, 
running, bicycling on the ergometer 
(50 w), bicycling on the ergometer 
(100 w), rope jumping.

Standing still, sitting and relaxing, lying 
down, walking, climbing stairs, waist 
bend forward, the frontal elevation 
of arms, knee bending(crouching), 
cycling, jogging, running, jumping

Number of activities 13 12

Number of participants 19 10

Sampling rate 204.8 Hz 50 Hz

Filtering method Linear interpolation Linear interpolation

Window type and size 5 s with 50% overlap 2 s

Feature selection methods Evolutionary search method, Correla‑
tionAttributeEval, Ranker

Evolutionary search method, Correlation‑
AttributeEval, Ranker

Evaluation method Tenfold cross validation Tenfold cross validation

https://in.mathworks.com/
https://in.mathworks.com/
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proposed method utilized the WEKA (Waikato Environment for Knowledge Analysis) 
machine learning toolkits [85] as an implementation platform for feature selection and 
classification. The classification algorithms selected for both implementation of feature-
level fusion and multi-view stacking method include logistic regression (LR), Sequential 
minimal optimization (SMO), k-Nearest Neighbors and decision tree (J48). The classi-
fication algorithm was selected based on their performance in similar human activity 
classification evaluations [86].

Furthermore, the parameter values used in all our experiments are shown in Table 4. 
These parameter settings are default values and were chosen based on recent empirical 
evaluations of various classification algorithms in pattern recognition [87] and reported 
improved performance results. In addition, these values are default values to ensure 
reproducibility. We use the same parameters throughout the experiments to evaluate 
each activity detection method, both for a single sensor, feature fusion, and decision 
fusion methods. The implementation of the signal processing, feature extraction, and 
classification algorithms was conducted on system computer running on Windows 10 
Operating system. The system is using an Intel Core™ I7-6700 CPU @ 3.400 GHz with 
installed Random Access Memory (RAM) capacity of 16 GB.

Model validation

In general, approaches such as hold-out, leave-one-out and k-fold cross-validation meth-
ods are used to validate model performances for human activity detection and health 
monitoring [68]. Each validation methods depends on the task and the size of the train-
ing dataset. In holdout cross validation partitions, the datasets are divided into training 
and testing data, and then the training set is used to train the algorithms and evaluated 
on the test set. In contrast, leave-one-subject-out cross-validation segments the train-
ing data into the number of subjects used for the experiment, then, use one subject for 
training and the resting for testing. This approach is repeated for each subject in the 
experiment, thereby using the entire subject for training and testing. Likewise, strati-
fied K-fold cross-validation method divided the whole training data into K equal part, 
use K − 1 parts of the data for training classification model and K part for testing. This 

Table 4 Classification algorithms and parameter values

Classification algorithm Parameters

Support vector machine batchSize=100;buildCalibrationModels=False;c=1.0;calibrator=Logistic‑R 1.0E‑8‑M‑
1‑num‑decimal‑places 4;checksTurnedOff=False; debug=False;doNotCheckCap
abilities=False;epsilon=1.0E‑12;filterType=Normalize;kernel=PolyKernel‑E 1.0‑C 
250007; numDecimalPlaces=2;numFolds=‑1;randomSeed=1;toleranceParame
ter=0.001

k‑Nearest Neighbors KNN=10;batchSize=100;crossValidate=False;debug=False;distanceWeighing=No 
distance weighing;doNotCheckCapabilities=False;meanSquared=false;nearestNe
ighbourSearchAlgorithm=LinearNNSearch;numDecimalPlaces=2;windowSize=0 
Standard

Decision tree (J48) batchsize=100;binarysplits=false;collapseTree=True;confidenceFactor=0.25; deb
ug=false;doNotCheckCapabilities=false;doNotMakeSplitPointActualValue=false; 
minNumObj=2;numDecimalPlaces=2;numFolds=3;reduceErrorPrunning=false;s
aveInstanceData=false; seed=1;subtreeRaising=True; unpruned=false;useLaplac
e=false;useMDLcorrection=true

Logistic regression batchSize=100;debug=false;doNotCheckCapabilities=false;maxit=‑
1;numDecimalPlaces=4; ridge=1.0E‑8;useConjugateGradientDescent=false
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procedure is repeated K times and the final result is computed as the average of all the 
tests performance of all the folds [6, 9].

The main advantage of K-fold cross-validation is that all instances of the training data-
set are trained and tested with the model thereby providing lower variance within the 
estimator. The method ensures accurate prediction with less bias of the true rate esti-
mator and important for model selection [62]. In this study, we applied tenfold strati-
fied cross-validation for building the multi-view stacking ensemble fusion method and 
the feature-level fusion used in the experiments. As earlier outlined, the use of tenfold 
cross validation provides a means to avoid overfitting [18]. To measure the statistical sig-
nificance of the proposed decision fusion method, confidence interval approach [67, 88] 
was adopted. The performance metrics are considered statistically significant if the dif-
ferences between decision fusion, feature fusion, and single sensor evaluation are higher 
than the confidence interval. This is considered statistically significant with a 95% prob-
ability. The equation for computing the confidence interval is shown in Eq. (8), where P 
is the performance metrics and N is the number of instances.

Performance evaluation

The performance of individual classification algorithm and multi-view stacking fusion 
methods were evaluated using different performance metrics. These performance met-
rics include accuracy, recall, precision, error rate and area under the curve (AUC). For 
each activity class, the prediction was measured with the ground truth labels and the 
number of true-positive (TP), true negative (TN), false-positive (FP) and false-negative 
(FN) were calculated using the Confusion matrix of each prediction. These perfor-
mance measures are shown in Table 5 with the corresponding measurement equations. 
In addition, these performance metrics have been extensively applied in the evaluation 
of human activity detection systems and related applications [68]. All the performance 
metrics were computed based on individual class represented as N  . To compute the 
Area under the curve (AUC) to measure the ranking of each activity detection algo-
rithms and impact of class imbalance, we adopted the proposed approach in [89] for 
multi-class activity detection and classification problem.

The area under the curve is deployed to evaluate the impact of class imbalance on the 
performance of human activity detection systems and was recently implemented in dia-
betes mellitus prediction [71].

Experimental results and discussions

We conduct different experiments to investigate the impact of different fusion of motion 
sensor generated by mobile and wearable sensor data for human activity detection. 
These experiments can be categorized into: first, baseline evaluation that present experi-
ments of using features extracted from acceleration, gyroscope, and magnetometer with-
out feature selection or over-sampling method. Second, present the results of applying 
feature selection method and fusion of both feature level fusion and multi-view stacking 
methods. Third, analysed the impact of the over-sampling method (SMOTE) on both 
feature-level fusion and use of multiple classifier systems approaches. Finally, compare 

(8)δ = ±1.96×

√

P(100− P)

N
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the multi-view stacking methods with other multiple classifier systems recently imple-
mented for human activity classification. These experiments were analysed for Dataset 1 
and Dataset 2 as described earlier.

Baseline method: analysis of individual motion sensor

The performances of the individual motion sensor using all the features extracted from 
Dataset 1 and Dataset 2 are presented in Figs. 3, 4. There are different areas in which the 
results are analysed. These include classification algorithms, sensor modality based and 
position-wise. The performance results are presented in terms of accuracy, recall, preci-
sion, F-measure and AUC for each analysis. The AUC is used to determine the impact of 
class imbalance on the performance of human activity detection systems [71]. In addi-
tion, these performance metrics were used to ensure a comprehensive evaluation of the 
proposed human activity detection framework.

The essence of this evaluation is to establish if there are irrelevant feature vectors in 
the extracted features, impact on each sensor modality on activity detection and as a 
baseline for evaluating the performances of feature-level and the multi-view stacking 
ensemble methods. Dataset 1 contains two sensor modalities, accelerometer, and gyro-
scopes. As shown in Fig. 3 the acceleration sensor placed at the ankle present best per-
formance when compared to the gyroscope sensors. The performance is closely followed 
by chest position while wrist presents the list performance. In terms of machine learn-
ing algorithms utilized in our experiments, J48 decision tree classifier demonstrated the 
best activity detection accuracy of 95.32%, followed by k-NN (94.78%) for acceleration 
sensor placed at the ankle. We obtained similar results with gyroscope sensor with accu-
racy for J48 decision tree (87.56%), k-NN (85.28%) and LR (84.20%). The least perfor-
mance results were observed in support vector machine. Moreover, k-NN marginally 

Table 5 Performance evaluation measures

Evaluation measures Equation Description

Higher values 
indicate 
better per‑
formances

Accuracy 1
N

N
∑

i=1

(TP+TN)i
(TP+FP+TN+FN)i

Calculate the rate of correctly 
classified activities classes out 
of the total number of activity 
instances

Recall 1
N

N
∑

i=1

(TP)i
(TP+FN)i

Measure the number of correctly 
predicted instances as positive 
instances

Precision 1
N

N
∑

i=1

(TP)i
(TP+FP)i

Measure the ability of the pro‑
posed algorithm to accurate 
classify actual activity details

F‑measure 1
N

N
∑

i=1

2.
(precision∗recall)i
(precision+recall)i

Calculate the weighted harmonic 
mean of precision and recall

Area under the curve (AUC) 1
N

N
∑

i=1

0.5 ∗
[

TPi
(TP+FN)i

+ TNi
(TN+FP)i

] Measure the rate of performance 
of the algorithms across all 
activity details. AUC is the plot 
between recall and specific‑
ity drawn from the different 
threshold

Lower values 
indicate 
higher per‑
formances

Error 1
N

N
∑

i=1

(FP+FN)i
(TP+FP+TN+FN)i

Calculate the rate of activities 
incorrectly classified out of all 
the activity details
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outperformed decision tree and logistics regression for acceleration sensor placed on the 
chest while support vector machine outperformed k-NN and decision tree for gyroscope 
sensor placed in the same position.

Regarding Dataset 2 (Fig. 4) that contain three sensor modalities: accelerometer, gyro-
scope, and magnetometer. We analysed the sensors placed on the ankle and chest in our 
experiments as these sensors contain all the sensor modalities. Here (Fig. 4), the acceler-
ation sensor clearly outperformed gyroscope and magnetometer for all the sensor posi-
tions. The performance results showed that most of the machine learning algorithms 
used to evaluate the sensors performed very well.

The results demonstrated that the highest accuracy was achieved with J48 decision 
tree with 93.17%, 92.48% and 79.76% for gyroscope, acceleration and magnetometer sen-
sor placed on the ankle respectively. These performance results were closely followed 
by k-NN with accuracies of 91.63%, 84.47% and 71.06% for acceleration, gyroscope, 
and magnetometer respectively. Similar to Dataset 1, the lowest results were observed 
in the support vector machine classification algorithm. As can be seen in the perfor-
mance results in both datasets, sensors placed at the ankle took preeminent perfor-
mance results in terms of positions for the majority of the classification algorithms while 
acceleration sensors showed better performances when compared with gyroscope and 
magnetometer.

Even though some of the classification algorithms showed acceptable results, there 
is still room for improving the performances of the activity detection framework. The 
experimental evaluation showed that a single sensor failed to show better performance 
all the time. In the next section, the paper presents the results of using different fusion 
methods to improve the activity detection framework.

Sensor fusion for improved human activity detection system

This section presents the performance results on the multi-view stacking ensemble 
method for the human activity detection model. In the experiments, evolutionary search 
algorithms and correlation-based feature selection were utilized to reduce the feature 
vectors in both Dataset 1 and Dataset 2. Then, the feature vectors from accelerometer, 
gyroscope, and magnetometer sensors were combined at feature-level and decision-level 
to access the impact of two data fusion methods for human activity detection. For the 
feature-level fusion, the reduced feature vectors were column concatenated and sup-
port vector machine, k-Nearest Neighbors, J48 decision tree and logistic regression were 
applied to detect activity details. On the other hand, the multi-view stacking method 
was used to fuse the decisions generated by individual sensors.

As discussed in “Decision fusion using multi-view stacking ensemble method” sec-
tion, adaptive multi-view stacking methods were presented in three experiments. First, 
we use J48 and k-NN as base classifiers and k-NN as meta-classifier. Second, LR, k-NN, 
and J48 were used as base classifiers and LR as Meta-classifier. Finally, LR, k-NN, and 
J48 were used as base classifiers and combination of LR and k-NN were used as meta-
classifiers, which the average result of the classification algorithms was presented as the 
final classification result. The performance results obtained using Dataset 1 and Dataset 
2 are shown in Tables 6, 7. The tables present the accuracy, recall, precision, F-measure, 
error rate and AUC of each classification model used in our analysis for ankle, chest and 
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Table 6 The performance results of Feature selection, feature-level fusion and multi-view 
stacking on Dataset 1 (the best results obtained at each sensor position are italicized)

Italic values show multiple classifiers combinations with the highest values and produce superior results compared to single 
classifications and feature‑level fusion

Positions Methods Accuracy (%) Recall Precision F‑measure Errors AUC 

Ankle SVM 93.08 0.9029 0.9312 0.8987 0.0692 0.9465

KNN 94.67 0.9243 0.9303 0.9272 0.0533 0.9272

J48 95.13 0.9283 0.9380 0.9330 0.0487 0.9603

LR 95.60 0.9430 0.9382 0.9404 0.0440 0.9683

Stacking–KNN–J48–KNN 96.79 0.9592 0.9583 0.9587 0.0321 0.9772

Stacking‑LR–KNN–J48–LR 97.49 0.9648 0.9673 0.9660 0.0251 0.9804

Stacking–LR–KNN–J48–MV–LR–
KNN

97.57 0.9672 0.9669 0.9670 0.0243 0.9818

Chest SVM 94.09 0.9107 0.9355 0.9210 0.0591 0.9505

KNN 94.45 0.9148 0.9428 0.9275 0.0545 0.9528

J48 93.35 0.9107 0.9185 0.9145 0.0665 0.9500

LR 95.32 0.9379 0.9373 0.9375 0.0468 0.9654

Stacking‑KNN–J48–KNN 95.05 0.9323 0.9405 0.9362 0.0495 0.9621

Stacking‑LR–KNN–J48–LR 95.67 0.9398 0.9477 0.9435 0.0433 0.9665

Stacking‑LR–KNN–J48–MV–LR–
KNN

96.02 0.9425 0.9528 0.9474 0.0398 0.9681

Wrist SVM 90.96 0.8432 0.9293 0.8758 0.0904 0.9134

KNN 93.32 0.8828 0.9514 0.9111 0.0668 0.9311

J48 91.89 0.8885 0.9020 0.8947 0.0811 0.9376

LR 91.38 0.8780 0.8884 0.8828 0.0862 0.9323

Stacking‑KNN–J48–KNN 94.74 0.9209 0.9448 0.9319 0.0526 0.9560

Stacking‑LR–KNN–J48–LR 95.32 0.9324 0.9472 0.9395 0.0468 0.9623

Stacking‑LR–KNN–J48–MV–LR–
KNN

95.48 0.9330 0.9501 0.9412 0.0452 0.9628

Table 7 Performance results of  feature selection, feature-level fusion and  multi-view 
stacking on Dataset 2 (the best results obtained at each sensor position are italicized)

Italic values show multiple classifiers combinations with the highest values and produce superior results compared to single 
classifications and feature‑level fusion

Positions Methods Accuracy (%) Recall Precision F‑measure Errors AUC 

Ankle SVM 90.24 0.9021 0.9029 0.9019 0.0976 0.9441

KNN 98.17 0.9617 0.9818 0.9817 0.0183 0.9896

J48 96.42 0.9642 0.9643 0.9642 0.0358 0.9795

LR 96.18 0.9617 0.9619 0.9616 0.0382 0.9781

Stacking‑KNN–J48–KNN 98.50 0.9849 0.9850 0.9849 0.0150 0.9914

Stacking‑LR–KNN–J48–LR 98.46 0.9845 0.9845 0.9845 0.0154 0.9912

Stacking‑LR–KNN–J48–MV–LR–
KNN

98.37 0.9837 0.9837 0.9837 0.0163 0.9907

Wrist SVM 94.31 0.9430 0.9454 0.9431 0.0569 0.9674

KNN 97.44 0.9743 0.9748 0.9744 0.0256 0.9653

J48 95.33 0.9534 0.9535 0.9534 0.0467 0.9734

LR 94.15 0.9415 0.9414 0.9414 0.0585 0.9666

Stacking‑KNN–J48–KNN 97.93 0.9793 0.9794 0.9793 0.0207 0.9882

Stacking‑LR–KNN–J48–LR 97.76 0.9777 0.9777 0.9777 0.0224 0.9872

Stacking‑LR–KNN–J48–MV–LR–
KNN

98.05 0.9805 0.9806 0.9805 0.0195 0.9889
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wrist placements. Regarding Dataset 1 performance results shown in Table  6, multi-
view stacking methods clearly outperformed the feature-level fusion using SVM, J48, 
k-NN, and LR. Moreover, there is an improved result with all classification compared 
with using the single sensor modality. The lowest performance results were observed 
with feature-level fusion and SVM. All the experiments using multi-view stacking out-
performed feature-level fusion methods. In the multi-view stacking, the highest per-
formance results were achieved when LR–kNN–J48–(LR–k-NN) (97.57%) followed by 
LR–k-NN–J48–LR (97.49%) and k-NN–J48–k-NN (96.79%). Moreover, for feature-level 
fusion using the single classification algorithm, the best accuracy was achieved with 
logistics regression (95.60%) followed by J48 (95.13%) and k-NN (94.67%).

In Table 6, we observed improvement on performance results using the fusion methods 
than using the single sensor and classification algorithms by 3% to 17% for acceleration sen-
sor and 10% to 24% with gyroscope sensors using multi-view stacking based fusion method. 
Similar performance results improvement on accuracies were also observed in feature-
level fusion. The highest improvement accuracy obtained was on using the support vector 
machine, which showed a performance increase by 12% and 20% for acceleration and gyro-
scope sensor respectively. However, there is a marginal decrease for J48 decision tree when 
acceleration and gyroscope sensors were fused at the feature-level. This support the theory 
that feature-level fusion methods for multi-sensor analysis is not efficient for human activity 
detection and fails to guarantee better performance sometimes [78]. In addition, it provides 
credence for the proposed robust multi-view stacking method that showed superior perfor-
mances over both feature level fusion and a single sensor for human activity recognition. In 
other sensor placement such as chest and wrist, we obtained comparable performances in 
all the performance metrics used in our evaluations. The multi-view achieved 96.02% and 
95.48% accuracy for chest and wrist placement respectively.

Regarding Dataset 2 shown in Table 7, multi-view stacking outperformed feature-level 
methods. As shown in Table 7, the highest results were achieved with multi-view stack-
ing using J48–k-NN–k-NN (98.50%) followed by LR–k-NN–J48–LR (98.48%) and LR–
k-NN–J48–(LR–k-NN) (98.37%). Similarly, for feature-level fusion, k-NN demonstrated 
competitive performance results with 98.17% accuracy, 96.17% recall, 96.42% F-measure 
and 98.96% AUC. K-Nearest Neighbor algorithm showed higher performance compared 
to other classification algorithms used in our experiments. Furthermore, similar perfor-
mance results were demonstrated by sensors attached at the wrist for Dataset 2 shown 
in Table 7. Specifically, LR–k-NN–J48–(LR–k-NN) multi-view stacking methods achieved 
98.05% accuracy, 98.06% Precision and 98.89% AUC while feature-level fusion using k-NN 
obtains 97.44% accuracy, 97.48% precision, 97.44% F-measure and 96.53% AUC. The per-
formance results obtained with the chest and wrist placements are marginally lower com-
pared to performance results demonstrated by ankle placement. When compared with 
single sensors (Fig. 4), there is an improvement on classification accuracy by 6% to 26% for 
acceleration sensor, 5% to 57% for gyroscope and 5% to 19% using the multi-view stacking 
ensemble algorithm. Similarly, they are noticeable improvements for feature-level fusion 
for SVM (20.14%), LR (11.91%), k-NN (6.54%) for acceleration sensor, SVM (48.41%), 
LR (17.72%), k-NN (13.70%) for gyroscope sensors and SVM (20.52%), LR (25.98%) and 
k-NN (27.11%) for magnetometer respectively. J48 decision tree demonstrated the lowest 
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performance results improvements with accuracies of 3.94%, 3.25% and 16.66% for accel-
eration, gyroscope and magnetometer sensors placed at the ankle respectively.

To assess the statistical significance of the proposed adaptive multi-view stacking 
ensemble algorithms against single accelerometer, gyroscope, magnetometer, and fea-
ture-level fusion, we used confidence interval probability [88] discussed in “Model vali-
dation” section. The confidences interval is within the range of 0.55% to 0.68% for all the 
performance metrics. In all the evaluations, the differences between the single sensors, 
feature-level fusion, and multi-view stacking ensemble are higher than the confidences 
interval. The results obtained are considered statistically significant with a confidence 
interval with 95% interval. Specifically, the proposed multi-view stacking methods pro-
vided statistically significant improvements except for feature-level fusion using k-Near-
est Neighbors algorithms in Dataset 2 as shown in Table  7. In all the experimental 
evaluations, implementation of multiple classifier systems provided better performance 
results by combining multiple weak base classifiers to create robust activity detection 
algorithm. The performance results obtained have also been justified by recent studies 
on using multiple classifier systems for human activity detection [27, 52].

Impact of over‑sampling on the performance results

This section presents the impact of over-sampling the minority class activities on proposed 
multi-view stacking methods. Dataset generated for classification task may have an une-
qual number of activity classes. These are very common in natural settings such as fraud 
detection, medical diagnosis, and activity detection and this will result in class imbalance. 
Class imbalance greatly affects classification algorithm performances, as majority classes 
tend to overwhelm the minority classes. In the dataset used in our analysis, activities such 
as ascending stairs, descending stairs and jumping have a lower frequency of occurrence 
compare to other activities performed in our dataset. As earlier discussed in “Activity class 
imbalanced distribution” section, we over-sampled the training data to improve the data 
distribution of these activities. The number of nearest neighbors K = 5 and percentage val-
ues set to 100, we resample the dataset once. The performance results obtain with resam-
pling the dataset for Dataset 1 and Dataset 2 are presented in Tables 8, 9.

Regarding Dataset 1 presented in Table  8, we observed a marginal increase in both 
feature-level fusion and multi-view stacking by applying the SMOTE algorithm on the 
training data. Specifically, for multi-view stacking ensemble, the use of SMOTE algo-
rithms improves the performance results to 97.89% accuracy, 97.18% recall, 97.17% 
F-measure and 98.44% AUC for sensor attached to the ankle. Moreover, we observed 
similar improvement in other sensor placements and performance metrics in our exper-
iments. This confirms the positive impact of SMOTE algorithms to improve the activity 
detection system [6]. In Dataset 2, there are also improvements in the performances of 
both feature-level fusion and multi-view stacking ensemble when SMOTE algorithm was 
applied to increase data distribution among activity classes. The results are presented in 
Table 9. In multi-view stacking methods, the highest accuracies of 99.18%, 99.13%, and 
99.05% were demonstrated by using the three multi-view stacking experiment using the 
ankle placement. Moreover, similar performance results were obtained using the wrist 
placement. For feature-level fusion, the highest accuracies of 98.45%, 96.87%, and 96.08% 
were obtained through k-NN, LR and J48 respectively for ankle placement. Furthermore, 
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Table 8 Performance using feature selection and SMOTE algorithm on Dataset 1 (the best 
results obtained at each sensor position are italicized)

Italic values show multiple classifiers combinations with the highest values and produce superior results compared to single 
classifications and feature‑level fusion

Positions Methods Accuracy (%) Recall Precision F‑measure Errors AUC 

Ankle SVM 93.98 0.9060 0.9299 0.8991 0.0602 0.9488

KNN 95.33 0.9295 0.9314 0.9303 0.0467 0.9614

J48 96.45 0.9537 0.9560 0.9547 0.0355 0.9742

LR 96.48 0.9504 0.9505 0.9502 0.0352 0.9727

Stacking‑KNN–J48–KNN 97.25 0.9629 0.9621 0.9624 0.0275 0.9794

Stacking‑LR–KNN–J48–LR 97.92 0.9709 0.9713 0.9711 0.0208 0.9838

Stacking‑LR–KNN–J48–MV–LR–
KNN

97.89 0.9718 0.9717 0.9717 0.0211 0.9844

Chest SVM 94.43 0.9170 0.9386 0.9254 0.0557 0.9541

KNN 95.20 0.9307 0.9434 0.9364 0.0480 0.9616

J48 93.79 0.9197 0.9240 0.9218 0.0621 0.9551

LR 95.42 0.9419 0.9443 0.9430 0.0458 0.9675

Stacking‑KNN–J48–KNN 95.87 0.9466 0.9465 0.9464 0.0413 0.9702

Stacking‑LR–KNN–J48–LR 96.54 0.9565 0.9586 0.9575 0.0346 0.9756

Stacking‑LR–KNN–J48–MV–LR–
KNN

96.73 0.9586 0.9603 0.9594 0.0327 0.9768

Wrist SVM 91.26 0.8956 0.9254 0.9085 0.0874 0.9407

KNN 95.30 0.9381 0.9534 0.9451 0.0470 0.9654

J48 92.39 0.9222 0.9243 0.9232 0.0761 0.9552

LR 91.72 0.9040 0.9067 0.9052 0.0828 0.9457

Stacking‑KNN–J48–KNN 95.91 0.9504 0.9522 0.9513 0.0409 0.9721

Stacking‑LR–KNN–J48‑LR 96.17 0.9524 0.9545 0.9477 0.0383 0.9733

Stacking‑LR–KNN–J48–MV–LR–
KNN

96.63 0.9572 0.9616 0.9593 0.0337 0.9760

Table 9 Performance using feature selection and SMOTE algorithms on Dataset 2 (the best 
results obtained at each sensor position are italicized)

Italic values show multiple classifiers combinations with the highest values and produce superior results compared to single 
classifications and feature‑level fusion

Positions Methods Accuracy (%) Recall Precision F‑Measure Errors AUC 

Ankle SVM 93.67 0.9079 0.9573 0.9241 0.0633 0.9489

KNN 98.45 0.9780 0.9868 0.9820 0.0155 0.9878

J48 96.08 0.9537 0.9561 0.9549 0.0392 0.9740

LR 96.87 0.9642 0.9603 0.9622 0.0313 0.9799

Stacking‑KNN–J48–KNN 99.18 0.9892 0.9924 0.9908 0.0082 0.9940

Stacking‑LR–KNN–J48–LR 99.05 0.9880 0.9898 0.9889 0.0095 0.9933

Stacking‑LR–KNN–J48–MV–LR–
KNN

99.13 0.9897 0.9905 0.9901 0.0087 0.9942

Wrist SVM 94.92 0.9392 0.9427 0.9407 0.0508 0.9658

KNN 98.18 0.9740 0.9840 0.9787 0.0182 0.9856

J48 96.74 0.9577 0.9605 0.9590 0.0326 0.9765

LR 94.59 0.9396 0.9383 0.9389 0.0541 0.9658

Stacking‑KNN–J48–KNN 98.99 0.9864 0.9869 0.9866 0.0101 0.9925

Stacking‑LR–KNN–J48–LR 98.98 0.9846 0.9869 0.9842 0.0120 0.9925

Stacking‑LR–KNN–J48–MV–LR–
KNN

99.02 0.9868 0.9871 0.9869 0.0098 0.9927
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the lowest accuracy was demonstrated by SVM using feature-level fusion. The perfor-
mance results achieved by applying the SMOTE algorithms are presented in Table 9.

In the nutshell, in terms of sensor placement, we observed that ankle positions outper-
formed chest and wrist in all our evaluations. The likely reasons for the high performance 
of the sensor placed at the ankle are due to the activities considered in our experiments. 
Most of the activities are motion based and ambulatory activities such as walking, cycling, 
etc. These activities are strong displacement activities which the sensors placed at the ankle 
provides [74]. In summary, the best performance results were achieved by the proposed 
multi-view stacking ensemble algorithms especially with the use of two classification mod-
els as meta-classifiers followed by other multi-view stacking methods experiments. In 
addition, feature-level fusion demonstrated impressive results in our analysis using k-NN, 
LR and J48 classification algorithms. Compared to other classification algorithms used in 
our experiments, SVM provided the least performance results. It can be concluded that 
there is a high correlation between the classification algorithms and proposed multi-view 
stacking methods in our experiments. The base classification algorithms that achieved 
impressive results on single accelerometer, gyroscope and magnetometer sensors proved 
to be a good base classifier combination. This can be seen with the use of logistic regres-
sion (LR) and k-Nearest Neighbors (k-NN) as both base classifiers and meta-classifiers.

Furthermore, there are performance differences between the two datasets used in our 
experiments. Dataset 2 provides better classification results in both feature-level fusion 
and multi-view stacking compared to Dataset 1. This result is in agreement with the recent 
implementation of human activity recognition using the same dataset [74]. However, fewer 
improvements were observed between all the experimental evaluation between applying 
feature selection alone and using both feature selection methods and SMOTE algorithm. 
Moreover, applying SMOTE algorithms on the data marginally outperformed data fusion 
with feature selection only. We postulated that the approach can be improved by increas-
ing the values of nearest neighbors and percentage values in SMOTE algorithms especially 
for Dataset 1 and this approach were recently evaluated for predicting diabetes mellitus 
[71]. Nonetheless, to ensure a fair comparison between the two datasets used in the eval-
uation, we only used values stated as we have already achieved impressive performance 
results with Dataset 2. In future work, increasing the values of the nearest neighbors and 
percentages for SMOTE algorithms would be considered.

To ensure the statistical significance of the proposed multi-view stacking ensemble, 
confidence interval discussed in “Model validation” section was also used to compare 
the overall performance results of proposed methods with feature level fusion and other 
baseline evaluations. Statistical significance was observed between multi-view stacking 
methods, Feature-level fusion and single sensor analysis with 95% confidence interval.

Significance of the proposed methods for human activity detection

To investigate the significance of the proposed multi-view stacking ensemble methods for 
human activity detection, we compared the proposed methods with other multiple clas-
sifier system methods recently implemented for human activity detection. Three recent 
studies on multiple classifier systems were chosen, these include weighted majority voting, 
Bagging, and Random Subspace ensemble [16, 26, 27]. In Saha et al. [16], weighted majority 
voting approach was considered to combine features extracted from accelerometer sensors 
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using logistic regression. Here, feature vectors such as mean, standard deviation, variance 
and standard deviation of the magnitude of accelerometer were extracted over 2  s win-
dow size and 50% overlap. Chowdhury et al. [26] evaluated different ensemble algorithm 
using feature vectors extracted from accelerometer signals. The feature vectors selected 
for implementation in their proposed method are minimum, maximum, mean, standard 
deviation, variance, percentile, zero crossing rate energy and dominant frequency of the 
raw accelerometer signal over 10 s window size with 50% overlapping. Then, Binary deci-
sion tree (BDT), Support vector machine (SVM), k-Nearest Neighbors (k-NN) and arti-
ficial neural network (ANN) were fused using weighted majority voting. To evaluate the 
method, maximum epoch and learning rate of ANN were set to 250 and 0.001 respectively.

In addition, support vector machine with a linear kernel was considered while the 
value of k for k-NN was set to 7 as specified in their study. The specified method was 
implemented using tenfold cross-validation to ensure accurate comparison with the pro-
posed multi-view stacking ensemble methods. Furthermore, Ghojeski et al. [27] evalu-
ated ensemble algorithms for energy expenditure estimation using Bagging and Random 
space ensemble. The proposed multi-view stacking methods were compared with these 
two ensemble methods. Bagging based multiple classifier system method, which has 
been extensively applied for human activity detection [3] randomly divide the train-
ing data into subsets, and train random subset using classification algorithms without 
replacement. The ensemble method uses an approach called bootstrapping replicate of 
the original data. Then, the decision produced by each subset of the data is combined 
with majority voting as the final prediction results. Bagging method is very popular for 
human activity identification and comprehensive health monitoring and we implement 
the method to compare our proposed adaptive multi-view stacking ensemble method. In 
our implementation, the batch size and learning cycle were set to 100 respectively.

On the other hand, Random Subspace is a multiple classifier system that randomly selects 
a predefined number of features space from the whole training feature vectors to create a dif-
ferent training feature sets. This procedure is repeated several times and at each step, the clas-
sification algorithm is trained on the features. Then, the final decision is built by fusion of each 
model prediction outputs using majority voting [27]. In addition, the batch size and number 
of iteration for random space ensemble implementation were set to 100 and 10 respectively. 
Logistic regression was used as base classification algorithm in the implementation of both 
Bagging and Random Subspace ensemble methods. The performance results achieved using 
different multiple classifier systems are presented in Table 10. The performance results dem-
onstrated by multi-view stacking are highlighted in the table. Multi-view stacking method 
outperformed other multiple classifier systems for human activity recognition. The high per-
formance of the proposed multi-view stacking ensemble methods is a result of the use of effi-
cient, diverse classification algorithms and enhanced feature selection methods.

Furthermore, the performance results obtained demonstrate the use of multiple clas-
sifier systems for human activity recognition provide robustness and generalization 
that depicts enhance classification algorithm decision making. In addition, the results 
obtained are consistent with recent studies [52] on the use of multiple classification algo-
rithms for human activity identification. With the performance of the proposed multi-
view stacking approach, it can be concluded that the method is promising for developing 
comprehensive human activity detection framework.



Page 39 of 44Nweke et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:34 

Conclusion and future works
This paper presents and investigated experimental use of multi-view stacking ensemble to 
combine different sensors by exploiting their predictive probabilities for human activity detec-
tion and monitoring. We evaluated the proposed approach in three ways. First, we conducted 
an experimental evaluation of four classification algorithms on the original feature vectors 
extracted from accelerometer, gyroscope, and magnetometer respectively, to assess the impact 
of each sensor modality for human activity detection and health monitoring. Second, evolution-
ary search algorithms and correlation-based feature selection methods were utilized to reduce 
features vectors and evaluate the impact of feature-level fusion and multi-view stacking meth-
ods. Finally, the impact of increasing the minority activity classes using SMOTE algorithms was 
equally evaluated for both feature-level fusion and multi-view stacking ensemble algorithms.

In all the experiments, we observed superior performances of the proposed multi-
view stacking ensemble algorithms for human activity detection using two publicly 
available datasets. The performance results obtained showed that the overall detection 
accuracy can be improved, from approximately 71% to 95% while using all the feature 
vectors extracted from each sensor modality and classification algorithms. In addition, 
the performance results can be further improved up to approximately 99% with multi-
view stacking ensemble, feature selection methods and SMOTE algorithm. Moreover, 
our proposed method outperformed baseline methods such as Bagging, majority voting 
and Random Subspace ensemble using publicly available datasets and improve on the 
performances of the baseline techniques. From the experimental results, we observed 
that ankle placement consistently outperformed other placement positions in both fea-
ture-level and multi-view stacking fusion methods. Our results clearly demonstrate the 
validity, impact of multi-view stacking fusion, evolutionary search algorithm based fea-
ture selection and SMOTE algorithms, and the capacity of these methods to enhance 
human activity details for mobile and wearable sensor-based human activity detection 
and monitoring. The contribution of this paper is the implementation of comprehensive 
evaluation of human activity identification approach using individual sensors, classifica-
tion algorithms and multiple classifier system methods. The proposed evaluation meth-
ods ensure improved classification accuracy, robustness and reduce performance biases.

Despite the promising results obtained with the proposed approach, there are 
still areas that require further researches to improve the techniques. Consequently, 

Table 10 Comparison with other multiple classifier system methods

Methods Accuracy (%) Recall Precision F‑measure AUC 

Dataset 1 Saha et al. [16] 91.85 0.8806 0.8963 0.8872 0.9340

Chowdhury et al. [26] 95.32 0.9315 0.9414 0.9342 0.9622

Ghojeski et al. [27] Random subspace 95.05 0.9272 0.9365 0.9303 0.9599

Ghojeski et al. [27] Bagging 95.71 0.9381 0.9383 0.9378 0.9660

Proposed method 97.89 0.9718 0.9717 0.9717 0.9844

Dataset 2 Saha et al. [16] 77.52 0.7749 0.7769 0.7718 0.8714

Chowdhury et al. [26] 92.28 0.9227 0.9239 0.9224 0.9559

Ghojeski et al. [27] Random subspace 87.52 0.8750 0.8770 0.8746 0.9286

Ghojeski et al. [27] Bagging 86.26 0.8623 0.8643 0.8620 0.9213

Proposed method 99.18 0.9892 0.9924 0.9908 0.9940
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limitations of the proposed methods that would be solved in future are outlined here. 
First, the proposed method utilized publicly available dataset that contain only three 
sensor modalities (accelerometer, gyroscope and magnetometer). To ensure comprehen-
sive activity identification, health monitoring and status recommendation require other 
sensor modalities such as pulse rate, video, ECG, EMG, location sensors, radar sensors 
etc. Additional work is required to collect large and comprehensive datasets with diverse 
subjects, activity details and environments. Furthermore, future works would focus on 
using deep learning methods to automatically extract discriminative feature vectors 
from sensor data. In the case of the current study, handcrafted feature vectors were care-
fully extracted, but such methods are time-consuming and application dependents. The 
use of deep learning methods would lead to generalized and improved performance.

Moreover, evaluation of cross-locations fusion of sensors can also be tested by fusion 
of sensor modalities from different locations through adaptive multi-view stacking 
approach. Another important area of research is the development of mobile cloud-based 
and cyber-physical system to support seamless community based human activity recog-
nition and integration of a wide range of multimodal sensors.
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