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Introduction
Online social networks are very popular among people, and they are changing the way 
people communicate, work, and play, mostly for the better. One of the things that fasci-
nates us most about social network sites is the resharing mechanism that has the potential 
to spread information to millions of users in a matter of few hours or days. For instance, 
a user can share the content (e.g., videos on YouTube, tweets on Twitter, and photos on 
Flickr) with her set of friends, who subsequently can potentially reshare the content, result-
ing in the development of a cascade of resharing. Such information cascades play a signifi-
cant role in almost every social network phenomenon, which include, but are not limited 
to, the diffusion of innovation, persuasion campaigns, and spreading rumors. Information 
cascade prediction is to infer some key properties of information cascades, such as their 
sizes and shapes, which indicate the extent to which the information can reach in the social 
network. This prediction task can be valuable, and it can be applied in an array of areas, 
such as content recommender systems and monitoring the consensus opinion. However, 
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cascade prediction is challenging due to the myriad factors that influence a user’s decision 
to reshare content.

The problem of cascade prediction has been studied extensively [1–3], but most of the 
studies either depended heavily on the quality of the carefully designed hand-crafted fea-
tures or made various strong assumptions about the generative processes of the resharing 
events and oversimplified reality, leading to impaired predictive power. On the other hand, 
deep learning methods, such as convolutional neural networks (CNNs) [4] and recurrent 
neural networks (RNNs) [5], have achieved great success in various complicated tasks 
[6–8], and some studies have used neural networks as a transformer to leverage various 
informative features for cascade prediction [9]. Nevertheless, these methods ignore the 
temporal properties for cascade prediction, which are regarded as the valuable information 
that is needed to improve cascade prediction in traditional works.

In this paper, we propose to predict the information cascade within a neural network 
framework, by incorporating an attention mechanism using temporal and structural infor-
mation learned from the observed period of the cascade. Our proposed method consists of 
three layers. In the first layer, the structure embedding is obtained by representing the cas-
cade graph as a set of random walk paths that carry information about the propagator of the 
message and the local and global topologies among them. Inspired by the recent successes 
of the point process model in a cascade dynamic modeling task [10], temporal embedding 
is a series of hidden representations of reshared events ordered ascendingly by time. The 
challenge is how to assemble paths or events into the effective representation of each factor. 
Thus, in the second layer, we designed a novel attention mechanism that contains intra-
attention and inter-gate modules. The assembly problem is solved via the intra-attention 
mechanism with respect to (w.r.t.) the topological structure and the temporal properties. 
Further, a gate mechanism is proposed to fuse the structure and temporal representation 
by capturing the importance of the two factors for cascade prediction. Finally, the top layer 
introduces a multi-layer perceptron (MLP) to output the prediction (increment size of the 
cascade in our case). We performed extensive experiments on two representative real-
world datasets, a Twitter dataset and an AMiner citation network dataset. Our results indi-
cated that our proposed method outperformed state-of-the-art cascade prediction models.

The remainder of this paper is organized as follows. “Related work” section presents a 
survey of the related work. “Preliminaries” section formulates the cascade prediction prob-
lem and introduces the recurrent neural network. “Approach” section presents the details of 
the proposed model. The experimental results are presented in “Experiments” section, and 
conclusions and plans for future work are reported in “Conclusions” section.

Related work
We reviewed and presented relevant studies to our work from two aspects, i.e, cascade pre-
diction and attention mechanism.

Cascade prediction

Information cascade prediction has been explored in recent years and is still an open 
problem. Existing methods for cascade prediction can be categorized into two broad 
types, i.e., feature-based and model-based approaches.
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Feature-based approaches [2, 3, 11–15] make the connection between the prediction 
and various types of hand-crafted features that are extracted from the information cas-
cade, including the structural features of the social network, content features, temporal 
features, and user features. To predict the popularity of news articles in Yahoo News, 
Arapakis et al. [16] used 10 different features that they extracted from the content of the 
news articles as well as external sources. To predict the popularity of online videos in 
YouTube and Facebook, Trzcinski et al. [17] utilized both the visual clues and the early 
popularity patterns of the videos once they were released. Instead of predicting the total 
volume or level of popularity, Kong et  al. [18] focused on the popularity evolution of 
online contents and consider the dynamic factors that influenced how the popularity 
evolved. Nevertheless, there is no principled way to design and extract these features, 
and the accuracy of the predictions is sensitive to the quality of the extracted features.

Model-based approaches [1, 19–22] are devoted to directly characterizing and mode-
ling the formation of an information cascade in the network. These approaches often are 
optimized to provide intuitive explanations for the prediction due to the interpretable 
factors that are incorporated in them. Yu et al. [21] proposed a novel NEtworked Weibull 
Regression model for modeling microbehavioral dynamics that significantly improved 
the interpretability and generalizability of traditional survival models. Bao et  al. [23] 
modeled the popularity dynamics of the tweet in Twitter using the Hawkes process. 
They also proposed a method for exploring an adaptive peeking window for each tweet, 
which can synthesize all of the global dynamic information within the observed period 
into the predicted peek point. However, using the model-based approach for cascade 
prediction often is sub-optimal, because strong assumptions often are made about the 
process of information flow during a diffusion, and they lack the size of the future cas-
cade as a guide.

Inspired by the recent success of deep learning in various complicated tasks, several 
studies [9, 24] have adopted deep learning methods to leverage various features for cas-
cade prediction, which achieves satisfactory results. Our work is closely related to the 
above works. While in our work, learning the representation of cascade in an end-to-
end manner circumvents the difficulties inherent to the hand-crafted features design 
step. We also incorporate the temporal properties, which has been ignored in previous 
work [9].

Attention mechanism

The concept of attention was first introduced in Neuroscience and Computational Neu-
roscience [25, 26]. For instance, visual attention is the process by which humans focus 
on specific portion of their visual inputs for computing the adequate responses. Simi-
larly, in training neural networks, the attention mechanism allows models to learn align-
ments between different parts of the input. Attention mechanism has gained popularity 
recently in various tasks, such as neural machine translation [27], image caption [28], 
image/video popularity prediction [24, 29], and question answering [30, 31]. To predict 
video popularity, Bielski et al. [29] proposed a model with self-attention mechanism to 
hierarchically attend both video frames and textual modalities. To the best of our knowl-
edge, we are the first to propose the attention mechanism into cascade prediction by fus-
ing temporal and structural information.
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Preliminaries
In this section, we first present a formal definition of the cascade prediction problem 
(“Problem definition” section), and then we briefly describe the recurrent neural network 
that is used in our proposed method (“Recurrent neural network” section).

Problem definition

Let G = (V , E) be a social network (e.g., Twitter or the academic paper network), where V 
is the set of vertices of G , and E ⊂ V × V is the set of edges of G . A vertex u ∈ V represents 
a user in the social network and an edge (u, v) ∈ E represents that there exists a feedback 
relationship (e.g., using a like, comment, share, or cite) between user u and user v.

Suppose we have M cascades that start in G after time t0 . At time t, we denote the i-th cas-
cade as git = (V i

t , T
i
t , E

i
t ) , where V i

t is the subset of V who have taken part in the cascade, 
T i
t = {ti1, . . . , t

i
|V i

t |
} represents the time when a user in V i

t takes part in the cascade, and 

E i
t = E ∩ (V i

t × V i
t ) represents the feedback relationships between users in V i

t.
In this work, we first obtain git ’s detailed representation as {Si,Hi} , where Si and Hi 

correspond to structure representation and temporal representation, respectively. We 
denote the cascade size of git as Ri

t = |V i
t | . Thus, our aim is to predict the incremental size 

�Ri
t = |V i

∞| − |V i
t | . In other words, the target is to learn a function f that maps {Si,Hi} to 

�Ri
t , f : Si,Hi −→ �Ri

t.
Note that throughout this paper, we denote vectors by bold lowercase letters and matri-

ces by bold capital Roman letters. In what follows, we will omit the superscript i of related 
notations for simplicity.

Recurrent neural network

Recurrent neural network (RNN) [5, 32] is a type of deep neural network with cycle and 
internal memory units that capture sequential information, which is a more general model 
than the feed-forward network. In practice, RNN has been shown to be a powerful tool for 
modeling sequences [33]. Long short-term memory (LSTM) [34] and gated recurrent unit 
(GRU) [35] are recurrent mechanisms that are used extensively. According to Chung et al. 
[35], GRU has been shown to exhibit better performance with less computation, and it is 
used as the basic recurrent unit in our proposed approach. The updating formulation of 
GRU is as follows:

where xi is current input, hi−1 is previous hidden state, σ(·) is the sigmoid activation 
function, · denotess element-wise multiplication, Wu , Wr , Wh , Uu , Ur , Uh,and bu , br , bh 
are GRU parameters learned during training, and hi is the updated hidden state. The 
above system can be reduced into an GRU equation: hi = GRU(xi,hi−1)

(1)

ui = σ(Wuxi +Uuhi−1 + bu)

ri = σ(Wrxi +Urhi−1 + br)

h̃i = tanh(Whxi + riUhhi−1 + bh)

hi = ui · h̃i−1 + (1− ui) · hi−1
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Approach
In this section, we introduce our proposed method (presented in Fig. 1). It consists of 
three major components: (1) input embedding (“Input embedding” section ); (2) atten-
tion mechanism (“Attention mechanism” section); and (3) output layer (“Output layer” 
section).

Input embedding

Extracting structure representation

The cascade graph gt is first represented as a set of cascade paths that are sampled 
through multiple random walk processes. Each of the cascade paths not only carry the 
information about who are the information propagators, but they also capture the infor-
mation flow. Thus, we then feed them into a gated recurrent neural network to obtain 
the hidden representation.

We follow previous work [9, 36] and use a fixed path length L and a fixed number 
of sequences K. Concisely speaking, for each random walk process, we first sample the 
starting node with a probability by the following equation:

where α is a smoother, degc(u) is the out-degree of vertex u in G , and Vc is the set of nodes 
in gt . Following the starting node, the neighbor node is sampled with the probability:

The sampling of one selected sequence stops either when we reach the predefined length 
L or when we reach a vertex that has no outgoing neighbors. Whenever the length of 
one sequence is smaller than T, the sequence is padded by a special vertex ‘+’. This pro-
cess of sampling sequences continues until we sample K sequences.

Each node in the sequence is represented as a one-hot vector, q ∈ R
N , where N is the 

total number of nodes in G . Before we feed the one-hot vector into GRU, we first covert 
each of them into a low-dimensional dense vector x by a embedding matrix Wx ∈ R

H×N : 
x = Wxq where H is an adjustable dimension of embedding.

(2)P(u) =
degc(u)+ α

∑

s∈Vc
(degc(s)+ α)

(3)P(u ∈ Nc(v) | v) =
degc(u)+ α

∑

s∈Nc(v)
(degc(s)+ α)
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Then we feed the sequence into GRU to generate sequential hidden states. We 
adopt the bi-directional GRU [37], where a forward GRU reads the sequence node by 
node, from left to right, and generates a sequence of forward hidden vectors [ 

−→
h k

i  ]. 
Similarly, a backward GRU reads from right to left, node by node and generates a 
sequence of backward hidden vectors [ 

←−
h k

i  ]. This encoder can be used to simulate 
the process of information flow during a diffusion. For the i-th node in the sequence, 
the updated hidden state is computed as the concatenation of the forward and back-
ward hidden vectors:

where ⊕ denotes the concatenation operation.
Hence, we can obtain the k-th sequence’s representation [ 

←→
h k

i  ]. We assume mul-
tinomial distribution α1, . . . ,αL over L nodes so that 

∑L
i=1(αi) = 1 . Thus, the k-th 

sequence is represented as:

Note that the weight αi is also learned through the deep learning process.
Finally, from the perspective of topological structure, a cascade graph can be 

expressed as S = [s1, . . . , sK ] , sk ∈ R
2H .

Extracting temporal representation

When we consider about the temporal information of cascade graph gt , the adoption 
process is either a time series or a point process. The former series is indexed with 
fixed and equal time intervals, which can be used to capture the dependence in the 
time-varying features in a timely manner. The latter are generated asynchronously 
with random timestamps, and the precise time interval between two adoption events 
carries a great deal of information about the underlying dynamics. Capturing this 
information will be crucial for predicting the increment size of the cascade graph. 
Thus, as Fig. 1 shows, we used the point process form. The effectiveness of the point 
process form is demonstrated in “Experiments” section.

Specifically, for adoption event i, we can extract the associated temporal features 
(e.g., the inter-event duration di = ti − ti−1 ) and obtain the corresponding temporal 
sequence Tt = {d1, . . . , d|Vt |} . Then, we feed the sequence, Tt , into GRU, where the 
hidden state of adoption event i (denoted as hi ) can be updated by:

We should emphasize that, in this case, the current input vector degenerates into a sca-
lar. After recurrent computation for each time step, we gather a series of hidden states 
T = [h1, . . . ,hRt ] , hm ∈ R

2H.
In summary, we have a structure representation S and a temporal representation T  

as inputs for the attention mechanism to be proposed below.

(4)←→
h k

i =
−→
h k

i ⊕
←−
h k

i

(5)sk =

L
∑

i=1

αi
←→
h k

i

(6)hi = GRU(di,hi−1)
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Attention mechanism

Our attention mechanism consists of two parts: intra-attention module and inter-gate 
module. Through these we can obtain a more suitable representation of cascade gt for 
prediction.

Intra‑attention mechanism

Attention computation for topological structure Intra-attention w.r.t. topological struc-
ture (presented in Fig. 2) aims at assembling the sampled cascade paths into the effective 
representation of the structure information of gt . First, we convert the temporal embed-
ding matrix into a vector representation h̄ via a mean pooling mechanism:

The weight αk is formalized as

where αk is the attention to the hidden state representation of the k-th sequence in the 
graph gt , and ω(sk , h̄) is set using the following function

where the parameter matrices of intra-attention satisfy AS ∈ R
1×2H , WS and 

US ∈ R
2H×2H . The above equation essentially is used to calculate the relevance of each 

sequence in graph gt to temporal embedding. The intuition lies in the aspect that dif-
ferent temporal properties have diverse influences on the topological structure of the 
cascade. For instance, when compared with adoption events that occur occasionally, 
intensive adoption events will bring more potential adoption base for the selected mes-
sage, which in turn leads to a more complex cascade network. Hence, here we used tem-
poral embedding to guide the combined weights learning of sequences extracted in the 
cascade graph. Consequently, we can get the attended whole structure embedding ṡ via 
the weighted sum pooling mechanism:

(7)h̄ =
1

Rt

Rt
∑

m=1

hm

(8)αk =
exp(ω(sk , h̄)

∑K
k=1 exp(ω(sk , h̄))

(9)ω(sk , h̄) = AStanh(WSsk +USh̄)

(10)ṡ =

K
∑

k=1

αk · sk

 

( ∙ )  

Fig. 2 Architecture of the intra-attention mechanism w.r.t. topological structure
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Attention computation for  temporal properties Intra-attention w.r.t. temporal proper-
ties (presented in Fig. 3) aims to assemble event into the effective representation of the 
temporal information of gt . Similarly, we first convert the structure embedding matrix 
into a vector representation s̄ via a mean pooling mechanism:

The attention weight αm for the m-th hidden vector hm is formalized as:

where

scores the extent of the dependence between the i-th adoption behavior and the struc-
ture embedding, and the parameter matrices satisfy AT ∈ R

1×2H , WT and UT ∈ R
2H×2H . 

Complex cascade network topology will improve the reception and visibility of the mes-
sage, and thus promote the occurrence of adoption events. Reflected in the time dimen-
sion is the aggregation of adoption events, which is also called bursting diffusion of the 
message. In our previous work [23], we demonstrated that different parts of the diffusion 
history have diverse influences on the future cascade size, and we proposed a method 
for obtaining the most effective part of the history to make an accurate prediction. Ana-
logically, the pooling weights for the temporal property of different adoption events are 
automatically learned based on the structural embedding of the cascade graph gt to opti-
mize the prediction of cascade growth.

Hence we can obtain the attended whole temporal embedding ḣ via the following 
equation:

Inter‑gate mechanism

Having obtained the attended whole structure embedding ṡ and temporal embedding 
ḣ , we can feed these two embeddings into the inter-gate mechanism to effectively com-
bine these two factors. The proposed inter-gate mechanism can capture the different 

(11)s̄ =
1

K

K
∑

k=1

sk

(12)αm =
exp(ω(hm, s̄)

∑Rt
m=1 exp(ω(hm, s̄))

(13)ω(hm, s̄) = AT tanh(WThm +UT s̄)

(14)ḣ =

Rt
∑

m=1

αm · hm

 

m( ∙)  

Fig. 3 Architecture of the Intra-attention Mechanism w.r.t. temporal properties
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importance of the two factors when predicting the cascade growth. Instead of setting a 
fixed weight, the proposed inter-gate mechanism can adaptively tune the combination 
weight. Specifically, the final representation c of cascade graph gt when combing tempo-
ral and structure factor is assembled by:

where the adaptive combination weight β ∈ (0, 1) is computed by:

where the parameter matrices satisfy WC and UC ∈ R
2H×2H , and they are both learned 

through the deep learning process.

Output layer

Finally, our output module consists of a multi-layer perceptron (MLP), taking the cas-
cade representation c as input and generating the final incremental size prediction:

The benefit of this fully connected layer is that it does not incur much model complexity 
and ensures the capacity of nonlinear modeling.

Experiments
This section presents the experiment setup (“Experiment setup” section) and results 
analysis (“Experiment results” section).

Experiment setup

 Dataset and processing

Twitter The dataset contains tweets and retweets on Twitter from September 1 to Octo-
ber 1, 2016. Here we focus on a subset of popular tweets that have at least 50 retweets for 
easier calibration in our model. For each retweet cascade, the datasets include the publish 
time of the original tweet, time of retweet, and ID of users who participated in the cas-
cade. The global social network G was constructed using the same tweet stream from July 
and August 2016. To evaluate the performance of our model, we split the original data 
chronologically into a training dataset, a validation dataset and a test dataset. Specifically, 
cascades whose original tweets were published during the first 11 days were used for 
training, cascades that originated on September 12 were used for validation, and cascades 
that originated from September 13 to September 15 were used for testing. The rest of the 
days were used for unfolding the twitter cascade over the network.

AMiner AMinerThe scientific paper datasets were publicly available in https ://www.
ami-ner.cn/citat ion. We constructed the global network G using the citations between 
1985 and 1995. Specifically, we drew an edge from author A to author B if B ever cited 
A’s paper. A citation cascade of a given paper thus contains all authors who have written 
or cited the paper. We also split the datasets in chronological order. Papers published 

(15)c = β · ḣ+ (1− β) · ṡ

(16)β = σ(WCḣ+UCṡ)

(17)�R = MLP(c)

https://www.ami-ner.cn/citation
https://www.ami-ner.cn/citation
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between 1996 and 2000 were included in the training set. Papers published in 2001 and 
2002 were used for validation and testing, respectively.

In summary, Table 1 gives an overview of the basic statistics of the Twitter dataset and 
the AMiner dataset.

 Evaluation metrics

We used the mean squared error (MSE) and mean absolute errors (MAE), two standard 
measurements for regression tasks, to evaluate the prediction performance:

where ŷi and yi are the predicted value and ground truth value of cascade i, respectively. 
Note that, following the practice of [9], we also predict a scaled version of the actual 
increment of the cascade size, i.e. yi = log2(�Ri + 1).

Comparison methods

The comparison methods are as follows:

Features‑linear We extract a bag of hand-crafted features that were used in previous 
work [3, 38–41] and which can better represent the temporal factor and structure factor 
for cascade prediction. There features are then fed into a linear regression with L2 regu-
larization. These features include:

• Temporal feature This type of feature has to do with the speed of adoptions during 
the prefix cascade. We extract the five point summary (min, median, max, 25-th and 
75-th percentile) of waiting times between reshare events, the First Half Rate (mean 
time between adoptions for the first half of the adoptions), Second Half Rate [38], 
and the cumulative popularity [42].

• Structural features This type of feature includes the structural features of the entire 
social network around early adopters and the structural features of the cascade. Thus, 
we extracted the indegree of the each node, connection between gt and G , number of 
edges in gt , number of leaf nodes in gt , and average and max length of reshare path 
[38].

(18)MSE =
1

M

M
∑

i=1

(yi − ŷi)
2

(19)MAE =
1

M

M
∑

i=1

∣

∣yi − ŷi
∣

∣

Table 1 Statistics of the data set

Data #node in G #cascades (train) #cascades (val) #cascades (test) Avg. cascade size

Twitter 429,347 23,786 2604 6275 182.3

AMiner 126,422 31,257 6139 6071 19.1
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Support vector regression (SVR)  We follow previous work [17, 43] and adopt SVR 
model using linear kernel to predict cascade size with time series data as features.

SEISMIC  [44] This is one of state-of-the-art generative models on cascade predic-
tion. The model is based on a self-exciting point process producing final cascade size 
forecasts using the early adoption activity of a selected message. Note that its predictor 
is based on a branching process, and thus this method can only be applied to predict 
the final size of the retweet cascade. In contrast, our proposed end-to-end method can 
be easily extended to predict the dynamic of the retweet cascade.

DeepCas  [9] This is the first end-to-end, deep learning method for information cas-
cades prediction. It mainly utilizes the information of the structure of the cascade 
graph and node identities for prediction. The attention mechanism is designed to 
assemble a cascade graph representation from a set of random walk paths.

 Platform and parameter setting

For the length t of the observed initial period of the information cascade, we consider 
three settings, i.e., t = 1, 2, 3 hours for Twitter and t = 1, 2, 3 months for AMiner. To 
instantiate our models, we used the high-level neural network library Keras [45] with 
Theano [46] as the computational back-end. The code is running on a Linux server 
with 32G memory, 2 CPUs with 4 cores for each: Inter� CoreTM i7-7700K CPU @4.50 
GHz. The GPU in use is the NvidiaTM GeForce GTX TITAN 1080 Ti.

Experiment results

We evaluated our proposed model with the comparison methods on the Twitter and 
AMiner dataset to present the performance of our method. The prediction results 
are reported in Table  2, which shows that irrespective of the dataset (Twitter and 
AMiner) and prefix cascade (1, 2, 3 h for Twitter, and 1, 2, 3 months for AMiner), our 
proposed method outperformed other comparison methods, since it achieved a lower 
MSE.

Table 2 shows that Features-linear provides worse results than our proposed method, 
which indicates the limitation of hand-crafted features. The Features-linear method 
selects the most predictive features for cascade prediction, which was demonstrated in 
past studies [38]. This is especially obvious when compared with our proposed method, 
which automatically learns joint and effective representation from temporal and struc-
tural factors.

Table 2 also shows that our proposed method outperformed SEISMIC, a state-of-the-
art generative model, since our method uses more powerful attention mechanisms and 
is likely to yield better performance. Specifically, our model uses an attention mecha-
nism to automatically learn the pooling weights for the temporal properties of different 
adoption events, while SEISMIC uses a constant peeking period within a prefix cascade 
for different messages when making predictions. In addition, SEISMIC lacks the future 
cascade size as a guide and makes various stronger assumptions about the diffusion pro-
cess, which are common disadvantages of generative prediction methods.
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Among all of the methods that were compared, DeepCas had the best performance 
because it benefits from end-to-end learning from the data to the prediction. Our pro-
posed method leads to a certain reduction of prediction errors when compared with 
DeepCas, due to the introduction of temporal information, which is ignored in DeepCas.

Comparing the performance of using different prefix t, we can make the conclu-
sion that applies to all methods for both twitter cascade and citation cascade: As we 
increased the observation time, the prediction errors tended to decrease, suggesting that 
more accessible information will make prediction easier. In addition, we can observe 
that prediction errors are much bigger in Twitter (the top-half of the Table 2) than that 
in AMiner (the bottom-half of Table 2), which indicates that predicting the twitter cas-
cade size is a more difficult scenario of information cascade prediction.

To study the effects of temporal factor and structural factor on cascade prediction 
in more detail, we compared the proposed method and the Feature-linear method and 
their variants that do not consider one of these factors. We also ran these methods on 
the two datasets and aimed to predict the incremental size of information cascade using 
a fixed observation window ranging from 1 to 3 h (months for AMiner). For ease of 
results presentation, we denote temporal factor as T  and structural factor as S , respec-
tively. Thus “no T  ” means removing temporal factor for corresponding methods, and it 
is similar for “no S”.

The prediction results of these methods are summarized in Table 3. This results show 
that our proposed method and Feature-linear both outperform their variants, which 
indicates the usefulness of these factors. For instance, by testing “Proposed (no T)”, we 
can see a notable decrease in performance compared with our proposed method, with 
MSE = 3.772 and 2.609 when observing for 1 h on Twitter. This phenomenon shows that 
feeding temporal features into deep neural networks is indeed meaningful.

We also found that Feature-linear (no S ) performs better than Feature-linear (no T  ), 
which is consistent with previous research [38]. However, “Proposed (no S )” and “Pro-
posed (no T  )” have very similar performances for most situations, which suggests that 

Table 2 Overall prediction performance

p.s. t = 1*, where ‘*’ denotes hour for Twitter (year for AMiner)

t = 1* t = 2* t = 3*

MSE MAE MSE MAE MSE MAE

Twitter

 Features-linear 3.821 1.536 3.511 1.479 3.423 1.42

 SVR 3.798 1.529 3.028 1.384 3.382 1.411

 SEISMIC 3.770 1.527 2.954 1.313
1.462

3.319 1.408

 DeepCas 3.725 1.493 3.496 3.308 1.395

 Proposed 2.609 1.265 2.349 1.167 2.300 1.14

AMiner

 Features-linear 2.429 1.197 2.136 1.089 1.880 1.067

 SVR 2.419 1.194 2.195 1.123 1.865 1.066

 SEISMIC 2.417 1.193 2.282 1.136 1.852 1.061

 DeepCas 2.239 1.127 1.987 1.072 1.674 1.056

 Proposed 2.172 1.116 1.672 1.042 1.534 1.003
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there potentially is still room to improve the utilization of temporal factors (the most 
predictive information) in our proposed method. Thus, we examined the effects of differ-
ent ways to integrate temporal information. The method of “Proposed (time series T  )” is 
to form a time series of the cascade size for each message and to feed the time series into 
our neural network, instead of temporal embedding of individual nodes. Table 3 shows 
that “Proposed (time series T  )” performs worse than “Proposed (no S)”. This is consist-
ent with our expectation, since the precise time interval between two adoption events is 
more informative than a time series dataset. Note that when making predictions at the 
beginning of the information cascade, “Proposed (no T  )” performed worse than “Pro-
posed (no S)”, which may be due to the fact that a ”simple” topology is inadequate for 
providing an effective forecast. Finally, our proposed method had the best performance, 
suggesting that temporal information and structural information are complimentary for 
cascade prediction.

To demonstrate the effectiveness of the components of attention mechanism and gate 
mechanism in the proposed method, we compare the proposed method and its variants 
that remove one of the components. For ease of results presentation, we denote atten-
tion mechanism as attention and gate mechanism as gate , respectively. The correspond-
ing results are presented in Table 4. We find that our proposed method outperforms its 
variants, which demonstrates the positive contribution of each component.

Conclusions
In this paper, we proposed a novel method for information cascade prediction based 
on an end-to-end neural network. Learning the representation of a cascade in an 
end-to-end manner circumvented the difficulties inherent to hand-crafted features 
design. To efficiently obtain and fuse the temporal and structural information, we care-
fully designed an attention mechanism, which involves intra-attention and inter-gate 

Table 3 Effects of temporal factor and structural factor on cascade prediction

p.s. t = 1*, where ‘*’ denotes hour for Twitter (year for AMiner)

MSE (t = 1*) MSE (t = 2*) MSE (t = 3*)

Twitter

 Features-linear (no T) 4.106 3.823 3.715

 Features-linear (no S) 3.976 3.640 3.524

 Features-linear 3.821 3.511 3.423

 Proposed (no T) 3.772 3.503 3.328

 Proposed (no S) 3.716 3.540 3.407

 Proposed (time series T) 3.809 3.621 3.463

 Proposed 2.609 2.349 2.300

AMiner

 Features-linear (no T) 2.621 2.407 2.092

 Features-linear (no S) 2.561 2.312 1.986

 Features-linear 2.429 2.136 1.880

 Proposed (no T) 2.411 2.050 1.799

 Proposed (no S) 2.307 2.186 1.838

 Proposed (time series T) 2.457 2.129 1.906

 Proposed 2.172 1.672 1.534
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modules. We conducted experiments on two scenarios, i.e., predicting the size of cas-
cade of Tweet on Twitter and predicting the citation of papers in AMiner. Compared 
with the other three state-of-the-art prediction methods, our proposed method offered 
small prediction error. Future works include the incorporation of other predictive infor-
mation within the attention framework. Cascade dynamics modeling with our attention 
neural network is also of interest.
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