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Introduction
With the amount of data rapidly increasing, many applications need higher-performance 
hardware to support their running. However, for most individuals and organizations, 
these hardware are too expensive, and their budgets are limited. Consequently, the cloud 
computing price scheme based on pay-as-you-go is a very suitable choice for users to 
migrate their applications to the cloud, and using cloud can reduce the cost of purchas-
ing and maintaining hardware. There are three major service models for cloud comput-
ing: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a 
Service (IaaS) [1]. Amazon Elastic Compute Cloud (EC2) [2] is one of the representatives 
of IaaS, which can provide users with basic hardware resources, such as CPU, network, 
memory and storage.

Amazon EC2 provides users with many purchase options. They can be divided into 
three categories: reserved instances, on-demand instances and spot instances [2]. 
Reserved instances allow users to purchase a long-term right to use instances at a lower 
price, which are cost-effective for long-term applications. On-demand instances cost 
more than reserved instances, however users can purchase it according to the actual 
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running time of their applications, so they are suitable for short-term applications. Due 
to the fluctuation of user requirements, Amazon sets a lot of redundant resources to 
respond to the peak of users’ requirements, but in most of time, many resources are idle. 
Therefore, in December 2009, Amazon proposed a new type of instances called spot 
instances [3] to sell these idle resources in order to improve resource utilization.

Spot instances allow users to propose a bid, which is the maximum price user can 
afford. As we all know, the spot instance price is mainly affected by the fluctuation of 
market supply and demand. When the price of spot instance is not higher than user’s 
bid, the user can obtain the right to use this instance. In this case, the price paid by user 
is not his bid, but the actual price of the spot instance. When the price of a spot instance 
changes to be higher than the user’s bid, the user’s instance will be interrupted by force. 
In this case, Amazon will give the user a two-minute warning time [3], during which 
the user can save or migrate his data. Figure 1 shows the spot price history of c4.xlarge 
instance in us-east-2a region from October 27 to November 26, 2017, and this spot price 
is fluctuating all the way. If user’s bid is just equal to on-demand price, the bid is usually 
successful, for the reason that the spot price is lower than bid for most of the time. But 
at time points a and b in Fig. 1, the spot price is higher than bid, so out-of-bid event will 
happen and user’s instance will be interrupted.

Amazon believes that fair use of spot instances can save up to 90% of the cost of on-
demand instances [3]. What’s more, we can see from Fig. 1 that the cost of using spot 
instances is indeed less than on-demand instances. However, due to the large fluctuation 
of spot instance price, out-of-bid events, like failing to bid, may happen. Therefore, if the 
price of spot instance can be predicted accurately in advance, users will effectively solve 
the problems of bid setting and instance selection. Thus, it will help users save a consid-
erable amount of money, and improve reliability obviously. In addition, users can know 
the price trend of spot instance in the future by predicting the price in advance, and can 
reasonably arrange their purchase time and give a suitable bid to avoid high cost caused 
by high bid and instance unavailability caused by low bid. Therefore, the future price 
needs to be predicted based on the historical price data. The user can obtain the his-
torical price of spot instance on Amazon EC2 dashboard [4], or they can also obtain the 

Fig. 1 Spot price in us-east-2a c4.xlarge instance (Oct, 27 to Nov, 26 2017)
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historical price through some methods provided by Amazon, like Boto, an AWS SDK for 
Python [5], and the AWS Command Line Interface (AWS CLI) [6], an open source tool 
built on top of Boto which provides a consistent interface for interacting with all parts of 
Amazon Web Services (AWS).

The spot instance was firstly proposed by Amazon, and then, other cloud service 
providers also proposed spot instances, such as Alibaba and Tencent. Amazon’s spot 
instance is still the most popular, widely used and representative in the cloud market. 
Thus, in this paper, we propose a price prediction method for spot instance, and tak-
ing Amazon as the representative to elaborate the method. The whole price prediction 
process, especially the data preprocessing technologies such as resampling and sliding 
window, and the evaluation indexes for the price prediction of spot instance, can be 
completely and easily applied to other spot instances.

The contributions of this paper are mainly as follows: 

1. A price prediction model based on k-Nearest Neighbors (kNN) regression is pro-
posed to predict the future price of cloud spot instances.

2. The representative Amazon AWS is taken as a testbed, and the historical price data 
of spot instance is obtained through AWS CLI [6]. An innovative sliding window 
method is adopted to preprocess the data.

3. Taking the different real cases into account, we implement and discuss the spot 
instance price prediction in two scenarios: 1-day-ahead and 1-week-ahead. The accu-
racy of our model is verified by comparing with several other models.

The rest of this paper is organized as follows. In “Related work” section, we introduce 
the related work on price prediction. A mathematical description of the spot price pre-
diction problem is given in “Problem definition” section. Then in “Proposed method” 
section, we elaborate on the price prediction model based on kNN regression. In “Exper-
iments and discussions” section, we describe the experiment setup and perform some 
experiments to verify the effectiveness of our model. Finally, some conclusions and 
future works are presented in “Conclusions” section.

Related work
Due to the high complexity of cloud data centers, Fernández-Cerero et al. [7, 8] demon-
strate that we are often unable to predict the performance of a data center. In contrast, 
prices are often predictable, especially for spot instances. Since this kind of instance 
was proposed by Amazon, more and more researchers are trying to analyze and pre-
dict its price. The purpose is to help users to understand the price characteristics of spot 
instances, and then design a reasonable bidding scheme and a combination of instance 
selection solutions. Low monetary cost is one of the most important metrics and driving 
forces for users to using cloud services and hosting their data into cloud, which has been 
widely studied in cloud instance selection [9–11], cloud storage [12–14], and scientific 
workflow scheduling [15, 16]. Therefore, it is important to understand and predict the 
prices of cloud instances, especially the spot instance.

Agmon et al. [17] analyze the actual price of spot instance and build a price model that 
could be consistent with the existing price trajectory by designing the price reversely. 
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The result shows that the price of spot instance is likely to be generated most of the time 
at random within a tight price range via a dynamic hidden reserve price mechanism. 
During the time of the authors’ study, Amazon may set the spot price via a random 
AR(1) hidden reserve price mechanism.

Kumar et al. [18] presented a survey of spot instance pricing in cloud ecosystem. An 
insight into the Amazon spot instances and its pricing mechanism has been presented 
for better understanding of the spot ecosystem. A large amount of important research 
papers related to price prediction and modeling, spot resource provisioning, bidding 
strategy designing etc. are summarized and categorized in this survey. There have been 
many studies about the prediction of spot instance price. We divide them into two major 
categories, based on the methods that are used.

Price prediction models based on statistical time series analysis

Javadi et al. [19] study the features of Amazon’s spot instances, and analyze the histori-
cal price in hour-in-day and day-in-week. At the same time, a statistical model based 
on Gaussian distribution is proposed to fit these two distributions. The model contains 
three to four components to better capture the dynamic changes in price and the dura-
tion of price changes for each instance. It is proved through simulation experiments that 
it has better accuracy in real work environments.

Cai et al. [20] think spot instance price usually has switching regimes, and traditional 
autoregressive models are not suitable for their forecasting. So they propose two Markov 
regime-switching autoregressive models: DMRA-AR-L and DMRA-AR-SW. They use 
144 days of spot instance price history to do some experiments, and the results show 
that DMRA-AR-L performs the best when the forecast period is shorter than 24h in 
most cases, while DMRA-AR-SW is best when the forecast period increases.

In [21], a SARIMA model is established by analyzing historical prices of spot instance. 
By comparing this model with other price prediction models like mean and naive, using 
11 months of data, SARIMA has better accuracy.

Price prediction models based on machine learning

Mishra et al. [22] use linear regression to deal with the spot price prediction problem. 
The price history length they used is 90 days. Wallace et al. [23] and Agarwal et al. [24] 
use artificial neural network to predict the price of spot instance. Wallace et al.  [23] use 
7 mouths of historical data to predict spot price based on a standard multi-layer percep-
tion, but only predict the price for one ahead. Agarwal et al. [24] use 90 days of historical 
price and establish LSTM model to predict the spot instance price. The experimental 
results show that the effect of [24] is better than [22] and [23].

Khandelwal et al. [25] use 12 months of Amazon EC2 spot historical price to predict 
the price of 1-day-ahead and 1-week-ahead prices for spot instance by establishing a ran-
dom forests regression. Experiments are performed and compared with neural network, 
support vector machine regression, regression tree and other methods. The results indi-
cate that the effect of random forests regression is better than other methods.

Neto et al. [26] proposed a heuristic model that uses checkpoint and restore techniques, 
and takes price change traces of spot instances as input in a machine learning and statistical 
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model to predict time to revocation. By using a bid strategy and the observed price varia-
tion history, their model can be able to predict revocation time with high levels of accuracy.

Singh et al. [27] use the data of each month as a global trend and the previous day’s data 
as a local periodic change to establish a price prediction model. Simultaneously, they use 
the gradient descent method to adjust the parameters of the model and use 9 months of 
spot instance price data to do some experiments. This paper separately forecasts spot price 
examples for short-term (1 h) and long-term (1 day and 1 week). The results show that the 
prediction effect in short-term is obviously better than the long-term prediction.

In this paper, we innovatively use a sliding window method to preprocess the histori-
cal price data which is obtained by using AWS CLI  [6]. Then, we build a price prediction 
model based on k-Nearest Neighbors (kNN) regression to predict the future price of spot 
instance. Some experiments are performed to discuss the spot instance price prediction 
in two scenarios: 1-day-ahead and 1-week-ahead. The accuracy of our model is verified by 
comparing with several other models.

Problem definition
The historical price of spot instance s is represented as a vector p = [p1, p2, . . . , plp ] , 
p ∈ Rlp , where lp is the length of p , in other words, the length of historical price. For 
example, in Fig. 2a, the historical price is displayed when the sampling time is 1 day (24 h) 
and the time interval is 1 h, and in this case, the historical price is represented as a vector 
( p = [p1, p2, . . . , p24] ) and its length is 24 ( lp = 24).

In this paper, we use sliding window to divide the price data. We use lsw and lpt respec-
tively to denote the length of sliding window and the length of time window to be predicted. 
In order to ensure the accuracy of data division, each sliding length of the sliding window is 
set to lpt . So the number of samples we get by sliding the window is:

In Eq. 1, we get the sample number by rounding down the result, because there is excess 
of data, and it is necessary to move the sliding window in reverse. Like in Fig. 2b, the 
number of samples is 3 ( ns = 3 ) when the length of sliding window is 12 ( lsw = 12 ) and 
the length of time window to be predicted is 4 ( lpt = 4 ). However, in Fig. 2c the num-
ber of samples is 2 ( ns = 2 ) when the length of sliding window is 10 ( lsw = 10 ) and the 
length of time window to be predicted is 5 ( lpt = 5 ), and in this case, there is excess 
of data. We use D = {D1,D2, . . . ,Dns} to denote the sample set after sliding, where 
Di = (xi, yi) is the sample data formed after sliding ns − i + 1 times, and xi ∈ Rlsw is the 
sample Di ’s vector, which is the data in sliding window, and yi ∈ Rlpt is sample Di ’s label 
vector. Like in Fig.  2b the sample set is D = {(x1, y1), (x2, y2), (x3, y3)} , and in Fig.  2c, 
D = {(x1, y1), (x2, y2)}.

(1)ns = ⌊
lp − lsw

lpt
⌋

(2)xi =[plp−(ns−i+1)lpt−lsw+1, . . . , plp−(ns−i+1)lpt ]

(3)yi =[plp−(ns−i+1)lpt+1, . . . , plp−(ns−i)lpt ]
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The goal of this paper is to predict the spot instance price, namely, it needs to find a 
function f satisfied the following formula:

Proposed method
To predict the spot instance price, we construct kNN regression model to predict y 
based on new input X.

For the new input X , kNN regression will find k nearest samples in the training set, and 
the average of their values is used as the predicted value corresponding to X , marked as 
ŷ . In our model, we have to determine the following two problems.

The first one is the distance function. In our model, when judging the distance between 
the new input X and the training sample xi(1 ≤ i ≤ ns) , we choose Euclidean distance as 
distance function, which is shown as follows:

(4)yi = f (xi), 1 ≤ i ≤ ns

(5)dist(xi,X) =

√

√

√

√

√

lsw
∑

j=1

(x
j
i − xj)2, 1 ≤ i ≤ ns

Fig. 2 An example of using sliding window to divide the price data. a Description of price data when the 
time interval is 1 hour and the sampling time is one day ( p = [p1, p2, . . . , p24] , lp = 24 ). b Description of 
the sample set generation ( lsw = 12, lpt = 4 ), and in this case, the data is just being used completely. c 
Description of the sample set generation ( lsw = 10, lpt = 5 ), and in this case, there is excess of data
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The other one is how to improve computational efficiency when the model searches k 
nearest neighbors on training data. Since the simplest linear scan is very time-consum-
ing, we use k-dimensional tree(k-d tree) as a fast kNN search algorithm. The k-d tree is 
a space-partitioning data structure for organizing points in a k-dimensional space. In 
element search, the average time complexity of k-d tree is O(logn), and it is O(n) in the 
worst case. However, but the average time complexity of linear scanning is O(n), thus k-d 
tree is chosen.

In kNN, the model training process is the k-d tree building process. In algorithm 
BuildKDTree, k-d tree is built to complete training process. The dimension of the 
maximum variance is selected (line 4), where the median sample D̄ of D is taken as 
a current node (line 5 and line 7). Then, the remaining samples D′ continue to be 
divided (line 9–12) until it becomes an empty set (line 1–3). At last, we can get the 
k-d tree kdTree (line 13). Regarding time complexity, the k-d tree is built recursively 
in algorithm BuildKDTree, and the time complexity of recursion is O(log ns) . Since 
the dimension of the maximum variance is calculated in each recursion, the time 
complexity of this calculation is O(lswns) . Thus the overall time complexity of algo-
rithm BuildKDTree is O(lswns log ns).

In algorithm Search, the set of k nearest nodes of input X  will get from kNN search 
process. Firstly, for input X  , we need to find k nodes in D (line 2–4). In nearest nodes 
set, if the distance between the farthest node maxDN  against X  is greater than node , 
maxDN  should be replaced by node (line 5 to line 9). Meanwhile, if in axis dimen-
sion the value of X  is greater than node , we should search nearest node in node ’s left 
subtree (line 13–16). In this case, if the distance between x[axis] and node[axis] is less 
than the maximum distance between k nearest nodes set and X  , we should search 
neatest node in node ’s right subtree (line 17–19). This is a similar case when x[axis] is 
more than node[axis] (line 21–27). Finally, this algorithm will return the set of k near-
est nodes. In terms of time complexity, because algorithm Search needs to get the 
point that has maximum distance against X  in nearest nodes set, its time complexity 
is O(klsw ). The search process for the k-d tree needs to traverse all nodes in the worst 
case, and its worst time complexity is O(ns) . Thus the overall time complexity of algo-
rithm Search is O(klswns) . 

Algorithm BuildKDTree: Build k-d tree
Input: the training set D
Output: kdTree
1: if D = ∅ then
2: return NULL
3: end if
4: axis=the dimension of the maximum variance
5: D̄=the median sample of D in axis dimension
6: D′ = D − D̄
7: node.data = D̄
8: node.split = axis
9: Dl = {Dl|Dl ∈ D′ and Dl[axis] ≤ D̄[axis]}
10: Dr = {Dr|Dr ∈ D′ and Dr[axis] > D̄[axis]}
11: node.lChild = BuildKDTree(Dl)
12: node.rChild = BuildKDTree(Dr)
13: return node
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Algorithm kNN aims to realize kNN regression. Firstly, we construct a k-d tree from D 
by using algorithm BuildKDTree (line 1), and then X ’s k nearest samples can be found via 
algorithm Search (line 2). Finally, by taking the average of k samples (line 3), we can get the 
prediction price ŷ of X (line 4). Because the time complexity of line 1 is O(lswns log ns) , line 
2 is O(klswns) and line 3 is O(k), the time complexity of algorithm kNN is O(klswns).

Experiments and discussions
To better evaluate the performance of our model, extensive experiments are conducted in 
this section. We first introduce the experiment setup, and then describe the experimental 
results.

Experiment setting

In this section, we first introduce the environments of our experiment, then describe the 
data acquisition method and data preprocessing process. Finally, the compared algorithms 
and measurement method will be expressed. 

Algorithm Search: Search k-d tree
Input: kdTree,x, k, nearstNodes = ∅
Output: nearstNodes
1: node = kdTree
2: if nearstNodes.size < k then
3: nearstNodes.add(node)
4: end if
5: maxDN=max distance node in nearstNodes against x
6: if Dis(maxDN,x) > Dis(node,x) then
7: nearstNodes.delete(maxDN)
8: nearstNodes.add(node)
9: end if
10: axis = node.split
11: value = x[axis]
12: median = node[axis]
13: if value ≤ median then
14: if node.lChild! = NULL then
15: Search(node.lChild,x, nearstNodes)
16: end if
17: if node.rChild! = NULL&&(median− value) ≤ maxDist(nearstNodes,x) then
18: Search(node.rChild,x, nearstNodes)
19: end if
20: else
21: if node.rChild! = NULL then
22: Search(node.rChild,x, nearstNodes)
23: end if
24: if node.lChild! = NULL&&(median− value) ≤ maxDist(nearstNodes,x) then
25: Search(node.lChild,x, nearstNodes)
26: end if
27: end if
28: return nearstNodes

Experimental environment Experiments are performed on a GUN Linux Operating Sys-
tem with an Intel(R) Core(TM)i5-7500 at 3.40 GHz and 16 GB of RAM memory. Moreover, 
we use Python3.5 programming language to implement the algorithms. 
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Algorithm kNN
Input: D,x, k
Output: ŷ
1: kdTree = BuildKDTree(D)
2: nearstNodes = Search(kdTree,x, k)
3: ŷ = average(nearstNodes.y)
4: return ŷ

Experimental data Amazon provides SDK which can help people to get the spot price 
history from web. Thus, we use AWS CLI [6] to access Amazon EC2 and get 88 days 
of historical price, from September 1, 2017 to November 27, 2017. The regions and 
instance types involved are described in Tables 1 and 2.

Because the interval of price change is uncertain, we re-sample the historical price in 
1-h unit. Users only need to consider the maximum price per hour to make a bid, so 
we use the maximum value of selected sampling unit as the re-sampling value. After re-
sampling, we get 2112 values in every instance ( 24 × 88 (days)) and 76,032 values in total 
( 2112× 4(regions)×9(instances)). In this paper, we divide the dataset into 80% and 20% 
for the training set and test set, respectively.

Evaluated algorithms In this paper, we use 5 algorithms as comparison methods which 
are Linear Regression (LR) [22], Support Vector Machine Regression (SVR) , Random 
Forest (RF) [25], Multi-layer Perception Regression (MLPR) [23] and gcForest [28].

Performance metrics Mean Absolute Percentage Error (MAPE) is a commonly used 
measurement method for time series forecasting problems. It can measure the outcome 
of a predictive model. MAPE is defined as follows:

Table 1 Abbreviations used for different regions

R# Region Location

R1 us-east-2a US East (Ohio)

R2 ap-northeast-2a Asia Pacific (Seoul)

R3 ap-south-1a Asia Pacific (Mumbai)

R4 ca-central-1a Canada (Central)

Table 2 Abbreviations used for different instances

I# Instance vCPU Memory (GiB) Bandwidth

I1 c4.large 2 3.75 500 Mbps

I2 c4.xlarge 4 7.5 750 Mbps

I3 c4.2xlarge 8 15 1000 Mbps

I4 m4.large 2 8 450 Mbps

I5 m4.xlarge 4 16 750 Mbps

I6 m4.2xlarge 8 32 1000 Mbps

I7 r4.large 2 15.25 Up to 10 GB

I8 r4.xlarge 4 30.5 Up to 10 GB

I9 r4.2xlarge 8 61 Up to 10 GB
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where n is the sample number of test set, and APE is absolute percentage error whose 
definition is as follows:

In this paper, to make a quantitative estimation, we use MAPEm% as performance met-
rics. MAPEm% represents the number of results whose APE is less than or equal to m% as 
a percentage of the number of total results, which is calculated as follows:

In this paper, the selected value of m is 5.

Experimental results and discussions

Currently, since many applications require a lot of time and money to run, the deploy-
ment of local applications to the cloud platform can reduce the cost like hardware pur-
chasing, device cooling, hardware maintenance and so on. For example, if a user deploys 
a web crawler system, the running time may be several hours or even days. Similarly, in 
video rendering, videos of different lengths may need different time. Short videos may 
take several to tens of hours, but larger videos may take several days. Users need to con-
sider the application’s possible running time when migrating their own applications to 
the cloud, and estimate the price in advance during this period to help in successful bid-
ing. Therefore, in this paper, we discuss the spot instance price prediction in two sce-
narios: 1-day-ahead and 1-week-ahead.

One‑day‑ahead

Parameter setting In order to maximize the effect of the proposed model, we need to 
determine the value of k and the sliding window length lsw . We conduct a lot of experi-
ments with different k and lsw respectively. The experimental results are shown in Fig. 3.

In this figure, the result of k = 1 is the best obviously. k = 1 is the nearest neighbor 
regression. With the increase of k, the estimation error will increase, because the train-
ing sample that is far away from the input X will affect the result to be worse. So we 
choose the k to equal 1.

With the length of sliding window increasing, higher dimensions will not increase the 
advantages of different examples, but lead to the reduction of accuracy of the results. 
From the Fig. 3, we can see that the best effect is when the length of sliding window is 
equal to the length of prediction length.

Thus we choose the length of sliding window lsw = 24.
Experimental result Based on the above settings, we make a forecast for 1-day-ahead. 

The results are shown in Tables 3 and 4.

(6)MAPE =
1

n

n
∑

i=1

APEi

(7)APE =
1

lpt

lpt
∑

i=1

|yi − ŷi|

yi
× 100%

(8)MAPEm% =
1

n

n
∑

i=1

1(APEi −m%), 1(x) =

{

1 x ≤ 0

0 x > 0
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We can see from these two tables, kNN regression has the best results. RF and gcFor-
est are the better ones among the methods being compared, and the MAPE5% of them 
are respectively 85.61% and 83.86% on average, but kNN is 94.00% which can achieve 
about 10% improvement. The effect of MLPR and SVR are both bad, which is like [25].

One‑week‑ahead

Parameter setting We can see from Fig. 4, like 1-day-ahead prediction, the effect is best 
when k is equal to 1 and the length of sliding window is equal to the length of prediction 
window. So we select k = 1 and lsw = 168 in 1-week-ahead prediction.

Fig. 3 MAPE5% variations in different lsw and k on 1-day-ahead

Table 3 Comparison of different methods for regions on 1-day-ahead

R# k NN LR SVR RF MLPR gcForest

R1 99.91 94.91 88.89 99.60 44.01 97.62

R2 97.59 81.91 71.45 88.15 45.59 88.52

R3 80.93 41.05 48.30 63.77 22.01 59.48

R4 97.59 79.72 85.71 90.93 37.16 89.81

Table 4 Comparison of different methods for instances on 1-day-ahead

I# kNN LR SVR RF MLPR gcForest

I1 94.58 55.76 43.89 73.12 22.08 63.68

I2 85.62 56.60 56.46 61.25 27.22 63.19

I3 93.26 76.18 72.85 87.22 43.61 84.31

I4 99.86 89.38 94.65 97.29 36.32 94.93

I5 94.93 80.35 91.25 94.86 35.21 93.19

I6 93.06 75.76 89.44 92.99 45.00 89.58

I7 99.86 95.76 93.75 99.44 35.69 98.19

I8 90.69 70.00 63.89 83.40 41.46 88.61

I9 94.17 69.79 56.11 80.90 48.12 79.03
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Experimental result Based on the above settings, we make a forecast for 1-week-ahead. 
The results are shown in Tables 5 and 6.

From these two tables, kNN regression can achieve best results except instance I7. For 
I7, the best result is RF whose value is 99.93% , 0.15% higher than kNN’s 99.78% . But in 
MAPE10% , the results of kNN and RF are both 100% . So on the whole, kNN is the best 
method. RF and gcForest are the better ones among the methods being compared, and 
the MAPE5% of them are respectively 86.50% and 89.80% . In comparison, kNN is 94.06% 
which can achieve about 6% improvement.

According to the mechanisms of spot instance, the final user is allowed to propose a bid. 
When the price of spot instance is not higher than this bid, the user can use this instance, 
otherwise the user fails. In addition, when the user is using a spot instance and the price 

Fig. 4 MAPE5% variations in different lsw and k on 1-week-ahead

Table 5 Comparison of different methods for regions on 1-week-ahead

R# kNN LR SVR RF MLPR gcForest

R1 99.83 99.77 95.27 99.40 40.05 96.92

R2 97.45 89.58 86.51 93.55 40.34 92.59

R3 80.95 43.19 68.52 72.26 13.56 73.51

R4 98.02 76.03 95.70 96.03 26.72 96.16

Table 6 Comparison of different methods for instances on 1-week-ahead

I# kNN LR SVR RF MLPR gcForest

I1 95.31 58.26 72.25 85.42 13.17 78.87

I2 84.60 51.79 71.88 72.40 17.63 76.56

I3 93.53 80.51 87.43 89.36 31.47 89.73

I4 99.93 99.18 99.93 99.93 27.23 99.93

I5 95.01 80.13 94.57 94.79 37.28 94.79

I6 93.45 60.34 92.71 93.23 33.33 93.15

I7 99.78 99.33 98.96 99.93 22.77 99.26

I8 91.15 79.17 81.25 88.76 37.13 86.61

I9 93.82 85.57 79.54 88.99 51.49 89.29
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becomes higher than the bid, out-of-bid will happen and the user’s instance will be inter-
rupted by force. However, the fluctuation of spot instance price brings great inconven-
ience and difficulty to final users. Thus, by predicting the future price of spot instance, the 
proposed method is useful and helpful for final users from following aspects: (a) setting a 
proper bid or designing a reasonable bidding scheme; (b) choosing the right time to pur-
chase spot instance; (c) selecting the most appropriate spot instance or a combination of 
them; (d) avoiding out-of-bid events and instance unavailability.

Conclusions
Many cloud providers like Amazon provide users with three main types of instances: 
reserved instances, on-demand instances and spot instances. Compared with others, the 
price of spot instance is the lowest, but its fluctuating price is an obstacle for users. Pre-
dicting the price of spot instance in advance can help users to know the price trend in the 
future. Users can reasonably arrange the purchase time and give a suitable bid to avoid high 
cost caused by high bid and instance unavailability caused by low bid. So it is very impor-
tant and challenging to predict the spot instance price in advance. In this paper, we give 
a mathematical description of spot instance prediction problem and use the price history 
of Amazon EC2 spot instance to predict future price by building a kNN regression model. 
What’s more, to better evaluate the performance of our model, we use 88 days of spot 
instance price of 4 regions and 9 instances to perform many experiments. We compare our 
model with LR, SVR, RF, MLPR and gcForest. Evaluation results show that the MAPE5% is 
up to 94.00% in 1-day-ahead prediction and 94.06% in 1-week-ahead, respectively. In both 
of these two scenarios, our method achieves better performance than other methods. The 
method proposed in this paper is applicable to the spot instance price prediction of other 
cloud providers. Helping users to select appropriate instances [9–11] based on price pre-
diction and combining cloud data storage [12] with cloud instance types selection are two 
directions for the future work.
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