
Improving bug report triage performance
using artificial intelligence based document
generation model
Dong‑Gun Lee  and Yeong‑Seok Seo* 

Introduction
Along with the fourth industrial revolution, artificial intelligence, big data, Internet of
Things, and cloud computing are emerging as cutting-edge technologies globally. In par-
ticular, artificial intelligence has unlimited potential to further improve the quality of
human life and can solve several difficult engineering problems [1–12]. Moreover, this
technology provides basic ideas to derive successful solutions to numerous problems
encountered in the software development field.

Abstract 

Artificial intelligence is one of the key technologies for progression to the fourth
industrial revolution. This technology also has a significant impact on software profes‑
sionals who are continuously striving to achieve high-quality software development by
fixing various types of software bugs. During the software development and mainte‑
nance stages, software bugs are the major factor that can affect the cost and time of
software delivery. To efficiently fix a software bug, open bug repositories are used for
identifying bug reports and for classifying and prioritizing the reports for assignment to
the most appropriate software developers based on their level of interest and exper‑
tise. Owing to a lack of resources such as time and manpower, this bug report triage
process is extremely important in software development. To improve the bug report
triage performance, numerous studies have focused on a latent Dirichlet allocation
(LDA) using the k-nearest neighbors or a support vector machine. Although the exist‑
ing approaches have improved the accuracy of a bug triage, they often cause conflicts
between the combined techniques and generate incorrect triage results. In this study,
we propose a method for improving the bug report triage performance using multi‑
ple LDA-based topic sets by improving the LDA. The proposed method improves the
existing topic sets of the LDA by building two adjunct topic sets. In our experiment, we
collected bug reports from a popular bug tracking system, Bugzilla, as well as Android
bug reports, to evaluate the proposed method and demonstrate the achievement of
the following two goals: increase the bug report triage accuracy, and satisfy the com‑
patibility with other state-of-the-art approaches.

Keywords:  Bug report triage, Software defect prediction, Latent Dirichlet Allocation,
Artificial intelligence, Machine learning, Software engineering

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26
https://doi.org/10.1186/s13673-020-00229-7

*Correspondence:
ysseo@yu.ac.kr
Department of Computer
Engineering, Yeungnam
University, 280 Daehak‑Ro,
Gyeongsan, Gyeongbuk
38541, Republic of Korea

https://orcid.org/0000-0001-6792-4572
http://orcid.org/0000-0002-5319-7674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00229-7&domain=pdf

Page 2 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

As the size and complexity of software evolve, software defects are becoming inev-
itable. A software defect is an error, flaw, mistake, or fault in a computer program or
system, producing incorrect or unexpected results [13]. These defects inconvenience
users by causing malfunctions, i.e., software defects continuously decrease the quality
of the software until the defect is fixed. Thus, defects are a significant issue that must
be resolved for software quality improvement. Various methods for effectively detect-
ing, fixing, and patching bugs have been investigated by software developers [14, 15].
For software projects, the ratio of the cost of software maintenance to the total project
cost exceeds 50% [16–19]. Corrective maintenance addressing software defects accounts
for 20% of all maintenance activities [20–22], and an improved efficiency in fixing defect
will have a direct effect on the reduction in software development and maintenance
costs. These issues are considered to be significant for software development companies.

During a software development, bug reports are written to effectively manage and fix
software bugs when they are detected during the software life cycles. Bug reports are
documents that detail the occurrence of defects with a specific format between devel-
opers and reporters. In general, information regarding the reporter, environment, and
other data, including the priority and severity used in triage, are recorded in bug reports.
Developers make substantial efforts to fix bugs and improve the communication with a
user or quality assurance (QA) team using bug reports.

When defects occur during software development and maintenance, a software devel-
opment manager often follows the defect life cycle, as shown in Fig. 1. Figure 1 summa-
rizes the stages of the defect life cycle. The straight lines indicate parts that are manually
applied by developers. The dotted lines are parts that can be automated by a system.
First, once defects are detected, bug reports are written with the initial state “NEW,” and
the manager analyzes whether a bug is valid and has been duplicated. If a bug is not
detected by the manager, the report is sent to the developer and the state is changed to
“OPEN.” Second, as a result of the developer’s activity, the bug is considered “CLOSED”
or “REOPENED.” As shown in Fig. 1, several stages must be completed before developers
start to modify the code. An important stage involves classifying bug reports for the bug
report manager. The classification is divided into two classes: (1) textual classification,
and (2) triage. Textual classification is based on texts, such as the title or body text. Tri-
age is a classification method not based on texts but based on the priority or severity of
the defects. Through textual classification, the bug reports classified with similar reports
are assigned to developers that make modules of the defects that have occurred. Textual
classification is also used to identify duplicate bug reports, which account for 30% of all
bug reports [24]. Because developers cannot address all bug reports, a triage is essential
for attaining the best maintenance efficiency within a limited period of time.

If these defect classification processes are accurately and smoothly applied, no prob-
lems will occur; if not, the effect on the fixing of software defects and maintenance
will decrease. An incorrect textual classification causes a bug report to be reassigned
to other developers; the bug report cannot be fixed until the reassignment is com-
plete. Thus, an incorrect textual classification decreases the maintenance efficiency.
In addition, a mis-triage creates a more critical problem. Because unimportant prob-
lems are processed first, urgent defects can be delayed. In an incorrect textual classi-
fication, after a developer requests that a bug report be reassigned, the developer can

Page 3 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

work on another job. Conversely, the cost of fixing unimportant defects caused by a
mis-triage is irreversible. Thus, an accurate bug report classification and assignment
are directly connected to software maintenance efficiency. Because this efficiency is
connected to the cost incurred by the company, it is extremely important. Owing to
the importance of an accurate bug report triage, a pre-existing bug report triage is
manually applied. For example, in the case of Eclipse, developers may spend up to 2 h
classifying bug reports every day.

To resolve these problems, artificial intelligence techniques are now actively being
studied, and have shown better classification accuracy than traditional (non-artificial
intelligence based) methods [25–36]. Such techniques can be a key to solving most of
the current problems regarding this issue. Thus, there have been various attempts to
overcome the weaknesses of traditional methods by combining artificial intelligence
as a hybrid approach.

To reduce the effort required in this regard, studies have proposed the applica-
tion of state-of-the-art automation methods for bug report classification [25–29]. In
particular, latent Dirichlet allocation (LDA)-based classification methods are com-
mon because they are suitable to bug reports that contain text-based data. Although
these methods are excellent in terms of textual classification, the accuracy of the tri-
age is unsatisfactory. To achieve an improved LDA-based method, software engineers

Fig. 1  Defect life cycle [23]

Page 4 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

have proposed new methods that combine LDA with other approaches, such as the
k-nearest neighbor (KNN) and a support vector machine (SVM) [30–35]. However, it
is risky to combine LDA with other methods for improving the accuracy of bug report
classification because the combined methods cannot be applied well when compat-
ibility issues occur (e.g., a correlation or difference in the input data between the
methods) between LDA and other approaches. The risk is greater when LDA is com-
bined with another method. Thus, instead of combining LDA with another method
to improve the performance of the bug report classification, the performance of LDA
itself should be improved.

To improve the bug report triage performance, in this study, we focus on improving LDA
itself and propose a new method based on multiple LDA and backpropagation techniques.
The proposed method aims to improve the quality of the topic set produced through LDA
classification. The method builds additional topic sets that complement the original topic
set from a typical use of LDA, and classifies and analyzes them to support the original topic
set for improving the accuracy of the bug report classification. To evaluate the proposed
method, we use bug reports from Bugzilla [37] along with Android bug reports from Min-
ing Software Repositories (MSR) [38, 39]. Any method that fails to classify a significant
number of bug reports is useless, and we therefore verified that the proposed method is
able to classify a significant number of bug reports as a repository platform. We also veri-
fied and determined the efficiency of the method for use in a bug triage. To determine the
difference between the original LDA classification and the proposed method, we statisti-
cally verified the method using a paired T-test.

The main contributions of this study are as follows:

•	 A new method is proposed to improve the accuracy of bug report triage using multiple
LDA and backpropagation techniques.

•	 The proposed method is able to maintain compatibility with the existing hybrid LDA
methods through a design of the necessary conditions.

•	 Factors hindering the accuracy of the triage are identified through a detailed analysis.
•	 Our experiments were conducted based on bug reports for actual software used in

practice.
•	 The superiority of the proposed method was validated through a statistical evaluation.

The remainder of this paper is organized as follows: Related studies are introduced in
Sect. “Related work”. Section “Background” describes the background information. Sec-
tion “Approach” shows our method to improving the bug reports triage performance and
avoid confliction with existing LDA-based triage methods. Section “Evaluation” evaluates
the proposed method and Sect. “Discussion” discusses detailed analysis of the proposed
method. This paper is concluded and future research is discussed in Sect. “Conclusions”.

Related work

Bug report deduplication

Bug report deduplication is the process of removing duplicate bug reports. Duplicate
bug reports cause an overestimation of the number of bug reports and increase the costs
required. Thus, studies on bug report deduplication greatly help reduce the workload.

Page 5 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

Alipour et al. [40, 41] used textual information (e.g., title, abstract or body text) to reduce
bug report duplication. They proposed a BM25F based method that automatically extract
the implications of the bug report and builds a dictionary (set of words). The researchers
referred android layered architectural words [42], software non-functional requirements
words [43], android topic words using LDA [44], android topic words using labeled-LDA
[44] and random words in the English dictionary. As shown by the dictionary sources, the
method is applied to android bug reports and an 11.55% performance improvement is
achieved compared with REP [45]. A similar study [46] uses word embedding.

Aggarwal et al. [47, 48] improves the method in a study by Alipour [40] and proposes
a method that is based on software engineering literature and reduces manual efforts for
deduplication with minimal loss of triage accuracy. This study shows that the method of
Aggarwal et al. is better than Alipour’s method in Eclipse, Mozilla and Open Office.

Campbell et al. [49] focused on off-the-shelf information retrieval techniques. Although
these techniques were not designed for bug reports, they outperformed other approaches
in terms of crash bucketing (i.e., bug report grouping) at an industrial scale. The authors
used more than 30 thousand report data from the Ubuntu repository and Mozilla’s own
automated system. Finally, they demonstrated that bug report deduplication still has signifi-
cant room for improvement, particularly in terms of identifier tokenization through term
frequency–inverse document frequency (TF–IDF).

Hindle et al. [50] proposed a method for preventing duplicate bug reports before they are
submitted. This method finds duplicate or related bug reports in the bug database using
texts. In addition, this simple method can be used to evaluate a new bug report deduplica-
tion method. This method is evaluated using bug reports from Android, Eclipse, Mozilla,
and OpenOffice projects.

Nguyen et al. [51] proposed the DBTM, which has two advantages: both features are
based on a topical method and information retrieval (IR). This method shows 20% perfor-
mance improvement compared with the Relational Topic Model (RTM) [52] and REP [45]
in Eclipse, Mozilla and Open Office.

Tian et al. [53] improve the study of Jarbert [54] and introduce three kinds of approaches.
The first approach does not use term appearance (e.g., TF-IDF) but applies BM25 because
BM25 is the best method according to the technical literature search. The second approach
uses “product” as metadata, i.e., this method uses the notion that bug reports with different
product are not duplicated. The third approach uses a comparison of the top k-similar bug
reports instead of the most similar bug reports. This method improves the true positives
and maintains low false negatives compared with a study of Mozilla projects by Jarbert.

Other machine learning methods [55, 56], such as hidden Markov models (HMMs) or
deep networks, are proposed. They build a model that identifies the features of duplicate
bug reports and utilize it. A multi-factor analysis method [55] that employs LDA, LNG and
n-gram is also proposed.

Bug report triage

Bug report triage is a type of classification process. Because the developer’s workload
is limited, critical bug reports should be processed earlier. Thus, a bug report triage is a
classification process based on “priority.”

Page 6 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

Tamrawi et al. [57] proposed Bugzie, which recommends bug reports. Bugzie builds
fuzzy sets that are based on words extracted from the title and the description. Bugzie
shows that it outperforms naïve Bayes, C4.5 (decision tree) and SVM with regarding to
the temporal efficiency in Eclipse.

Wang et al. [58] proposed FixerCache, which is an unsupervised bug triage method.
FixerCache overcomes the limits of supervised classification based on the activities
of developers. FixerCache uses TF extracted from the title and the description of bug
reports and outperforms naïve Bayes and SVM regarding the accuracy of classification.

Wen et al. [59] proposed Configuration Bug Learner Uncovers Approved options
(CoLUA). CoLUA is a two-phase method that utilizes machine learning, IR and natural
language processing (NLP) to resolve communication problems between developers and
reporters. In the first phase, CoLUA determines what the bug report intends to convey
based on its text information. In the second phase, CoLUA identifies the options that
affect the communication in the labeled bug reports. The researchers evaluated CoLUA;
their findings indicate that CoLUA has a better F-measure than the ZeroR classifier.

Zhang et al. [60] proposed the k-NN search and heterogeneous proximity (KSAP).
KSAP employs the heterogeneous network of the bug report repository and histori-
cal bug reports to improve the auto-allocation of bug reports. KSAP is a two-phase
method. First, KSAP obtains historically similar bug reports. Second, KSAP ranks the
contribution of developers by heterogeneous proximity. The developers evaluated KSAP
using Eclipse, Mozilla, Apache Ant and Apache Tomcat6. KSAP shows a performance
improvement of 7.5–32.25% compared with ML-KNN [61, 62], DREX [63], DRETOM
[64], Bugzie [57], and DevRec [62].

Many bug report triage methods [65–70] use data reduction. To achieve data reduc-
tion, these methods use KNN, naïve Bayes, and clustering and reduce feature selection
and instance selection using the representative and statistic value of these methods or
newly define “module selection.”

Machine-learning based methods applied to bug triage have also been frequently stud-
ied. Florea et al. [71] proposed an SVM-based bug report assignment recommender
implemented in a cloud platform that achieves better results than other SVM-based
bug report assignment recommending systems. They evaluate their method using actual
datasets consisting of Netbean, Eclipse, and Mozilla projects. Popular deep-learning-
based methods, which machine-learning type approaches, have recently been proposed
using two deep-learning classifiers, namely, convolutional and recurrent neural networks
for a parallel and extendable recommending system [72], and using a convolutional neu-
ral network and word embedding for automated bug triage [73]. These studies use an
actual open-source dataset and demonstrate a higher accuracy than existing machine-
learning-based methods.

Background

Bug report

In a modern environment, bug reports are operated as a part of community of issue
(bug) tracking systems, i.e., bug reports are identified by not only the developers or
report managers in charge but also all related people and are even used as public data.
Thus, the bug report process requires accurate classification to satisfy the needs of

Page 7 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

numerous people. A distinct difference is the metadata of bug reports compared with
common documents. Especially priority and severity, which is one of the metadata, are
important because they are used to bug report triage. Due to the triage process, develop-
ers can be informed prior to the processing of important and critical bug reports. Fig-
ures 2 and 3 show examples of bug reports. Bug reports in Bugzilla are known to address
a substantial amount of metadata. Bugzilla even supports “importance (priority and
severity)” and “triage owner”, which are related to the triage process, and common data
such as “reporter”, “product” and “status.” Figure 2 shows a bug report in Bugzilla. The
report presents an unlimited page loading and information leaks. The priority “p2” in the
bug report enable developers to fix the bug as soon as possible before reading it closely
(Bugzilla uses stages p1–p5 as priority, where p1 is the highest priority). Bug reports in
Github have a substantial amount of information about the environment in which the
bug appears. A bug report, e.g., “enhancement”, “discussion”, and “question”, is usually not
uploaded. Figure 3 shows a bug report in Github. The bug report shows cases in which
a segmentation fault related with disconnected monitors. The bug occurred in iOS ver-
sion 12, and the report describes the environment in which the bug occurs by showing
the code. This study uses bug reports from Bugzilla and MSR that support bug reports in
Fire Fox and Eclipse.

Fig. 2  Bug report in Bugzilla [74]

Page 8 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

LDA

LDA is a probability model in which topics exist in each document for the given docu-
ment collection (corpus). Users can estimate the words distribution by topics and topic
distribution by documents using LDA. In LDA, documents consist of topics, and topics
generate words based on the probability distribution. LDA traces the back process and
creates the document when data are input. T is a topic variable, D is a document variable
and W is a word variable. The trace back process is described as follows:.

Fig. 3  Bug report in GitHub [75]

Page 9 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

1) Assign all words in all documents to random topics (of course, most of them
are wrong).

 Repeat:
 {

2) For W, assume that W is misassigned but the other variables are
correctly assigned.

3) Reassign W according to two conditional probabilities as follows:
- P(T | D): the distribution of topics in the same document.
- P(T | W): the distribution of topics for the same word.

 }

Figure 4 shows an example of supposition for generating a document in LDA. If a
machine knows the distribution of topics in documents, a document can be gener-
ated using supposition of LDA. In a chart of the figure, the distribution from topic 1
to topic 4 is 0.15, 0.2, 0.35 and 0.3. The machine stochastically selects a topic. In the
figure, topic 1 is selected with a 15% probability. The machine selects a word that con-
sists of topic 1 (all topics consist of words that are well matched with the topic). In the
figure, “basic” is selected. Topic 2 is selected with a 20% probability, and “function” is
selected. If the machine repeats this routine, the document is completed.

Figure 5 shows an example of traceback in LDA. LDA builds the distribution of top-
ics by tracing back to the supposition in Fig. 4. First, the machine randomly assigns all

Fig. 4  Example of supposition to generate a document in LDA

Page 10 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

words to topics. As shown in Fig. 5, assume that only two topics exist: A, B and two
documents: Doc1, Doc2. For W (third word: “Apple” in Doc1), the machine deter-
mines the distribution of topics in the same document (P(T| Doc 1)). Because both A
and B appear at 50% in Doc 1, the topic of W cannot be determined.

The machine determines the distribution of the topics for the same word (P(T|
“Apple”)). In this figure, it obtains the distribution of “Apple” in Doc 1, 2. Because the
distribution of B is larger, it determines that the topic of W is B. This study aims to
improve triage accuracy and be compatible with state-of-the-art studies that employ
multiple LDA.

Approach

This section describes how the proposed method is processed. Figure 6 shows an
existing bug report triage process using LDA. Figure 7 demonstrates the overall
approach used with the proposed method.

Fig. 5  Bug report in GitHub

Fig. 6  Existing LDA classification method

Page 11 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

Applying LDA to bug report classification

The existing bug report classification applies LDA for a bug report base (dataset), and
the machine classifies the bug reports based on the topic sets as the result (a union topic

Fig. 7  Overall approach

Fig. 8  Example of the mis-triage caused by common elements

Page 12 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

set (UTS) for distinguishing other topic sets that subsequently appear). This process is
a part of the proposed method. The existing method is suitable for textual classification
but achieves a poor triage performance, one of the reasons for which is the common ele-
ments occurring in different topic sets. Figure 8 shows an example of a bug report mis-
triage. “Crashed image” is a bug in which an image is not displayed on the page where
it should be. A bug report for a crashed image caused by an incorrect extension or an
image loader error should be triaged as priority “P1.” Two priorities exist, namely, P1
and P3, in the correct triage model (the topics are listed in order of their influence). In
the figure, “crash” is the first to appear in both P1 and P3. Unfortunately, the situation is
the same in the bug report. Thus, the machine will apply a triage using topics with a low
influence, and even minor errors will cause a mis-triage.

Identifying mis‑triaged bug reports

To improve the UTS, including the common elements, the proposed method builds
additional topic sets. One set is a partial topic set (PTS). The existing LDA classifica-
tion cannot determine the priority or severity of the UTS. Thus, it should identify them
along with the mis-triaged bug reports. The PTS assumes this role. The PTS-building
process is similar to the case of the UTS. The proposed method classifies the bug reports
in the training set based on the priority and severity. The PTS representing each field is
obtained by applying the field. Figure 9 visualizes the building of the PTS and the pro-
cess of identifying mis-triaged bug reports. The most popular field in the UTS can be
determined by comparing the UTS with the PTS. The method also estimates that bug
reports inconsistent with the most popular field will be mis-triaged. The common ele-
ment problem can be resolved by correctly reclassifying mis-triaged bug reports based
on the PTS; however, this method has a particular problem in that it only uses the UTS
for bug report classification. This method should round the UTS and PTS for all fields.
From a temporal aspect, this step is absolutely inefficient. Thus, the search space of the
bug triage should be reduced. This problem is resolved through the next step.

Fig. 9  Process for building PTS and identification of mis-triaged reports

Page 13 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

Analyzing mis‑triaged bug reports by building a feature topic set

To overcoming the temporal limit of the method using the PTS, in this study, a method
for reducing the search space of a bug report triage using the feature topic set (FTS) is
proposed. This method does not round all PTSs but does round the FTS as the corre-
sponding common elements for the bug reports. Figure 10 shows the analysis process
of building the FTS and its features. In the initial results, the proposed method collects
mis-triaged bug reports based on the PTS and obtains the FTS by applying LDA to

Fig. 10  Process of building FTS and feature of FTS topics

Table 1  Term definitions for analyzing mis-triaged bug reports

Term Abbreviation Details

Major field – For a topic, a topic set has the highest rank for the UTS,
including the topic

Minor field – For a topic, all topic sets, with the exception of the major
field in the UTS, including the topic.

Number of classifiable bug reports N-clsf The number of bug reports that UTSs currently classify

Accuracy of major field acc-major The classification accuracy of bug reports in major field

Accuracy of minor field acc-minor The classification accuracy of bug reports in minor field

High rank-high rank factor HH factor A topic has a high rank for both the major field and the
minor field

High rank-low rank factor HL factor A topic has a high rank on the major field and a low rank on
the minor field.

Low rank-high rank factor LH factor A topic has a low rank for the major field and a high rank for
the minor field

No rank-no rank factor NN factor A topic does not exist in the UTS

Page 14 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

them. The FTS can be constructed in two ways. The first way is to build for the correct
destination of mis-triaged bug reports, and the second is to build for the current loca-
tion and correct destination of the bug report. The latter has the advantage of requiring a
smaller search space by designating the current location. However, this approach should
be employed when the massive size of the training set is prepared because the number of
topics decreases for each FTS. The topics of the FTS are divided into four parts based on
the ranking of the UTS. Table 1 shows the terms used in this step.

In Fig. 10, the FTS has several topics; in particular, “red,” “correct,” and “hash” appear
in the original UTS numerous times. The proposed method obtains the ranks of the
topics in both the major and minor fields (and determines the average ranks for two or
more minor fields). The method selects the topic and corresponding factor based on
these ranks. The words that do not appear in the UTS are classified as the NN factor.
There are two methods that address common elements. With the first method, com-
mon elements are removed from its minor field. As a factor of the common elements,
the performance of the UTS is influenced but N-clsf is commonly decreased. If none of
the words in a bug report are located in the UTS, the proposed method cannot classify
the bug report, i.e., a common element deletion is inefficient. If common elements are
included in the HH factor, acc-major improves but acc-minor decreases. If common ele-
ments are included in the HL factor, acc-major increases but acc-minor is less effective.
As the worst case, if common elements are included in the HH factor, acc-major is unaf-
fected, and acc-minor declines.

The other method that addresses common elements is to disregard them and reclassify
the bug report by matching the FTS when the bug report is classified by common ele-
ments. Even if this approach increases the temporal cost of classifying bug reports by the
FTS, it can prevent a decrease in N-clsf when common elements are removed. In par-
ticular, when the NN factor is employed, the process is quick because it does not check
common elements in the FTS, unlike other factors. This study uses this method.

Re‑classifying bug reports by improving UTS using FTS

To improve the UTS using the FTS, the proposed method builds a factor parser consist-
ing of common elements in the UTS. This method quickly searches using a Hash or Trie
(because all common elements are words). A factor parser obtains the addresses of the
FTS that correspond to a common element. Figure 11 shows an example in which the
UTS is improved using the FTS. The proposed method classifies the bug reports through
the UTS, similar to the existing LDA classification. If the bug report includes common
elements (particularly HH, HL, and LH factors), it calls the FTS that corresponds to the
common elements identified by the factor parser. The NN factor only exists in the FTS.
We know that other factors are identified, and the NN factor better represents its major
fields. Thus, constructing the FTS using only an NN factor builds a more accurate and
quicker environment. The method compares the report with the FTS to check whether
the classification is correct.

Page 15 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

Evaluation

Experiment design

To develop an experiment verifying the proposed method, we collected multiple bug
reports. In this study, our dataset consists of 3362 bug reports from Bugzilla, which sup-
ports various types of bug reports and metadata, and 41,229 bug reports from the MSR,
which supports numerous types of bug reports. The bug reports from Bugzilla are clas-
sified based on the priority and severity. The bug reports from Bugzilla support both the
severity and priority as the metadata that are useful for triage, whereas those from MSR
support only the priority for the triage. To conduct the practical experiments, a total of
231 bug reports from Bugzilla related with Git were actually used in the group develop-
ment. Git is an open-source distributed version-control system for tracking changes in
the source code during software development [76]. In this study, our dataset consists
of bug reports from Bugzilla that support various bug reports and metadata and bug
reports from MSR that support numerous bug reports. The bug reports from Bugzilla
are classified by priority and severity.

Thus, we fit a model verifying the improvement in the UTS accuracy of the proposed
method. The collected bug reports were divided into three groups: Bugzilla, MSR, and
a combination of the two. To build the training and test sets, we employ tenfold cross-
validation. In this experiment, we implement the proposed method in Python 3. Python
3 supports various libraries for NLP and topic modeling. We use nltk (NLP), stop-words,
and genism (topic modeling).

Fig. 11  Example of improving UTS using FTS

Page 16 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

Experiment results

Table 2 shows the number of bug reports classified by the proposed method in terms
of percentage of each fold. The fold represents the divided parts in the cross-validation.
“Bugzilla,” “MSR,” “Bugzilla (Git),” and “Integrated” represent the bug report datasets.
The percentages indicate the probability that the bug reports will be classified in each
dataset. Bugzilla (Git) consists of bug reports related with Git in Bugzilla dataset. In
the “Integrated” dataset “Bugzilla” and “MSR” are combined. As shown in Table 2, the
method achieves a classification rate of greater than 97% for all folds for the Bugzilla
reports; the average rate is 98.311%. In the case of the MSR, the classification rate is
lower than that of Bugzilla, and the average rate is 94.993. In the case of Bugzilla (Git),
the classification rate is lower than the entire Bugzilla dataset, such as the MSR, and
the average rate is 93.91%. In the case of an integrated environment, the average rate is
96.199%.

Table 3 shows the percentage of each fold for the accuracy of the bug reports classi-
fied based on the severity using the LDA in Bugzilla. Table 4 shows the percentage of
each fold for the accuracy of the bug reports classified based on the severity when using
the proposed method in Bugzilla. The first row of Tables 3 and 4 represents the sever-
ity level of the bug reports. The numbers in Tables 3 and 4 denote the accuracy of the

Table 2  Percentage of bug reports classified by the proposed method (%)

Fold Bugzilla MSR Bugzilla (Git) Integrated

1 98.02 94.26 86.95 97.00

2 97.96 93.73 91.30 97.26

3 98.72 94.03 95.65 96.73

4 98.34 96.66 95.65 95.76

5 99.42 96.00 100.00 95.50

6 97.64 95.13 91.30 96.26

7 98.40 95.80 100.00 94.76

8 98.31 93.26 95.65 95.26

9 97.26 96.23 86.95 95.83

10 99.04 94.83 95.65 97.63

Average 98.31 94.99 93.91 96.20

Table 3  Triage accuracy of bug report classified by LDA (Severity) (%)

The maximum value in each column is presented in italics

Fold Block Critical Major Normal Minor Trivial Enhancement

1 50.05 64.66 55.43 75.55 54.75 45.24 66.35

2 (32.79) (57.62) (52.75) 73.96 55.21 55.91 64.18

3 43.11 62.66 65.39 67.3 65.71 50.21 68.29

4 37.41 65.62 58.39 82.59 55.46 56.16 (51.1)

5 45.08 72.43 63.04 74.79 (51.96) 54.03 68.39

6 33.52 73.54 56.92 75.93 69.12 51.23 62.34

7 38.01 60.94 59.18 78.92 63.61 49.09 66.60

8 35.08 61.10 57.02 70.46 55.68 40.11 54.46

9 44.38 72.27 60.17 (65.46) 60.36 49.92 56.70

10 37.28 68.70 62.85 66.28 59.06 (39.45) 68.67

Average 39.67 65.95 59.11 73.12 59.09 49.14 62.71

Page 17 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

bug report classification for each severity level. The numbers in italics represent the
maximum value, and the numbers in the round brackets represent the minimum value.
The proposed method achieves an improvement in accuracy of 25% compared with the
original LDA for seven severity fields. In particular, “Block” accounts for 35%. The pro-
posed method shows a classification accuracy of 85% for all fields, with the exception
of “Block.” The reason for the low effectiveness for “Block” is the small number of bug
reports. Because overlapped contexts are rare compared with other fields, the method
cannot obtain high weight topics.

Table 5 shows the percentage of each fold for the accuracy of the bug reports classi-
fied based on the priority using the LDA. Table 6 shows the percentage of each fold for
the accuracy of the bug reports classified based on the priority when using the proposed
method. The first row of Tables 5 and 6 represents the accuracy of the bug report clas-
sification based on the priority.

Table 4  Triage accuracy of bug report classified by the proposed method (Severity)

The maximum value in each column is presented in italics

Block Critical Fold Normal Minor Trivial Enhancement

1 81.53 88.83 83.00 90.70 81.79 78.76 84.85

2 (68.77) 82.27 (78.67) 91.34 82.46 82.94 84.21

3 78.16 86.28 87.39 89.75 87.55 81.21 88.22

4 75.29 88.12 84.43 91.63 81.31 83.73 (79.97)

5 77.49 90.74 89.53 93.00 (80.71) 81.50 89.88

6 71.54 91.98 81.50 90.83 87.71 80.32 82.62

7 72.33 (82.11) 85.32 91.66 85.29 79.50 87.77

8 70.04 85.55 83.16 90.13 83.09 74.12 82.84

9 78.06 87.55 85.07 89.53 85.20 81.31 83.99

10 73.48 89.40 86.76 (88.16) 84.37 (73.86) 90.32

Average 74.67 87.28 84.48 90.67 83.95 79.73 85.47

Table 5  Triage accuracy of bug report classified by LDA (priority) (%)

The maximum value in each column is presented in italics

Fold P1 P2 P3 P4 P5

1 64.76 (52.69) 69.50 61.38 66.73

2 60.52 63.07 76.09 52.24 70.14

3 60.52 61.38 67.75 66.57 62.46

4 60.39 52.79 64.66 56.77 66.60

5 63.23 63.67 (61.35) (49.16) (59.12)

6 (49.60) 66.09 61.51 54.03 67.74

7 66.79 60.04 70.77 56.89 69.12

8 55.11 59.60 62.46 56.89 59.22

9 64.34 59.18 66.38 55.96 69.25

10 62.05 56.32 75.49 65.07 75.71

Average 60.73 59.48 67.60 57.50 66.61

Page 18 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

The proposed method achieves an improvement in accuracy of 24% compared with
the original LDA for five priority fields. In particular, the method achieves an excellent
performance for “P2” and “P4.”

Discussion

Compatibility with original LDA in the existing studies

This section discusses how the proposed method is compatible (substitutable) with the
LDA for the existing combined methods (the LDA with other methods). Zou et al. [62]
defined two constraints used in generating a combined method. First, the base tech-
niques should apply the same information source. If they use different sources of infor-
mation, it is necessary to conduct a data conversion. When the user cannot develop a
data converter, this combined method is impossible to correctly build. Even if a data
converter is developed, it can create other defects. Second, the correlation should be low
between the base techniques used for the combination. Zou et al. [77] categorized fault-
localization (FL) techniques into seven FL families. They demonstrated a set of tech-
niques with a weak correlation with each other.

Related to the first condition, the proposed method uses bug report dataset that is
the same information source with LDA. Related to the second condition, the existing
studies used a combination of low correlation techniques with LDA. That is, the pro-
posed method also ensure low correlation with the techniques used in the existing stud-
ies because this method is based on the multiple LDA and the same information source
with LDA mentioned above. Thus, the proposed method can be used as an alternative to
original LDA in the combined LDA methods of the existing studies.

Statistical comparison with the proposed method and original LDA

Table 7 shows the results for the paired T-test of each field in Tables 3 and 4. A paired
t-test is used to compare two population means for two samples, which is generally used
before-and-after observations on the same subjects [78, 79]. Table 8 shows the results for
the paired T-test of each field in Tables 5 and 6. The T-statistic is a value obtained by
the T-test for each field. The P-value is a statistical value used to compare the proposed

Table 6  Triage accuracy of bug report classified by the proposed method (priority) (%)

The maximum value in each column is presented in italics

Fold P1 P2 P3 P4 P5

1 88.86 (82.49) 90.61 86.66 89.84

2 85.39 87.68 92.22 82.11 90.70

3 85.83 89.46 89.56 88.44 87.87

4 86.59 83.06 88.00 83.25 90.23

5 86.66 87.49 87.62 (77.97) 84.69

6 (77.78) 88.98 88.92 83.25 88.22

7 86.09 89.97 90.89 84.46 89.94

8 82.33 85.16 (85.93) 85.55 (84.08)

9 86.91 83.09 87.39 85.51 90.80

10 84.97 83.48 91.47 89.62 91.05

Average 85.14 86.09 89.26 84.68 88.74

Page 19 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

method and the original LDA. The null hypothesis (H0) indicates that no statistically sig-
nificant difference exists between the proposed method and the original LDA. The alter-
native hypothesis (H1) shows that a statistically significant difference does exist between
the proposed method and the original LDA. In Tables 7 and 8, all p-values are less than
0.05. We reject H0 and adopt H1. Thus, the proposed method has a statistically significant
difference compared with the original LDA, i.e., the proposed method is better than the
original LDA classification.

Conclusions
In this paper, a method for improving LDA, which is generally employed in a bug report
triage, was proposed. To improve the classification accuracy of the topic set used with
LDA, the proposed method builds additional topic sets and improves the original set. To
validate the proposed method, we used bug report platforms applied in practice, namely,
Bugzilla, MSR, Bugzilla (Git), and an integrated platform. We demonstrated how the
method accurately classifies the bug reports using the experiment results, and how it is
better than the original LDA based on a statistical paired T-test.

Traditional bug triage methods try to cover their weakness by combining the LDA
with other methods. However, the combined hybrid methods may have compatibil-
ity problems, such as a correlation or difference in the input data applied. Because the
proposed method focuses on upgrading the LDA itself, such compatibility issues do not
occur. In addition, the proposed method will provide the basis for the development of
more improved hybrid methods.

Table 7  Paired T-test results for severity accuracy

Severity P-value (the method vs LDA) T-statistic Pearson’s r

Block 2.00E−12 51.77 0.95

Critical 5.13E−09 21.33 0.86

Major 2.19E−12 50.80 0.91

Normal 8.79E−07 11.81 0.76

Minor 1.44E−09 24.60 0.96

Trivial 6.57E−11 34.81 0.97

Enhancement 1.71E−08 18.61 0.86

Table 8  Paired T-test results for priority accuracy

Priority P-value (the method vs LDA) T-statistic Pearson’s r

P1 2.00E−10 30.12 0.91

P2 2.53E−10 29.93 0.78

P3 2.00E−08 18.28 0.87

P4 1.09E−10 32.87 0.93

P5 3.12E−09 22.56 0.89

Page 20 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

Even if we improve triage accuracy via this study we will perform further research on
the following issues. Although many related studies use bug reports to help fix bugs,
studies that address fixing bugs using comments are lacking. We intend to study the
relation between comments and bug reports and identify bugs based on this relation.
We also will study the automation of bug identification using the results of these studies.

Abbreviations
LDA: Latent Dirichlet Allocation; QA: Quality Assurance; KNN: K-Nearest Neighbors; SVM: Support Vector Machine; MSR:
Mining Software Repositories; IR: Information Retrieval; RTM: Relational Topic Model; HMM: Hidden Markov Model;
CoLUA: Configuration Bug Learner Uncovers Approved options; NLP: Natural Language Processing; KSAP: K-NN search
and heterogeneous proximity; UTS: Union Topic Set; PTS: Partial Topic Set; FTS: Feature Topic Set; FL: Fault Localization.

Acknowledgements
Not applicable.

Authors’ contributions
All the authors review the final manuscript for submission. Both authors read and approved the final manuscript.

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2017R1C1B5018295).

Availability of data and materials
The datasets used during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Received: 28 September 2019 Accepted: 25 April 2020

References
	1.	 Tunio MZ, Luo H, Wang C, Zhao F (2018) Crowdsourcing software development: task assignment using PDDL artifi‑

cial intelligence planning. J Inf Processing Syst 14(1):129–139
	2.	 Park JH, Salim MM, Jo JH, Sicato JCS, Rathore S, Park JH (2019) CIoT-Net: a scalable cognitive IoT based smart city

network architecture. Hum Centric Comput Inf Sci 9(1):29
	3.	 Jang Y, Park CH, Seo YS (2019) Fake news analysis modeling using quote retweet. Electronics 8(12):1–20
	4.	 Kim SW, Gil JM (2019) Research paper classification systems based on TF-IDF and LDA schemes. Hum Centric Com‑

put Inf Sci 9(1):30
	5.	 Tian Y, Song W, Sun S, Fong S, Zou S (2019) 3D object recognition method with multiple feature extraction from

LiDAR point clouds. J Supercomput 75(8):4430–4442
	6.	 Song W, Tian Y, Fong S, Cho K, Wang W, Zhang W (2016) GPU-accelerated foreground segmentation and labeling for

real-time video surveillance. Sustainability 8(10):916
	7.	 Huh JH, Seo YS (2019) Understanding edge computing: engineering evolution with artificial intelligence. IEEE

Access 7:164229–164245
	8.	 Seo YS, Huh JH (2019) Automatic emotion-based music classification for supporting intelligent IoT applications.

Electronics 8(2):1–20
	9.	 Wang J, Ju C, Gao Y, Sangaiah AK, Kim GJ (2018) A PSO based energy efficient coverage control algorithm for wire‑

less sensor networks. Comput Mater Contin 56(3):433–446
	10.	 Wang J, Gao Y, Liu W, Sangaiah AK, Kim HJ (2019) An intelligent data gathering schema with data fusion supported

for mobile sink in wireless sensor networks. Int J Distrib Sens Netw 15(3):1–9
	11.	 Wang J, Gao Y, Yin X, Li F, Kim HJ (2018) An enhanced PEGASIS algorithm with mobile sink support for wireless sen‑

sor networks. Wirel Commun Mobile Comput 2018:1–9
	12.	 Wang J, Wu W, Liao Z, Sangaiah AK, Sherratt RS (2019) An energy-efficient offloading scheme for low latency in col‑

laborative edge computing. IEEE Access 7:149182–149190
	13.	 Jimoh RG, Balogun AO, Bajeh AO, Ajayi S (2018) A PROMETHEE based evaluation of software defect predictors. J

Comput Sci Appl 25(1):106–119
	14.	 Laradji IH, Alshayeb M, Ghouti L (2015) Software defect prediction using ensemble learning on selected features. Inf

Softw Technol 58:388–402
	15.	 Tran HM, Le ST, Nguyen SV, Ho PT (2020) An analysis of software bug reports using machine learning techniques. SN

Comput Sci 1(1):4
	16.	 García-Floriano A, López-Martín C, Yáñez-Márquez C, Abran A (2018) Support vector regression for predicting soft‑

ware enhancement effort. Inf Softw Technol 97:99–109
	17.	 Alaqail H, Ahmed S (2018) Overview of software testing standard ISO/IEC/IEEE 29119. Inf Softw Technol

18(2):112–116

Page 21 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26 	

	18.	 Mann M, Tomar P, Sangwan OP (2018) Bio-inspired metaheuristics: evolving and prioritizing software test data. Appl
Intell 48(3):687–702

	19.	 Zhang H (2019) Research on software development and test environment automation based on android platform.
3rd International Conference on mechatronics engineering and information technology. Atlantis Press, Paris

	20.	 Thakur D, Types of software maintenance. http://ecomp​utern​otes.com/softw​are-engin​eerin​g/types​-of-softw​are-
maint​enanc​e. Accessed 22 Sep 2019

	21.	 Stojanov Z, Stojanov J, Dobrilovic D, Petrov N (2017) Trends in software maintenance tasks distribution among
programmers: A study in a micro software company. 2017 IEEE 15th International Symposium on intelligent systems
and informatics, pp 23–28

	22.	 Jang JW (2018) Improvement of the automobile control software testing process using a test maturity model. J Inf
Process Syst 14(3):607–620

	23.	 Life Cycle of a bug. https​://www.bugzi​lla.org/docs/2.18/html/lifec​ycle.html
	24.	 Anvik J, Hiew L, Murphy GC (2005) Coping with an open bug repository. Proceedings of the 2005 OOPSLA work‑

shop on Eclipse technology eXchange—eclipse ‘05. pp 35–39
	25.	 Ye X, Fang F, Wu J, Bunescu R, Liu C (2018) Bug Report Classification using LSTM architecture for more accurate

software defect locating. 17th IEEE International Conference on machine learning and applications. pp 1438–1445
	26.	 Terdchanakul P, Hata H, Phannachitta P, Matsumoto K (2017) Bug or not? bug report classification using N-gram IDF.

IEEE International Conference on software maintenance and evolution. pp 534–538
	27.	 Guo S, Chen R, Wei M, Li H, Liu Y (2018) Ensemble data reduction techniques and multi-RSMOTE via fuzzy integral

for bug report classification. IEEE Access 6:45934–45950
	28.	 Kukkar A, Mohana R (2018) A supervised bug report classification with incorporate and textual field knowledge.

Procedia Comput Sci 132:352–361
	29.	 Du X, Zheng Z, Xiao G, Yin B (2017) The automatic classification of fault trigger based bug report. IEEE International

Symposium on software reliability engineering workshops. pp 259–265
	30.	 Xu R, Ye L, Xu J (2013) Reader’s emotion prediction based on weighted Latent Dirichlet Allocation and multi-label

k-nearest neighbor model. J Comput Inf Syst 9(6):2209–2216
	31.	 Safi’ie MA, Utami E, Fatta HA (2018) Latent Dirichlet Allocation (LDA) model and knn algorithm to classify research

project selection. IOP Conference Series Mater Sci Engin 333(1):012110
	32.	 Chen W, Zhang X (2017) Research on text categorization model based on LDA—KNN. 2017 IEEE 2nd advanced

information technology, electronic and automation Control Conference. pp 2719–2726
	33.	 Liu X, Agarwal S, Ding C, Yu Q (2016) An LDA-SVM active learning framework for web service classification. 2016 IEEE

International Conference on web services. pp 49–56
	34.	 Wang X, Wang J, Yang Y, Duan J (2017) Labeled LDA-Kernel SVM: A short Chinese text supervised classification based

on sina weibo. 2017 4th International Conference on information science and control engineering. pp 428–432
	35.	 Deliu I, Leichter C, Franke K (2018) Collecting cyber threat intelligence from hacker forums via a two-stage, hybrid

process using support vector machines and Latent Dirichlet Allocation. 2018 IEEE International Conference on Big
Data. pp 5008–5013

	36.	 Lee DG, Seo YS (2019) Systematic review of bug report processing techniques to improve software management
performance. J Inf Processing Syst. 15(4):967–985

	37.	 Bugzilla. https​://bugzi​lla.mozil​la.org/home. Accessed 22 Sep 2019
	38.	 Mining challenge. http://2012.msrco​nf.org/chall​enge.php#chall​enge_data. Accessed 22 Sep 2019
	39.	 Martie L, Palepu VK, Sajnani H, Lopes C (2012) Trendy bugs: topic trends in the android bug reports. In Proc. MSR. pp

120–123
	40.	 Alipour A, Hindle A, Stroulia E (2013) A contextual approach towards more accurate duplicate bug report detection.

Proceeding MSR ‘13 Proceedings of the 10th Working Conference on mining software repositories. pp 183–192
	41.	 Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more accurate duplicate bug report detection

and ranking. Empir Softw Eng 21(2):368–410
	42.	 Guana V, Rocha F, Hindle A, Stroulia E (2012) Do the stars align? multidimensional analysis of android’s layered archi‑

tecture. Mining Software Repositories (MSR) 2012 9th IEEE Working Conference on. IEEE, New York, pp 124–127
	43.	 Hindle A, Ernst NA, Godfrey MW. Mylopoulos J (2011) Automated topic naming to support cross-project analysis of

software maintenance activities. Proceedings of the 8th Working Conference on mining software repositories. ACM.
pp 163–172

	44.	 Han D, Zhang C, Fan X, Hindle A, Wong K, Stroulia E (2012) Understanding android fragmentation with topic analysis
of vendorspecific bugs. 19th Working Conference on reverse engineering. pp 83–92

	45.	 Sun C, Lo D, Khoo S, Jiang J (2011) Towards more accurate retrieval of duplicate bug reports. Proceedings of the
2011 26th IEEE/ACM International Conference on automated software engineering. IEEE Computer Society. pp
253–262

	46.	 Budhiraja A, Dutta K, Shrivastava M, Reddy R (2018) Towards Word Embeddings for Improved Duplicate Bug Report
Retrieval in Software Repositories. Proceedings of the 2018 ACM SIGIR International Conference on theory of infor‑
mation retrieval. pp 167–170

	47.	 Aggarwal K, Rutgers T, Timbers F, Hindle A, Greiner R, Stroulia E (2015) Detecting duplicate bug reports with soft‑
ware engineering domain knowledge. In: SANER 2015: International Conference on software analysis, evolution and
reengineering. pp 211–220

	48.	 Aggarwal K, Timbers F, Rutgers T, Hindle A, Stroulia E, Greiner R (2017) Detecting duplicate bug reports with soft‑
ware engineering domain knowledge. J Softw Evol Process 29(3):e1821

	49.	 Campbell JC, Santos EA, Hindle A (2016) The unreasonable effectiveness of traditional information retrieval in crash
report deduplication. 2016 IEEE/ACM 13th Working Conference on mining software repositories (MSR). pp 269–280

	50.	 Hindle A, Onuczko C (2019) Preventing duplicate bug reports by continuously querying bug reports. Empir Softw
Eng. 24(2):902–936

	51.	 Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C (2012) Duplicate bug report detection with a combination of infor‑
mation retrieval and topic modeling. Proc. ASE’12. pp 70–79

http://ecomputernotes.com/software-engineering/types-of-software-maintenance
http://ecomputernotes.com/software-engineering/types-of-software-maintenance
https://www.bugzilla.org/docs/2.18/html/lifecycle.html
https://bugzilla.mozilla.org/home
http://2012.msrconf.org/challenge.php#challenge_data

Page 22 of 22Lee and Seo ﻿Hum. Cent. Comput. Inf. Sci. (2020) 10:26

	52.	 Chang J, Blei DM (2009) Relational topic models for document networks, In AIStats. pp 81–88
	53.	 Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In CSMR, 2012. pp 385–390
	54.	 Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems, in dependable systems and

networks with FTCS and DCC 2008. DSN 2008. IEEE International Conference on. IEEE, New York. pp 52–61
	55.	 Ebrahimi N, Trabelsi A, Islam MS, Hamou-Lhadj A, Khanmohammadi K (2019) An HMM-based approach for auto‑

matic detection and classification of duplicate bug reports. Inf Softw Technol 113:98–109
	56.	 Budhiraja A, Dutta K, Reddy R, Shrivastava M (2018) DWEN: deep word embedding network for duplicate bug report

detection in software repositories. Proceedings of the 40th International Conference on software engineering:
companion proceeedings. pp 193–194

	57.	 Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy-set and cache-based approach for bug triaging. Proc.
19th ACM SIGSOFT Symp. Foundations of software engineering (FSE’11). pp 365–375

	58.	 Wang S, Zhang W, Wang Q (2014) Fixercache: unsupervised caching active developers for diverse bug triage. In
ACM/IEEE International Symposium on empirical software engineering and measurement 25

	59.	 Wen W, Yu T, Hayes JH (2016) Colua: Automatically predicting configuration bug reports and extracting configura‑
tion options. in 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE). pp 150–161

	60.	 Zhang W, Wang S, Wang Q (2016) KSAP: an approach to bug report assignment using KNN search and heterogene‑
ous proximity. Inf Softw Technol 70:68–84

	61.	 Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn
40(7):2038–2048

	62.	 Xia X, Lo D, Wang X, Zhou B (2013) Accurate developer recommendation for bug resolution. In WCRE’13. pp 72–81
	63.	 Wu W, Zhang W, Yang Y, Wang Q (2011) DREX: Developer recommendation with k-nearest-neighbor search and

expertise ranking. in: APSEC, IEEE, New York, pp 389–396
	64.	 Xie X, Zhang W, Yang Y, Wang Q (2012) DRETOM: developer recommendation based on topic models for bug resolu‑

tion. In PROMISE’12. pp 19–28
	65.	 Prabhakar RN, Ranjith KS (2016) Effective bug triage with software data reduction techniques using clustering

mechanism. i-Manager’s J Inf Technol 5(3):15–23
	66.	 Chaudhari RA, Bodake SV (2017) Effective bug triage using software data reduction techniques. Int J Innovative Res

Sci Technol 4(1):214–220
	67.	 Kirubakaran S, Maheswari K (2016) Auto-bug triager for assisting manual bug triage. Asian J Inf Technol

15(8):1334–1339
	68.	 Govindasamy V, Akila V, Anjanadevi G, Deepika H, Sivasankari G (2016) Data reduction for bug triage using effective

prediction of reduction order techniques. 2016 International Conference on Computation of power, energy infor‑
mation and communication. pp 85–90

	69.	 Sahu K, Lilhore UK, Agarwal N (2018) An improved data reduction technique based on KNN & NB with hybrid selec‑
tion method for effective software bugs triage. Eng Inf Technol 3(5):1835146

	70.	 Yin Y, Dong X, Xu T (2018) Rapid and efficient bug assignment using ELM for IOT software. IEEE Access
6:52713–52724

	71.	 Florea AC, Anvik J, Andonie R (2017) Spark-based cluster implementation of a bug report assignment recommender
system. International Conference on artificial intelligence and soft computing. pp 31–42

	72.	 Florea AC, Anvik J, Andonie R (2017) Parallel implementation of a bug report assignment recommender using deep
learning. International Conference on artificial neural networks. pp 64–71

	73.	 Lee SR, Heo MJ, Lee CG, Kim M, Jeong G (2017) Applying deep learning based automatic bug triager to industrial
projects. Proceedings of the 2017 11th Joint Meeting on foundations of software engineering. pp 926–931

	74.	 Bug report from Bugzilla. https​://bugzi​lla.mozil​la.org/show_bug.cgi?id=15119​14. Accessed 30 Jan 2020
	75.	 Bug report from Github. https​://githu​b.com/glfw/glfw/pull/1602. Accessed 30 Jan 2020
	76.	 Git. https​://git-scm.com/. Accessed 30 Jan 2020
	77.	 Zou D, Liang J, Xiong Y, Ernst MD, Zhang L (2019) An empirical study of fault localization families and their combina‑

tions. IEEE Transactions on Software Engineering (Early access)
	78.	 Cleophas TJ, Zwinderman AH (2018) Bayesian paired T-Test. Modern bayesian statistics in clinical research. pp 49–58
	79.	 Seo YS, Bae DH (2013) On the value of outlier elimination on software effort estimation research. Empir Softw Eng

18(4):659–698

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://bugzilla.mozilla.org/show_bug.cgi%3fid%3d1511914
https://github.com/glfw/glfw/pull/1602
https://git-scm.com/

	Improving bug report triage performance using artificial intelligence based document generation model
	Abstract
	Introduction
	Related work
	Bug report deduplication
	Bug report triage

	Background
	Bug report
	LDA

	Approach
	Applying LDA to bug report classification
	Identifying mis-triaged bug reports
	Analyzing mis-triaged bug reports by building a feature topic set
	Re-classifying bug reports by improving UTS using FTS

	Evaluation
	Experiment design
	Experiment results

	Discussion
	Compatibility with original LDA in the existing studies
	Statistical comparison with the proposed method and original LDA

	Conclusions
	Acknowledgements
	References

