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Introduction
In 2019, the total number of business and consumer emails sent and received per day 
was expected to exceed 293 billion and this is forecasted to grow to over 347 billion by 
the end of 2023 [1]. The two main causes of email traffic overload are the volume of 
email traffic and the lack of effective traffic management [2]. Problems associated with 
the growing volume of email traffic and especially spam emails include server perfor-
mance, user quality of service, financial losses and productivity decrease.

Network and server performance are highly dependent on how the systems react to 
load fluctuations. Therefore, accurate modelling of email workload, which is gener-
ated by interactions between email clients and email servers, can help in predicting and 
improving network performance. Accurate email traffic prediction can help network/
cloud administrators take actions to optimize the way they allocate the storage space and 
the bandwidth that they have at their disposal.

There have been significant developments in the characterization of network traf-
fic workload using probability distribution models. However, the majority of the work-
load models pertaining to email traffic focus on the marginal distribution and first 
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order statistics properties, while correlation and time-varying properties have received 
less attention [3, 4]. A possible reason could be the limitations of probability distribu-
tion models in capturing time-sequential data. The unique characteristics of time series 
data makes it different from other data types. The sampled time series data often contain 
noise and have high dimensionality properties, which make them challenging to analyse 
and model with conventional probabilistic techniques. In order to overcome the limi-
tations of probabilistic models, email traffic was modelled using RNNs in [5], treating 
email traffic workload as a time series problem. The prediction accuracy was found to be 
substantially higher than that of the probabilistic modelling approach in [6].

Despite the significant developments in the understanding of the statistical properties 
of network traffic, email workload modelling in particular has only been addressed to a 
limited extent. A possible reason for this lack of a significant number of relevant works is 
the difficulty in obtaining large datasets. This problem does not exist in our work, as we 
have collected a large amount of email data from four different universities.

The main objectives of this work are to: (a) present and discuss the relevant literature 
on email traffic modelling, (b) develop a comprehensive structured approach to maxi-
mize the generalization ability of a RNN model to avoid the vanishing gradient problem 
when using backpropagation. The LSTM model [7] and a different implementation of 
the RNN model compared to the one used in [5] are investigated in our work to examine 
if they can provide efficient modelling for all types of emails in our datasets.

The remainder of the paper is organized as follows. “Related work” section presents 
and discusses existing work on modelling email traffic. “Datasets and models” section 
gives a brief overview of the RNN and LSTM models and discusses their parameters and 
implementation. “Experiments” section shows the experimental results that validate our 
work and “Conclusion and future work” section contains a summary of our main find-
ings and our proposal for future research directions.

Related work
Gomes et al. [3] examined various key workload aspects of email traffic such as email 
arrival process, size, popularity distribution and temporal locality of email using proba-
bilistic models to distinguish between spam and non-spam traffic. Their results show 
that the message size is more accurately fitted with the lognormal distribution, and this 
is consistent with the earlier work reported in [2]. The arrival process was shown to fol-
low a Poisson distribution and a Zipf-like distribution provided the best fit for the distri-
bution of the number of emails, which is consistent with the findings from [8].

Shah and Noble [4] found that message sizes can be represented by log-normal distri-
butions at the body (similar to the findings of [2]) and by Pareto distributions at the tail, 
which is in contrast to the finding of Gomes et al. [3] which found that the tail is also log-
normally distributed. The work in [2] did not analyse heavy-tailed characteristics. Spam 
messages were found in [4] to be larger than non-spam, however Gomes [3] observed 
that spam messages are typically smaller than non-spam emails.

Bertolotti and Calzarossa [2] provided a characterization of workload traffic generated 
from the SMTP and POP3 protocols collected from four mail servers covering different 
workload aspects such as time stamp, message size, number of recipients of the messages 
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and IP address details. Consistent with the findings of [4], the lognormal distribution 
was found to be the best fit for the message size.

The aforementioned studies focused on mining the logs of email traffic workload 
characteristics and did not consider certain network traffic properties which are criti-
cal to validating the models, such as Long-Range Dependence (LRD) and self-similarity 
characteristics.

The work in [9] by Dada et al. [10] concluded that there is a need to apply deep learn-
ing to spam filtering in order to exploit its numerous processing layers and many levels 
of abstraction to learn representations of data. The work in discusses the importance of 
traffic prediction in order to eliminate traffic redundancy in the cloud.

Leland et al. [11] provided the first empirical evidence of self-similarity characteristics 
in LAN traffic. Self-similarity describes the phenomenon in which the behaviour of a 
process is preserved irrespective of the scale in time. Paxson and Floyd [12] showed that 
packet inter-arrival times for wide area Internet traffic was characterised by heavy-tailed 
distributions and burstiness, which indicated that the Poisson process underestimated 
both burstiness and variability. Additionally, the probabilistic modelling approach does 
not take into account the time varying property of email traffic which exhibits depend-
encies across time as shown through its correlated behaviour across widely separated 
times (long term memory) [11].

Short term forecast plays an important role to manage bandwidth and demand for 
users’ reliability, while medium term forecast helps to formulate the scheduling of main-
tenance and long term forecast helps to reduce investment risk. However, developing 
and selecting an accurate time series model is a challenging task, as this requires train-
ing several different models for selecting the best amongst them. This is normally done 
along with substantial feature engineering to derive informative features and finding 
optimal time lags. The derived informative features and the optimal time lags are com-
monly used as the input features for time series models. Given that there are not many 
investigations of the use of RNNs and LSTMs for modelling email traffic in the literature, 
we provide below information on research in forecasting electric consumption which is 
qualitative similar to the work we conducted in this paper.

Bouktif et al. [13] has used two variants of deep neural networks such as LSTM and 
gated recurrent neural network (GRU) to forecast electric consumption. The experiment 
result shows that LSTM and GRU deep learning models with multi sequence time lags 
achieve higher performance as compared to single sequence and that they achieved the 
most accurate and stable results using 1 day and 1 week input sequence. The research 
is similar to our study as it considers the periodic characteristic of the traffic workload 
using single and multiple sequence input time lags.

In another paper by the same authors, Bouktif et  al. [14] investigated features 
selection using genetic algorithm (GA) to find the optimal time lags and number 
of layers for LSTM model performance optimization using electricity consump-
tion data for short and medium term forecasting horizons. The rationale behind 
focusing on these two forecasting models is that deterministic models can be used 
successfully for both of them. However, in the case of long term forecasting, sto-
chastic models are needed to deal with uncertainties of forecasting parameters that 
always have a probability of occurrence [15]. Two challenges are associated with the 
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targeted forecasting horizons. In the short term case, the accuracy is crucial for opti-
mal day-to-day operational efficiency electrical power delivery and in the medium 
term case, the prediction stability is needed for the precise scheduling of fuel sup-
plies and timely maintenance operations.

He [16] has used a Convolutional Neural Network (CNN) for feature extraction of 
maximum and minimum temperatures, whether is during holiday, the hour of the 
day and day of week features from historical load sequence and recurrent neural net-
work (RNN) for forecasting 1 day ahead hourly electric loads of a North China city. 
The proposed method outperformed all baseline models, reducing the prediction 
error.

Marino et  al. [17] showed the superiority of the standard LSTM model as com-
pared to the sequence to sequence (seq2seq) based architecture for forecasting 1 h 
and 1-min time step electricity consumption data from one residential customer.

Janardhanan and Barrett [18] compared the performance of the LSTM model with 
the traditional autoregressive integrated moving average (ARIMA) model for fore-
casting CPU usage of resources in a datacentre. The LSTM model clearly outper-
formed the ARIMA model.

Cao et al. [19] investigated ensemble techniques for univariate time series forecast-
ing of CPU workload of machines in a datacenter and compared the performance 
with ARIMA model. The ensemble model performed better in terms of prediction 
accuracy and adaptability to the dynamic pattern change in time dataset as com-
pared to the ARIMA model.

Zheng et al. [20] also used Neural Networks in their work for load forecasting in 
the smart grid. They proposed a novel Long-Short-Term Memory (LSTM) algorithm 
combined with Recurrent Neural Network (RNN). This algorithm accurately fore-
casts non-stationary and non-seasonal electrical loads. According to their simula-
tion results, SARIMA had the best performance followed by LSTM in their first test 
scenario. However, LSTM had the best performance among all the other algorithms 
when feeding it the regional electrical consumption data.

Returning to the topic of email traffic prediction, Boukoros et  al. [6] divided 
email traffic into five categories: system incoming/outgoing, users incoming/out-
going and spam traffic. The datasets were collected from the Technical University 
of Crete (TUC) in Greece for nine non-consecutive weeks between February and 
October 2014. In contrast to the previous results [2–4], the best fits were found to 
be provided by the log-logistic and Generalized Extreme Value distributions. The 
models were evaluated via several statistical tests such as Q–Q plots, Kolmogorov–
Smirnov (KS), Anderson–Darling (AD), Kullback–Leibler (KL) Divergence and Rela-
tive Percentage Error (RPE). The average accuracy achieved was 83% excluding some 
outliers.

In order to address the limitations of probabilistic models, email traffic was eval-
uated as a time series problem using Recurrent Neural Networks in [5] and the 
prediction accuracy was found to be substantially higher than the probabilistic mod-
elling approach in [6]. In this work we provide further investigation with the use of 
tuned hyper-parameters. RNN and LSTM models are evaluated to propose a model 
which could best fit all email traffic categories.
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Table 1 provides a snapshot of the most relevant work on email traffic modelling.

Datasets and models
Our goal is to predict, through our models, the sizes of upcoming emails.

The proposed models are evaluated with the datasets collected from four universities, 
namely the Technical University of Crete (TUC), Greece, the University of Peloponnese 
(UoP), Greece, Murdoch University, Australia and Liverpool John Moores University 
(LJMU), UK. The email traffic logs were collected for ten non-consecutive weeks from 
TUC, four consecutive weeks from LJMU, 5 consecutive weeks from UoP, and 52 con-
secutive weeks from Murdoch university. The datasets consist of spam, system incoming 
and outgoing and users’ incoming and outgoing email traffic respectively. Workloads are 
characterized based on temporal dependence and email size.

In this section, we analyse characteristics that have significant impact on the email 
traffic workload to obtain some intuition on how each one of them influences the load 
forecasting. The dataset used for the analysis below is the one captured at Murdoch 
University with a timeframe frequency in seconds. Similar results were acquired for all 
datasets.

Figure 1 illustrates how the weekdays’ (left hand side) and weekends’ (right hand side) 
traffic load varies periodically. The weekdays’ traffic load profile is much heavier as com-
pared to the weekends, as expected.

The dataset consists of only one feature (the email sizes), therefore the option for 
feature improvement is limited. However, we imputed the missing values using linear 
imputation method to capture email trend patterns uniformly to provide a way to make 
use of patterns that are missing. Further, the dataset is normalized using MinMaxScaler 
function and the data range is scaled between [− 1, 1].

Statistical hypothesis test for stationarity

Time series data are considered stationary if they do not have trends or seasonal effects. 
If a time series is stationary, it is easier to make predictions about its values, as the way 
the time series changes is predictable. Therefore, the first step is to check whether there 
is any evidence of a trend or a seasonal effect in our dataset. The raw dataset is evaluated 
to check whether it is stationary with respect to mean and standard deviation using the 
Augmented Dickey-Fuller test (ADF) [21]. The ADF test is a type of statistical test called 
a unit root test. The null hypothesis (H0) of the test is that time series can be represented 
by a unit root, meaning that it is not stationary. The alternative hypothesis (H1) of the 

Fig. 1 Email traffic workload on weekdays versus weekends
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test suggests that it does not have a unit root, meaning that the time series is stationary. 
In ADF statistics, if the p value > 0.05, the data has a unit root and is non-stationary, and 
if p-value ≤ 0.05, the data does not have a unit root and is stationary.

In all the tests we ran for the Murdoch University dataset, the ADF statistics ranged 
between (− 7.37) and (− 10.73) for users’ and system emails. Similarly, for the TUC data-
set the ADF statistics ranged between (− 12.92) and (− 55.27). The p value was less than 
0.05 for all email types, which means that the time series is stationary, thus we reject the 
null hypothesis.

Figure 2 shows the rolling average (moving average) and the rolling standard deviation 
of the time series.

Recurrent neural networks

Neural networks have a very wide range of applications, from video activity detection 
[22] and face recognition [23] to classification of 3D objects [24] and emotion classifica-
tion [25].

RNN models are based on similar ideas to those of feedforward neural networks 
(FFNNs). The main difference is that the output of FFNNs at any time t, is a function of 
current input and weight, while the output of RNNs at time t, depends not only on the 
current input and weight but also on previous inputs. Modelling temporal data is criti-
cal in most real-world applications, since natural signals like network traffic, speech and 
video have time varying properties and are characterized by having dependencies across 
time. Feedforward neural networks (FFNNs) are limited since they are unable to capture 
temporal dependencies. Simple RNNs, also known as Elman networks and Jordan net-
works, were introduced to address this limitation. RNNs are artificial neural networks 
that can capture temporal dependencies. Instead of training the network with single 
input and single output at each time-step, RNNs use sequences as inputs in the training 
phase.

Despite the elegance of these networks, it was recognized in the early’90 s that all these 
networks suffer from the vanishing and exploding gradient problem [7]. While training 
the network, weight matrices are adjusted with the use of gradient in the backpropaga-
tion process by continuous multiplications of derivatives. The value of these derivatives 
may be so small, that these continuous multiplications may cause the gradient to practi-
cally vanish. Hence, capturing relationships that span more than eight or ten steps back 

Fig. 2 Moving average
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is practically impossible and this makes it difficult to train the network using long range 
dependence [26].

In the mid-90 s, LSTM was invented to address this problem [7]. The key novelty in 
LSTM was that the ideal state variables can be kept fixed by using gates and be reused at 
an appropriate time in the future.

Part of the difficulty in training deep neural networks lies in determining the proper 
weight initialization strategy to deal with the problem of shrinking variance in deeper 
layers. The first systematic analysis of this problem was conducted by [27], in which 
samples were drawn from a truncated normal distribution centered at 0, which is widely 
used in the initialization of neural networks and commonly referred to as the Glorot 
(Xavier) initialization. In contrast, the work carried out in [28] argued that the Glorot 
initialization does not work well with the relu activation function, and proposed a dif-
ferent initialization, commonly known as He initialization. A third initializer was intro-
duced by [29], commonly referred to as the LeCun initializer.

To evaluate the accuracy of using time series for email traffic prediction, we present 
in the following section a study on the aforementioned initialization strategies and on 
several well-known activation functions for efficient training of RNN models to address 
the vanishing and exploding gradient problem. Figure  3 presents the proposed model 
architecture. The raw input data is pre-processed and the missing values are filled using 
interpolate linear function. It is further processed to check for the outliers, scale to a 
given range and then divided into training and testing subsets. To further improve the 
performance of the selected model, the hyper-parameters such as weight initializers, 
activation and loss function are tuned to choose the best set of parameters. The optimal 
number of LSTM layers and window size are selected using a genetic algorithm. The best 
parameters are modelled to compare the performance of the RNN and LSTM models.

Fig. 3 Proposed model architecture
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Experiments
In order to evaluate our modelling/prediction results, we use the Relative Percentage 
Error (RPE) metric. The RPE evaluates the differences between the actual values and 
the corresponding predicted values by the models, and expresses them as a percent-
age [30]:

where Y is the predicted value and X is the real observation
A baseline RNN model with the same network architecture is used for all the meth-

ods described in this experiment to identify the optimal hyper-parameters addressing 
the vanishing and exploding gradient problem. We are using the baseline RNN model 
because it is sufficient to represent the category of deep neural network models, as 
well as to make the experiment feasible. Three experiments were undertaken:

• Experiment 1 compares popular weight initializer methods for handling the van-
ishing and exploding gradient problem.

• Experiment 2 compares commonly used activation functions.
• Experiment 3 compares the RNN and LSTM models in regard to their accuracy 

for our email traffic datasets.

For comparison purposes, we have also used Linear Regression, K-Nearest Neigh-
bor and Random Forest, ARIMA and SARIMA. We have used random grid search 
[31] to fine-tune the models. All the implemented models used in this study used the 
mean squared error as the loss function and RPE to measure their performance.

Experiment 1: weight initializers

Task

The purpose of this experiment is to evaluate the convergence of a deep neural net-
work model given different weight initialization strategies to minimize potential van-
ishing and exploding gradient problems.

Architectures

A general rule for setting weights is to set them to be close to zero without being too 
small [27]. The proposed RNN model is built with input hidden layers of 128, 64 and 
32 units for the LSTM and RNN models respectively and one output layer. The relu 
activation function is applied on each of the hidden layers with some added dropout 
in-between. We have also defined a mean squared error loss function along with an 
Adam optimizer function, and trained the model choosing 1000 epochs. Finally, the 
RPE is evaluated by calculating the differences between the actual and predicted val-
ues over the actual values, for the respective weight initializers. All parameters are 
selected based on the grid search result of the best performing estimates.

(1)RPE =
|Y − X |

X
∗ 100%
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Case 1: Ones and zeros constant weights

Figure 4 shows the comparison, for the TUC spam email dataset, of error rates with 
respect to all ones and zeros constant weight initializers, which are iterated over 1000 
epochs. When the model is initialized with all ones constant weights, the error rate 
starts out with an extremely high initial rate and fluctuates randomly over the train-
ing sample data. On the other hand, when the model is initialized with zero constant 
weights, the error rates remains flat over time. This clearly shows that the weights of 
a model should never be initialized to constant zeros or ones because if every neuron 
in the network computes the same output, then they will also compute the same gra-
dients and weight updates during the backpropagation. This makes it hard to decide 
which weight to adjust and the algorithm will not be able to learn to minimize the 
loss.

Case 2: Glorot, He and Lecun weight initializers

Figure  5 presents the RPE results for RNN baseline modelling using Glorot, He and 
Lecun weight initializers. These results indicate the difficulty of training using sample 
TUC spam email data. As shown in the figure, the Glorot, He and Lecun weight initializ-
ers start with high RPEs for all activation functions, but the errors decrease substantially 
as the number of epochs increases. The results show that Glorot initialization strategies 
perform relatively better with minimum 4.47% and 4.83% RPE values for normal and 
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uniform initializers, respectively, followed by the He normal initializer. This result is con-
sistent for all datasets.

Experiment 2: Activation functions

Task

This experiment evaluates the sigmoid, tangent, softsign and relu activation functions to 
evaluate their performance in training the neural network by measuring the error rates.

Architecture

The RNN model was trained with the relu activation function applied on the input-to-
hidden and hidden-to-hidden layers and the same architecture was trained from scratch 
with tanh, sigmoid and softsign. The model is built with an input layer, three hidden 
layers with 128, 64, and 32 nodes respectively and a final output layer. We used mean 
squared error loss and Adam optimizer functions and iterated with 1000 epochs. All 
these parameters are selected based on the grid search result of the best performing 
estimates.

Figure 6 shows the RPE for the softsign, relu, tanh and sigmoid activation functions 
evaluated using the sample baseline spam email dataset from TUC. The performance of 
the relu activation function is relatively better with a minimum RPE of 5.95%. This result 
is again consistent for all datasets.

Experiment 3: Performance comparison between RNN vs LSTM

Task

LSTM models have been introduced to overcome the vanishing gradient problem of the 
RNN model. However, a comparison of the performance of RNN and LSTM for email 
traffic datasets has not been reported, to the best of our knowledge. This experiment 
examines the performance of the models on all of our datasets.

Fig. 6 RPE for different activation functions
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Architecture

We have used the same baseline experimental setting for RNN and LSTM models in 
order to draw a fair comparison of their performances.

The first key difference between this study and previous work is with regard to the 
approaches we used and the experimental environment. The work in [6] was based 
on statistical modelling and excluded outliers. The authors did not investigate the 
time series properties of email traffic data. The work in [5] used a RNN model to 
model email traffic workloads as a time series, including the outliers [5]. However, the 
authors did not evaluate the best fit hyper-parameters for the categories of email traf-
fic to overcome the vanishing gradient problem.

This gap led us to evaluate various hyper-parameters that best fitted the different 
categories of emails in our datasets, to improve the performance of the model. Email 
traffic is passed as a single sequence with input time lags. As mentioned earlier, it 
is normalized using MinMaxScaler with a feature range from (− 1,1) and the values 
of Nan and zero are dropped, similarly to [5]. The proposed model is tuned using 
different activation functions, weight initializers, optimizers, neural network units 
and batch sizes for the different categories of the datasets and the best fit parameters 
are selected. The model is initialized using the first training window with three input 
sequences to predict the next sequence. In the next iteration, the same window data 
points are included as part of the next training dataset and subsequent data points are 
forecast in the next iteration and so forth. The model is validated against predicted 
and actual values and the RPE is recorded to evaluate the performance of the model.

We used a z-score outlier detection threshold value of 10% on the UoP incoming 
emails dataset because the frequency of email traffic was steady over the first 4 weeks 
and there was a sudden rise and fluctuation in the email sizes in the last (fifth) week. 
Hence, the model could not be trained adequately to predict the outliers. For this rea-
son, we have used outlier detection to remove the extreme data points.

Table 2 shows the relative percentage error values for the other models used (Linear 
Regression, K-Nearest Neighbor and Random Forest, ARIMA and SARIMA) using 
dataset from Murdoch university and Technical University of Crete. The performance 
of KNN and Linear regression are better as compared to the other models, but as it 
will be shown below, their performance is very poor compared to our approach.

Table  3 presents the RPE values over all our datasets for the models used in our 
work and those from [5, 6] for comparison purposes. The performance of the pro-
posed RNN model is clearly better than that of the models in [5, 6] for all email 
categories in our four datasets. The significant improvement in the performance com-
pared to the RNN used in [5] is due to the tuning of the hyper-parameters, which are 
adjusted with respect to the different email categories to get the best performance 
possible. Still, the LSTM model outperforms RNN in 12 out of the 16 categories. 
The reason is that RNN uses feedback connections to store representations of recent 
input events in the form of activations (short term memory) as opposed to long term 
memory gate features which are used in LSTM to control the constant error flow [7]. 
Long term memory is shown in our results to be necessary for improved model per-
formance when modelling email traffic.
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Conclusion and future work
In this work we have focused on the problem of modelling email traffic workloads by 
treating traffic as a time series function. We have discussed the existing literature and 
we have used RNN and LSTM models for modelling email traffic gathered from four 
different universities. We have shown that with the use of appropriate initialization of 
the training weights, proper activation functions and hyper-parameters the performance 
of the RNN model can be substantially improved for modelling email traffic. However, 
the highest accuracy achieved by RNN is smaller for most email traffic categories in our 
datasets than the performance achieved by LSTM. Our models clearly outperform a 
large number of other modelling approaches from the literature.

Our results reveal that model selection is crucial and that the prediction of future 
email traffic loads with very high accuracy is possible. Our future work will focus on the 
load variations across different time periods and on outlier detection, for possible fur-
ther improvement of the models’ accuracy through feature extraction. We also intend to 
focus on approaches to automatically tune the hyper-parameters and the deep learning 
architecture.
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Table 3 RPEs for all models and all datasets

Prediction error (RPE %)

Category Technical University of Crete University of Peloponnese

Previous works Proposed 
models

Previous works Proposed 
models

Incoming traffic Probability 
distribution

RNN RNN LSTM Probability 
distribution

RNN RNN LSTM

 Users incoming 21.5 13.9 6.22 5.64 16.7 9.20 3.29 3.33

 System incoming 20.8 2.1 1.97 2.04 23.00 7.00 9.96 6.08

Outgoing traffic

 Users incoming 14.7 9.4 2.28 1.34 29.60 13.70 4.96 5.22

 System incoming 10.00 5.30 2.25 2.22 20.40 4.40 2.83 1.38

Spam traffic

 Spam traffic 17.7 17.7 4.71 3.95 25.00 57.10 4.73 4.62

Category Murdoch University Liverpool John Moores University

Previous works Proposed 
models

Previous works Proposed 
models

Incoming traffic Probability 
distribution

RNN RNN LSTM Probability 
distribution

RNN RNN LSTM

 Users incoming 32.70 14.20 0.37 0.19 8.4 4.2 1.35 1.09

 System incoming 9.30 4.20 0.29 0.25

Outgoing traffic Spam traffic

 Users incoming 40.80 25.30 0.97 0.92 36.9 18.7 2.45 2.26

 System incoming 22.60 23.30 0.28 0.40
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