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Introduction
Along with the fourth industrial revolution, artificial intelligence, big data, Internet of 
Things, and cloud computing are emerging as cutting-edge technologies globally. In par-
ticular, artificial intelligence has unlimited potential to further improve the quality of 
human life and can solve several difficult engineering problems [1–12]. Moreover, this 
technology provides basic ideas to derive successful solutions to numerous problems 
encountered in the software development field.
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As the size and complexity of software evolve, software defects are becoming inev-
itable. A software defect is an error, flaw, mistake, or fault in a computer program or 
system, producing incorrect or unexpected results [13]. These defects inconvenience 
users by causing malfunctions, i.e., software defects continuously decrease the quality 
of the software until the defect is fixed. Thus, defects are a significant issue that must 
be resolved for software quality improvement. Various methods for effectively detect-
ing, fixing, and patching bugs have been investigated by software developers [14, 15]. 
For software projects, the ratio of the cost of software maintenance to the total project 
cost exceeds 50% [16–19]. Corrective maintenance addressing software defects accounts 
for 20% of all maintenance activities [20–22], and an improved efficiency in fixing defect 
will have a direct effect on the reduction in software development and maintenance 
costs. These issues are considered to be significant for software development companies.

During a software development, bug reports are written to effectively manage and fix 
software bugs when they are detected during the software life cycles. Bug reports are 
documents that detail the occurrence of defects with a specific format between devel-
opers and reporters. In general, information regarding the reporter, environment, and 
other data, including the priority and severity used in triage, are recorded in bug reports. 
Developers make substantial efforts to fix bugs and improve the communication with a 
user or quality assurance (QA) team using bug reports.

When defects occur during software development and maintenance, a software devel-
opment manager often follows the defect life cycle, as shown in Fig. 1. Figure 1 summa-
rizes the stages of the defect life cycle. The straight lines indicate parts that are manually 
applied by developers. The dotted lines are parts that can be automated by a system. 
First, once defects are detected, bug reports are written with the initial state “NEW,” and 
the manager analyzes whether a bug is valid and has been duplicated. If a bug is not 
detected by the manager, the report is sent to the developer and the state is changed to 
“OPEN.” Second, as a result of the developer’s activity, the bug is considered “CLOSED” 
or “REOPENED.” As shown in Fig. 1, several stages must be completed before developers 
start to modify the code. An important stage involves classifying bug reports for the bug 
report manager. The classification is divided into two classes: (1) textual classification, 
and (2) triage. Textual classification is based on texts, such as the title or body text. Tri-
age is a classification method not based on texts but based on the priority or severity of 
the defects. Through textual classification, the bug reports classified with similar reports 
are assigned to developers that make modules of the defects that have occurred. Textual 
classification is also used to identify duplicate bug reports, which account for 30% of all 
bug reports [24]. Because developers cannot address all bug reports, a triage is essential 
for attaining the best maintenance efficiency within a limited period of time.

If these defect classification processes are accurately and smoothly applied, no prob-
lems will occur; if not, the effect on the fixing of software defects and maintenance 
will decrease. An incorrect textual classification causes a bug report to be reassigned 
to other developers; the bug report cannot be fixed until the reassignment is com-
plete. Thus, an incorrect textual classification decreases the maintenance efficiency. 
In addition, a mis-triage creates a more critical problem. Because unimportant prob-
lems are processed first, urgent defects can be delayed. In an incorrect textual classi-
fication, after a developer requests that a bug report be reassigned, the developer can 
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work on another job. Conversely, the cost of fixing unimportant defects caused by a 
mis-triage is irreversible. Thus, an accurate bug report classification and assignment 
are directly connected to software maintenance efficiency. Because this efficiency is 
connected to the cost incurred by the company, it is extremely important. Owing to 
the importance of an accurate bug report triage, a pre-existing bug report triage is 
manually applied. For example, in the case of Eclipse, developers may spend up to 2 h 
classifying bug reports every day.

To resolve these problems, artificial intelligence techniques are now actively being 
studied, and have shown better classification accuracy than traditional (non-artificial 
intelligence based) methods [25–36]. Such techniques can be a key to solving most of 
the current problems regarding this issue. Thus, there have been various attempts to 
overcome the weaknesses of traditional methods by combining artificial intelligence 
as a hybrid approach.

To reduce the effort required in this regard, studies have proposed the applica-
tion of state-of-the-art automation methods for bug report classification [25–29]. In 
particular, latent Dirichlet allocation (LDA)-based classification methods are com-
mon because they are suitable to bug reports that contain text-based data. Although 
these methods are excellent in terms of textual classification, the accuracy of the tri-
age is unsatisfactory. To achieve an improved LDA-based method, software engineers 

Fig. 1  Defect life cycle [23]



Page 4 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci.           (2020) 10:26 

have proposed new methods that combine LDA with other approaches, such as the 
k-nearest neighbor (KNN) and a support vector machine (SVM) [30–35]. However, it 
is risky to combine LDA with other methods for improving the accuracy of bug report 
classification because the combined methods cannot be applied well when compat-
ibility issues occur (e.g., a correlation or difference in the input data between the 
methods) between LDA and other approaches. The risk is greater when LDA is com-
bined with another method. Thus, instead of combining LDA with another method 
to improve the performance of the bug report classification, the performance of LDA 
itself should be improved.

To improve the bug report triage performance, in this study, we focus on improving LDA 
itself and propose a new method based on multiple LDA and backpropagation techniques. 
The proposed method aims to improve the quality of the topic set produced through LDA 
classification. The method builds additional topic sets that complement the original topic 
set from a typical use of LDA, and classifies and analyzes them to support the original topic 
set for improving the accuracy of the bug report classification. To evaluate the proposed 
method, we use bug reports from Bugzilla [37] along with Android bug reports from Min-
ing Software Repositories (MSR) [38, 39]. Any method that fails to classify a significant 
number of bug reports is useless, and we therefore verified that the proposed method is 
able to classify a significant number of bug reports as a repository platform. We also veri-
fied and determined the efficiency of the method for use in a bug triage. To determine the 
difference between the original LDA classification and the proposed method, we statisti-
cally verified the method using a paired T-test.

The main contributions of this study are as follows:

•	 A new method is proposed to improve the accuracy of bug report triage using multiple 
LDA and backpropagation techniques.

•	 The proposed method is able to maintain compatibility with the existing hybrid LDA 
methods through a design of the necessary conditions.

•	 Factors hindering the accuracy of the triage are identified through a detailed analysis.
•	 Our experiments were conducted based on bug reports for actual software used in 

practice.
•	 The superiority of the proposed method was validated through a statistical evaluation.

The remainder of this paper is organized as follows: Related studies are introduced in 
Sect.  “Related work”. Section  “Background” describes the background information. Sec-
tion “Approach” shows our method to improving the bug reports triage performance and 
avoid confliction with existing LDA-based triage methods. Section “Evaluation” evaluates 
the proposed method and Sect.  “Discussion” discusses detailed analysis of the proposed 
method. This paper is concluded and future research is discussed in Sect. “Conclusions”.

Related work

Bug report deduplication

Bug report deduplication is the process of removing duplicate bug reports. Duplicate 
bug reports cause an overestimation of the number of bug reports and increase the costs 
required. Thus, studies on bug report deduplication greatly help reduce the workload.
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Alipour et al. [40, 41] used textual information (e.g., title, abstract or body text) to reduce 
bug report duplication. They proposed a BM25F based method that automatically extract 
the implications of the bug report and builds a dictionary (set of words). The researchers 
referred android layered architectural words [42], software non-functional requirements 
words [43], android topic words using LDA [44], android topic words using labeled-LDA 
[44] and random words in the English dictionary. As shown by the dictionary sources, the 
method is applied to android bug reports and an 11.55% performance improvement is 
achieved compared with REP [45]. A similar study [46] uses word embedding.

Aggarwal et al. [47, 48] improves the method in a study by Alipour [40] and proposes 
a method that is based on software engineering literature and reduces manual efforts for 
deduplication with minimal loss of triage accuracy. This study shows that the method of 
Aggarwal et al. is better than Alipour’s method in Eclipse, Mozilla and Open Office.

Campbell et al. [49] focused on off-the-shelf information retrieval techniques. Although 
these techniques were not designed for bug reports, they outperformed other approaches 
in terms of crash bucketing (i.e., bug report grouping) at an industrial scale. The authors 
used more than 30 thousand report data from the Ubuntu repository and Mozilla’s own 
automated system. Finally, they demonstrated that bug report deduplication still has signifi-
cant room for improvement, particularly in terms of identifier tokenization through term 
frequency–inverse document frequency (TF–IDF).

Hindle et al. [50] proposed a method for preventing duplicate bug reports before they are 
submitted. This method finds duplicate or related bug reports in the bug database using 
texts. In addition, this simple method can be used to evaluate a new bug report deduplica-
tion method. This method is evaluated using bug reports from Android, Eclipse, Mozilla, 
and OpenOffice projects.

Nguyen et  al. [51] proposed the DBTM, which has two advantages: both features are 
based on a topical method and information retrieval (IR). This method shows 20% perfor-
mance improvement compared with the Relational Topic Model (RTM) [52] and REP [45] 
in Eclipse, Mozilla and Open Office.

Tian et al. [53] improve the study of Jarbert [54] and introduce three kinds of approaches. 
The first approach does not use term appearance (e.g., TF-IDF) but applies BM25 because 
BM25 is the best method according to the technical literature search. The second approach 
uses “product” as metadata, i.e., this method uses the notion that bug reports with different 
product are not duplicated. The third approach uses a comparison of the top k-similar bug 
reports instead of the most similar bug reports. This method improves the true positives 
and maintains low false negatives compared with a study of Mozilla projects by Jarbert.

Other machine learning methods [55, 56], such as hidden Markov models (HMMs) or 
deep networks, are proposed. They build a model that identifies the features of duplicate 
bug reports and utilize it. A multi-factor analysis method [55] that employs LDA, LNG and 
n-gram is also proposed.

Bug report triage

Bug report triage is a type of classification process. Because the developer’s workload 
is limited, critical bug reports should be processed earlier. Thus, a bug report triage is a 
classification process based on “priority.”
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Tamrawi et al. [57] proposed Bugzie, which recommends bug reports. Bugzie builds 
fuzzy sets that are based on words extracted from the title and the description. Bugzie 
shows that it outperforms naïve Bayes, C4.5 (decision tree) and SVM with regarding to 
the temporal efficiency in Eclipse.

Wang et al. [58] proposed FixerCache, which is an unsupervised bug triage method. 
FixerCache overcomes the limits of supervised classification based on the activities 
of developers. FixerCache uses TF extracted from the title and the description of bug 
reports and outperforms naïve Bayes and SVM regarding the accuracy of classification.

Wen et  al. [59] proposed Configuration Bug Learner Uncovers Approved options 
(CoLUA). CoLUA is a two-phase method that utilizes machine learning, IR and natural 
language processing (NLP) to resolve communication problems between developers and 
reporters. In the first phase, CoLUA determines what the bug report intends to convey 
based on its text information. In the second phase, CoLUA identifies the options that 
affect the communication in the labeled bug reports. The researchers evaluated CoLUA; 
their findings indicate that CoLUA has a better F-measure than the ZeroR classifier.

Zhang et  al. [60] proposed the k-NN search and heterogeneous proximity (KSAP). 
KSAP employs the heterogeneous network of the bug report repository and histori-
cal bug reports to improve the auto-allocation of bug reports. KSAP is a two-phase 
method. First, KSAP obtains historically similar bug reports. Second, KSAP ranks the 
contribution of developers by heterogeneous proximity. The developers evaluated KSAP 
using Eclipse, Mozilla, Apache Ant and Apache Tomcat6. KSAP shows a performance 
improvement of 7.5–32.25% compared with ML-KNN [61, 62], DREX [63], DRETOM 
[64], Bugzie [57], and DevRec [62].

Many bug report triage methods [65–70] use data reduction. To achieve data reduc-
tion, these methods use KNN, naïve Bayes, and clustering and reduce feature selection 
and instance selection using the representative and statistic value of these methods or 
newly define “module selection.”

Machine-learning based methods applied to bug triage have also been frequently stud-
ied. Florea et  al. [71] proposed an SVM-based bug report assignment recommender 
implemented in a cloud platform that achieves better results than other SVM-based 
bug report assignment recommending systems. They evaluate their method using actual 
datasets consisting of Netbean, Eclipse, and Mozilla projects. Popular deep-learning-
based methods, which machine-learning type approaches, have recently been proposed 
using two deep-learning classifiers, namely, convolutional and recurrent neural networks 
for a parallel and extendable recommending system [72], and using a convolutional neu-
ral network and word embedding for automated bug triage [73]. These studies use an 
actual open-source dataset and demonstrate a higher accuracy than existing machine-
learning-based methods.

Background

Bug report

In a modern environment, bug reports are operated as a part of community of issue 
(bug) tracking systems, i.e., bug reports are identified by not only the developers or 
report managers in charge but also all related people and are even used as public data. 
Thus, the bug report process requires accurate classification to satisfy the needs of 
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numerous people. A distinct difference is the metadata of bug reports compared with 
common documents. Especially priority and severity, which is one of the metadata, are 
important because they are used to bug report triage. Due to the triage process, develop-
ers can be informed prior to the processing of important and critical bug reports. Fig-
ures 2 and 3 show examples of bug reports. Bug reports in Bugzilla are known to address 
a substantial amount of metadata. Bugzilla even supports “importance (priority and 
severity)” and “triage owner”, which are related to the triage process, and common data 
such as “reporter”, “product” and “status.” Figure 2 shows a bug report in Bugzilla. The 
report presents an unlimited page loading and information leaks. The priority “p2” in the 
bug report enable developers to fix the bug as soon as possible before reading it closely 
(Bugzilla uses stages p1–p5 as priority, where p1 is the highest priority). Bug reports in 
Github have a substantial amount of information about the environment in which the 
bug appears. A bug report, e.g., “enhancement”, “discussion”, and “question”, is usually not 
uploaded. Figure 3 shows a bug report in Github. The bug report shows cases in which 
a segmentation fault related with disconnected monitors. The bug occurred in iOS ver-
sion 12, and the report describes the environment in which the bug occurs by showing 
the code. This study uses bug reports from Bugzilla and MSR that support bug reports in 
Fire Fox and Eclipse.

Fig. 2  Bug report in Bugzilla [74]
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LDA

LDA is a probability model in which topics exist in each document for the given docu-
ment collection (corpus). Users can estimate the words distribution by topics and topic 
distribution by documents using LDA. In LDA, documents consist of topics, and topics 
generate words based on the probability distribution. LDA traces the back process and 
creates the document when data are input. T is a topic variable, D is a document variable 
and W is a word variable. The trace back process is described as follows:. 

Fig. 3  Bug report in GitHub [75]
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1) Assign all words in all documents to random topics (of course, most of them 
are wrong). 

    Repeat: 
    { 

2) For W, assume that W is misassigned but the other variables are 
correctly assigned. 

3) Reassign W according to two conditional probabilities as follows: 
- P(T | D): the distribution of topics in the same document. 
- P(T | W): the distribution of topics for the same word. 

    } 

Figure 4 shows an example of supposition for generating a document in LDA. If a 
machine knows the distribution of topics in documents, a document can be gener-
ated using supposition of LDA. In a chart of the figure, the distribution from topic 1 
to topic 4 is 0.15, 0.2, 0.35 and 0.3. The machine stochastically selects a topic. In the 
figure, topic 1 is selected with a 15% probability. The machine selects a word that con-
sists of topic 1 (all topics consist of words that are well matched with the topic). In the 
figure, “basic” is selected. Topic 2 is selected with a 20% probability, and “function” is 
selected. If the machine repeats this routine, the document is completed.

Figure 5 shows an example of traceback in LDA. LDA builds the distribution of top-
ics by tracing back to the supposition in Fig. 4. First, the machine randomly assigns all 

Fig. 4  Example of supposition to generate a document in LDA



Page 10 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci.           (2020) 10:26 

words to topics. As shown in Fig. 5, assume that only two topics exist: A, B and two 
documents: Doc1, Doc2. For W (third word: “Apple” in Doc1), the machine deter-
mines the distribution of topics in the same document (P(T| Doc 1)). Because both A 
and B appear at 50% in Doc 1, the topic of W cannot be determined.

The machine determines the distribution of the topics for the same word (P(T| 
“Apple”)). In this figure, it obtains the distribution of “Apple” in Doc 1, 2. Because the 
distribution of B is larger, it determines that the topic of W is B. This study aims to 
improve triage accuracy and be compatible with state-of-the-art studies that employ 
multiple LDA.

Approach

This section describes how the proposed method is processed. Figure  6 shows an 
existing bug report triage process using LDA. Figure  7 demonstrates the overall 
approach used with the proposed method.

Fig. 5  Bug report in GitHub

Fig. 6  Existing LDA classification method
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Applying LDA to bug report classification

The existing bug report classification applies LDA for a bug report base (dataset), and 
the machine classifies the bug reports based on the topic sets as the result (a union topic 

Fig. 7  Overall approach

Fig. 8  Example of the mis-triage caused by common elements



Page 12 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci.           (2020) 10:26 

set (UTS) for distinguishing other topic sets that subsequently appear). This process is 
a part of the proposed method. The existing method is suitable for textual classification 
but achieves a poor triage performance, one of the reasons for which is the common ele-
ments occurring in different topic sets. Figure 8 shows an example of a bug report mis-
triage. “Crashed image” is a bug in which an image is not displayed on the page where 
it should be. A bug report for a crashed image caused by an incorrect extension or an 
image loader error should be triaged as priority “P1.” Two priorities exist, namely, P1 
and P3, in the correct triage model (the topics are listed in order of their influence). In 
the figure, “crash” is the first to appear in both P1 and P3. Unfortunately, the situation is 
the same in the bug report. Thus, the machine will apply a triage using topics with a low 
influence, and even minor errors will cause a mis-triage.

Identifying mis‑triaged bug reports

To improve the UTS, including the common elements, the proposed method builds 
additional topic sets. One set is a partial topic set (PTS). The existing LDA classifica-
tion cannot determine the priority or severity of the UTS. Thus, it should identify them 
along with the mis-triaged bug reports. The PTS assumes this role. The PTS-building 
process is similar to the case of the UTS. The proposed method classifies the bug reports 
in the training set based on the priority and severity. The PTS representing each field is 
obtained by applying the field. Figure 9 visualizes the building of the PTS and the pro-
cess of identifying mis-triaged bug reports. The most popular field in the UTS can be 
determined by comparing the UTS with the PTS. The method also estimates that bug 
reports inconsistent with the most popular field will be mis-triaged. The common ele-
ment problem can be resolved by correctly reclassifying mis-triaged bug reports based 
on the PTS; however, this method has a particular problem in that it only uses the UTS 
for bug report classification. This method should round the UTS and PTS for all fields. 
From a temporal aspect, this step is absolutely inefficient. Thus, the search space of the 
bug triage should be reduced. This problem is resolved through the next step.

Fig. 9  Process for building PTS and identification of mis-triaged reports
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Analyzing mis‑triaged bug reports by building a feature topic set

To overcoming the temporal limit of the method using the PTS, in this study, a method 
for reducing the search space of a bug report triage using the feature topic set (FTS) is 
proposed. This method does not round all PTSs but does round the FTS as the corre-
sponding common elements for the bug reports. Figure 10 shows the analysis process 
of building the FTS and its features. In the initial results, the proposed method collects 
mis-triaged bug reports based on the PTS and obtains the FTS by applying LDA to 

Fig. 10  Process of building FTS and feature of FTS topics

Table 1  Term definitions for analyzing mis-triaged bug reports

Term Abbreviation Details

Major field – For a topic, a topic set has the highest rank for the UTS, 
including the topic

Minor field – For a topic, all topic sets, with the exception of the major 
field in the UTS, including the topic.

Number of classifiable bug reports N-clsf The number of bug reports that UTSs currently classify

Accuracy of major field acc-major The classification accuracy of bug reports in major field

Accuracy of minor field acc-minor The classification accuracy of bug reports in minor field

High rank-high rank factor HH factor A topic has a high rank for both the major field and the 
minor field

High rank-low rank factor HL factor A topic has a high rank on the major field and a low rank on 
the minor field.

Low rank-high rank factor LH factor A topic has a low rank for the major field and a high rank for 
the minor field

No rank-no rank factor NN factor A topic does not exist in the UTS
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them. The FTS can be constructed in two ways. The first way is to build for the correct 
destination of mis-triaged bug reports, and the second is to build for the current loca-
tion and correct destination of the bug report. The latter has the advantage of requiring a 
smaller search space by designating the current location. However, this approach should 
be employed when the massive size of the training set is prepared because the number of 
topics decreases for each FTS. The topics of the FTS are divided into four parts based on 
the ranking of the UTS. Table 1 shows the terms used in this step.

In Fig. 10, the FTS has several topics; in particular, “red,” “correct,” and “hash” appear 
in the original UTS numerous times. The proposed method obtains the ranks of the 
topics in both the major and minor fields (and determines the average ranks for two or 
more minor fields). The method selects the topic and corresponding factor based on 
these ranks. The words that do not appear in the UTS are classified as the NN factor. 
There are two methods that address common elements. With the first method, com-
mon elements are removed from its minor field. As a factor of the common elements, 
the performance of the UTS is influenced but N-clsf is commonly decreased. If none of 
the words in a bug report are located in the UTS, the proposed method cannot classify 
the bug report, i.e., a common element deletion is inefficient. If common elements are 
included in the HH factor, acc-major improves but acc-minor decreases. If common ele-
ments are included in the HL factor, acc-major increases but acc-minor is less effective. 
As the worst case, if common elements are included in the HH factor, acc-major is unaf-
fected, and acc-minor declines.

The other method that addresses common elements is to disregard them and reclassify 
the bug report by matching the FTS when the bug report is classified by common ele-
ments. Even if this approach increases the temporal cost of classifying bug reports by the 
FTS, it can prevent a decrease in N-clsf when common elements are removed. In par-
ticular, when the NN factor is employed, the process is quick because it does not check 
common elements in the FTS, unlike other factors. This study uses this method.

Re‑classifying bug reports by improving UTS using FTS

To improve the UTS using the FTS, the proposed method builds a factor parser consist-
ing of common elements in the UTS. This method quickly searches using a Hash or Trie 
(because all common elements are words). A factor parser obtains the addresses of the 
FTS that correspond to a common element. Figure 11 shows an example in which the 
UTS is improved using the FTS. The proposed method classifies the bug reports through 
the UTS, similar to the existing LDA classification. If the bug report includes common 
elements (particularly HH, HL, and LH factors), it calls the FTS that corresponds to the 
common elements identified by the factor parser. The NN factor only exists in the FTS. 
We know that other factors are identified, and the NN factor better represents its major 
fields. Thus, constructing the FTS using only an NN factor builds a more accurate and 
quicker environment. The method compares the report with the FTS to check whether 
the classification is correct.
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Evaluation

Experiment design

To develop an experiment verifying the proposed method, we collected multiple bug 
reports. In this study, our dataset consists of 3362 bug reports from Bugzilla, which sup-
ports various types of bug reports and metadata, and 41,229 bug reports from the MSR, 
which supports numerous types of bug reports. The bug reports from Bugzilla are clas-
sified based on the priority and severity. The bug reports from Bugzilla support both the 
severity and priority as the metadata that are useful for triage, whereas those from MSR 
support only the priority for the triage. To conduct the practical experiments, a total of 
231 bug reports from Bugzilla related with Git were actually used in the group develop-
ment. Git is an open-source distributed version-control system for tracking changes in 
the source code during software development [76]. In this study, our dataset consists 
of bug reports from Bugzilla that support various bug reports and metadata and bug 
reports from MSR that support numerous bug reports. The bug reports from Bugzilla 
are classified by priority and severity.

Thus, we fit a model verifying the improvement in the UTS accuracy of the proposed 
method. The collected bug reports were divided into three groups: Bugzilla, MSR, and 
a combination of the two. To build the training and test sets, we employ tenfold cross-
validation. In this experiment, we implement the proposed method in Python 3. Python 
3 supports various libraries for NLP and topic modeling. We use nltk (NLP), stop-words, 
and genism (topic modeling).

Fig. 11  Example of improving UTS using FTS
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Experiment results

Table 2 shows the number of bug reports classified by the proposed method in terms 
of percentage of each fold. The fold represents the divided parts in the cross-validation. 
“Bugzilla,” “MSR,” “Bugzilla (Git),” and “Integrated” represent the bug report datasets. 
The percentages indicate the probability that the bug reports will be classified in each 
dataset. Bugzilla (Git) consists of bug reports related with Git in Bugzilla dataset. In 
the “Integrated” dataset “Bugzilla” and “MSR” are combined. As shown in Table 2, the 
method achieves a classification rate of greater than 97% for all folds for the Bugzilla 
reports; the average rate is 98.311%. In the case of the MSR, the classification rate is 
lower than that of Bugzilla, and the average rate is 94.993. In the case of Bugzilla (Git), 
the classification rate is lower than the entire Bugzilla dataset, such as the MSR, and 
the average rate is 93.91%. In the case of an integrated environment, the average rate is 
96.199%.

Table 3 shows the percentage of each fold for the accuracy of the bug reports classi-
fied based on the severity using the LDA in Bugzilla. Table 4 shows the percentage of 
each fold for the accuracy of the bug reports classified based on the severity when using 
the proposed method in Bugzilla. The first row of Tables 3 and 4 represents the sever-
ity level of the bug reports. The numbers in Tables 3 and 4 denote the accuracy of the 

Table 2  Percentage of bug reports classified by the proposed method (%)

Fold Bugzilla MSR Bugzilla (Git) Integrated

1 98.02 94.26 86.95 97.00

2 97.96 93.73 91.30 97.26

3 98.72 94.03 95.65 96.73

4 98.34 96.66 95.65 95.76

5 99.42 96.00 100.00 95.50

6 97.64 95.13 91.30 96.26

7 98.40 95.80 100.00 94.76

8 98.31 93.26 95.65 95.26

9 97.26 96.23 86.95 95.83

10 99.04 94.83 95.65 97.63

Average 98.31 94.99 93.91 96.20

Table 3  Triage accuracy of bug report classified by LDA (Severity) (%)

The maximum value in each column is presented in italics

Fold Block Critical Major Normal Minor Trivial Enhancement

1 50.05 64.66 55.43 75.55 54.75 45.24 66.35

2 (32.79) (57.62) (52.75) 73.96 55.21 55.91 64.18

3 43.11 62.66 65.39 67.3 65.71 50.21 68.29

4 37.41 65.62 58.39 82.59 55.46 56.16 (51.1)

5 45.08 72.43 63.04 74.79 (51.96) 54.03 68.39

6 33.52 73.54 56.92 75.93 69.12 51.23 62.34

7 38.01 60.94 59.18 78.92 63.61 49.09 66.60

8 35.08 61.10 57.02 70.46 55.68 40.11 54.46

9 44.38 72.27 60.17 (65.46) 60.36 49.92 56.70

10 37.28 68.70 62.85 66.28 59.06 (39.45) 68.67

Average 39.67 65.95 59.11 73.12 59.09 49.14 62.71



Page 17 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci.           (2020) 10:26 	

bug report classification for each severity level. The numbers in italics represent the 
maximum value, and the numbers in the round brackets represent the minimum value. 
The proposed method achieves an improvement in accuracy of 25% compared with the 
original LDA for seven severity fields. In particular, “Block” accounts for 35%. The pro-
posed method shows a classification accuracy of 85% for all fields, with the exception 
of “Block.” The reason for the low effectiveness for “Block” is the small number of bug 
reports. Because overlapped contexts are rare compared with other fields, the method 
cannot obtain high weight topics. 

Table 5 shows the percentage of each fold for the accuracy of the bug reports classi-
fied based on the priority using the LDA. Table 6 shows the percentage of each fold for 
the accuracy of the bug reports classified based on the priority when using the proposed 
method. The first row of Tables 5 and 6 represents the accuracy of the bug report clas-
sification based on the priority.

Table 4  Triage accuracy of bug report classified by the proposed method (Severity)

The maximum value in each column is presented in italics

Block Critical Fold Normal Minor Trivial Enhancement

1 81.53 88.83 83.00 90.70 81.79 78.76 84.85

2 (68.77) 82.27 (78.67) 91.34 82.46 82.94 84.21

3 78.16 86.28 87.39 89.75 87.55 81.21 88.22

4 75.29 88.12 84.43 91.63 81.31 83.73 (79.97)

5 77.49 90.74 89.53 93.00 (80.71) 81.50 89.88

6 71.54 91.98 81.50 90.83 87.71 80.32 82.62

7 72.33 (82.11) 85.32 91.66 85.29 79.50 87.77

8 70.04 85.55 83.16 90.13 83.09 74.12 82.84

9 78.06 87.55 85.07 89.53 85.20 81.31 83.99

10 73.48 89.40 86.76 (88.16) 84.37 (73.86) 90.32

Average 74.67 87.28 84.48 90.67 83.95 79.73 85.47

Table 5  Triage accuracy of bug report classified by LDA (priority) (%)

The maximum value in each column is presented in italics

Fold P1 P2 P3 P4 P5

1 64.76 (52.69) 69.50 61.38 66.73

2 60.52 63.07 76.09 52.24 70.14

3 60.52 61.38 67.75 66.57 62.46

4 60.39 52.79 64.66 56.77 66.60

5 63.23 63.67 (61.35) (49.16) (59.12)

6 (49.60) 66.09 61.51 54.03 67.74

7 66.79 60.04 70.77 56.89 69.12

8 55.11 59.60 62.46 56.89 59.22

9 64.34 59.18 66.38 55.96 69.25

10 62.05 56.32 75.49 65.07 75.71

Average 60.73 59.48 67.60 57.50 66.61
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The proposed method achieves an improvement in accuracy of 24% compared with 
the original LDA for five priority fields. In particular, the method achieves an excellent 
performance for “P2” and “P4.”

Discussion

Compatibility with original LDA in the existing studies

This section discusses how the proposed method is compatible (substitutable) with the 
LDA for the existing combined methods (the LDA with other methods). Zou et al. [62] 
defined two constraints used in generating a combined method. First, the base tech-
niques should apply the same information source. If they use different sources of infor-
mation, it is necessary to conduct a data conversion. When the user cannot develop a 
data converter, this combined method is impossible to correctly build. Even if a data 
converter is developed, it can create other defects. Second, the correlation should be low 
between the base techniques used for the combination. Zou et al. [77] categorized fault-
localization (FL) techniques into seven FL families. They demonstrated a set of tech-
niques with a weak correlation with each other.

Related to the first condition, the proposed method uses bug report dataset that is 
the same information source with LDA. Related to the second condition, the existing 
studies used a combination of low correlation techniques with LDA. That is, the pro-
posed method also ensure low correlation with the techniques used in the existing stud-
ies because this method is based on the multiple LDA and the same information source 
with LDA mentioned above. Thus, the proposed method can be used as an alternative to 
original LDA in the combined LDA methods of the existing studies.

Statistical comparison with the proposed method and original LDA

Table 7 shows the results for the paired T-test of each field in Tables 3 and 4. A paired 
t-test is used to compare two population means for two samples, which is generally used 
before-and-after observations on the same subjects [78, 79]. Table 8 shows the results for 
the paired T-test of each field in Tables  5 and 6. The T-statistic is a value obtained by 
the T-test for each field. The P-value is a statistical value used to compare the proposed 

Table 6  Triage accuracy of bug report classified by the proposed method (priority) (%)

The maximum value in each column is presented in italics

Fold P1 P2 P3 P4 P5

1 88.86 (82.49) 90.61 86.66 89.84

2 85.39 87.68 92.22 82.11 90.70

3 85.83 89.46 89.56 88.44 87.87

4 86.59 83.06 88.00 83.25 90.23

5 86.66 87.49 87.62 (77.97) 84.69

6 (77.78) 88.98 88.92 83.25 88.22

7 86.09 89.97 90.89 84.46 89.94

8 82.33 85.16 (85.93) 85.55 (84.08)

9 86.91 83.09 87.39 85.51 90.80

10 84.97 83.48 91.47 89.62 91.05

Average 85.14 86.09 89.26 84.68 88.74
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method and the original LDA. The null hypothesis (H0) indicates that no statistically sig-
nificant difference exists between the proposed method and the original LDA. The alter-
native hypothesis (H1) shows that a statistically significant difference does exist between 
the proposed method and the original LDA. In Tables 7 and 8, all p-values are less than 
0.05. We reject H0 and adopt H1. Thus, the proposed method has a statistically significant 
difference compared with the original LDA, i.e., the proposed method is better than the 
original LDA classification.

Conclusions
In this paper, a method for improving LDA, which is generally employed in a bug report 
triage, was proposed. To improve the classification accuracy of the topic set used with 
LDA, the proposed method builds additional topic sets and improves the original set. To 
validate the proposed method, we used bug report platforms applied in practice, namely, 
Bugzilla, MSR, Bugzilla (Git), and an integrated platform. We demonstrated how the 
method accurately classifies the bug reports using the experiment results, and how it is 
better than the original LDA based on a statistical paired T-test.

Traditional bug triage methods try to cover their weakness by combining the LDA 
with other methods. However, the combined hybrid methods may have compatibil-
ity problems, such as a correlation or difference in the input data applied. Because the 
proposed method focuses on upgrading the LDA itself, such compatibility issues do not 
occur. In addition, the proposed method will provide the basis for the development of 
more improved hybrid methods.

Table 7  Paired T-test results for severity accuracy

Severity P-value (the method vs LDA) T-statistic Pearson’s r

Block 2.00E−12 51.77 0.95

Critical 5.13E−09 21.33 0.86

Major 2.19E−12 50.80 0.91

Normal 8.79E−07 11.81 0.76

Minor 1.44E−09 24.60 0.96

Trivial 6.57E−11 34.81 0.97

Enhancement 1.71E−08 18.61 0.86

Table 8  Paired T-test results for priority accuracy

Priority P-value (the method vs LDA) T-statistic Pearson’s r

P1 2.00E−10 30.12 0.91

P2 2.53E−10 29.93 0.78

P3 2.00E−08 18.28 0.87

P4 1.09E−10 32.87 0.93

P5 3.12E−09 22.56 0.89
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Even if we improve triage accuracy via this study we will perform further research on 
the following issues. Although many related studies use bug reports to help fix bugs, 
studies that address fixing bugs using comments are lacking. We intend to study the 
relation between comments and bug reports and identify bugs based on this relation. 
We also will study the automation of bug identification using the results of these studies.
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