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Introduction
The advent of the mobile Internet era has brought data sharing into people’s daily life, 
and the relevant platforms are also widely used, like Facebook, Badoo and MySpace. 
In the meantime, cloud computing has become a promising technology used for mas-
sive data sharing [1]. Before sharing data, users usually choose to encrypt data to pro-
tect their security. One traditional method is to use symmetric encryption, the other is 
to use public key encryption [2–4]. Nevertheless, there are some problems with these 
methods. Some of them cannot achieve flexible access control [2], some schemes are 
poor in performance [3], and some have defects in security [4]. Therefore, attribute-
based encryption (ABE) [5] was proposed to overcome these problems in unreliable 
storage environment. The access control strategy of ciphertext-policy ABE (CP-ABE) is 
encrypted into the ciphertext [6]. This feature makes it very suitable for data sharing. In 
CP-ABE, the time of plaintext encryption is only linearly proportional to the attribute 
number, so it’s efficient. Shamir secret sharing scheme [6] is the foundation of traditional 
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CP-ABE algorithm. In 2011, a more efficient algorithm based on linear secret sharing 
scheme (LSSS) was proposed [7].

In actual application scenarios, shared data files usually have multiple access structures 
that have hierarchical relationships. This relationship is common in the health and mili-
tary fields. Most CP-ABE do not consider this hierarchical relationship and just require 
data owners to generate multiple ciphertexts to encrypt these files, which would incur 
substantial computation overheads. Wang proposed a File Hierarchy ABE scheme (FH-
CP-ABE) [8], which integrates multiple different access structures with hierarchical rela-
tionships into a single access structure. When a data visitor’s attributes match the partial 
access structure, he can decrypt the data that associate with this part. Only when the 
entire access structure is satisfied, all the data can be decrypted. Since the data owner 
does not need to generate multiple access structures and ciphertexts, the efficiency is 
greatly improved. However, FH-CP-ABE uses a tree access structure, so its efficiency is 
still low.

In this article, our contributions are as follows:

(1)	 We design a hierarchical CP-ABE algorithm whose access structure is LSSS matrix. 
In the algorithm, multiple hierarchical access control structures of data files are 
integrated into a single LSSS matrix, so all the data are encrypted into an entire 
ciphertext.

(2)	 Based on the proposed CP-ABE algorithm, we construct an Attribute-based Hier-
archical data Access Control scheme (AHAC) in the cloud computing. In AHAC, 
we achieve efficient and flexible access control. When a data visitor’s attributes 
match a part of the access control structure, he can decrypt the data that associ-
ate with this part. Moreover, the scheme just requires one operation of encryption 
and decryption to complete the work that traditional schemes have to do multiple 
encryption and decryption.

(3)	 We conduct security analysis and performance evaluation for AHAC. Security 
analysis shows that AHAC has prominent security features. Performance evalu-
ation demonstrates that the private key production time and storage cost of our 
scheme are only 25 percent of FH-CP-ABE, and the encryption and decryption 
time and ciphertext storage cost also have advantages.

The remaining parts of this paper are organized as follows. In “Related work” section, 
we introduce some related work in this field. In “Preliminaries” section, we introduce 
preliminaries which contain some notions and definitions. Then, the detailed construc-
tion of AHAC is presented in “AHAC: attribute-based hierarchy data access control 
scheme” section. In “Security analysis and performance evaluation” section, we provide 
security analysis and performance evaluation. Finally, the conclusions are given in “Con-
clusions” section.

Related work
The fuzzy identity-based encryption [5] put forward by Sahai and Waters in 2005 is the 
prototype of ABE. The basic ABE can only represent the “threshold” operation of attrib-
utes, and the threshold parameters are set by the authorized authority rather than by 
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the sender. Cheung realized the first CP-ABE scheme, which can just support “AND” 
gate access control strategy [9]. To implement a more flexible strategy, a new CP-ABE 
was designed by Bethencourt. His scheme applies the tree access control structure to 
realize the “AND”, “OR”, and “OF” strategy, and achieves fine-grained access control 
[6]. However, it cannot provide strong security. In 2008, Goyal and Jain put forward a 
CP-ABE that has selectively security in the decisional-Bilinear Diffie-Hellman (d-BDH) 
assumption [10]. Nevertheless, the time consumption by encryption and decryption, 
and the sizes of its private key and ciphertext grow up by n3.42 (n represents the attrib-
ute number associated with the access control tree), which limits its practicability. In 
2011, Lewko and Waters proposed a technology which can transform an access control 
tree to an LSSS representation. This technique makes it possible to replace tree struc-
ture with matrix structure. Thus, in the same year, Waters designed a CP-ABE scheme 
using matrix structure [7]. Its time consumption by encryption and decryption, and the 
sizes of private key and ciphertext increase linearly with its attribute number. Besides, 
the scheme has selectively security in the decisional q-parallel BDH Exponent (d-Par-
allel BDHE) assumption [7]. Some schemes [11–15] have applied CP-ABE to realize file 
access control in the cloud. There are also some schemes to improve the algorithm itself, 
such as [16, 17] fix the ciphertext size to improve performance, and [18, 19] improve 
security through authority control or accountability, and [20–22] support attribute revo-
cation to improve practicability. Scheme [23] supports proxy computing to private serv-
ers, and [24] supports hidden access policy, and [25] proposes a lightweight and efficient 
CP-ABE. However, none of them consider the hierarchical access relationships of multi-
ple shared files.

Researchers also proposed some hierarchical CP-ABE based on tree or LSSS matrix 
structure. The schemes proposed in [26–28] use multiple hierarchical authorized organ-
izations to create secret keys cooperatively for users, and alleviate the burden of a single 
authority center. In [29–31], schemes without central authority were further proposed, 
which improved the system security. In [32], there is a hierarchical relationship between 
attributes, and attributes with high permission can replace the attributes with low per-
mission when decrypting. In [8], FH-CP-ABE is proposed for cloud data access control, 
and an integrated tree access structure is used for encrypting all the data. However, its 
efficiency is still not high. It should be noticed that in our scheme, we focus on the issue 
of hierarchical access relationships of multiple shared files, which is the same as [8].

Preliminaries
First of all, we present the related preliminaries of AHAC, then we describe an example 
of using these techniques to implement hierarchical access control, and last we give the 
definition of d-Parallel BDHE.

Hierarchical sccess control

In the traditional CP-ABE scheme, users’ attributes either satisfy the access control 
structure to obtain plaintext, or do not satisfy the access control structure to obtain 
plaintext. As shown in Fig. 1, only user 1 and 4 can recover the plaintext, because their 
attributes match the access control structure.
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In hierarchical access control, multiple different access structures with hierarchi-
cal relationships can be integrated into a single access structure. As shown in Fig.  2, 
T1, T2 represents the access structures of m1, m2 accordingly, and obviously they have 
hierarchical relationship, so they can be integrated into a single access structure T. As 
shown in Fig.  3 when a data visitor’s attributes match the partial access structure, he 
can decrypt the data that associate with this part (User 2). Only when the entire access 
structure is satisfied, all the data can be decrypted (User 1). Since the data owner does 
not need to generate multiple access structures and ciphertexts, the efficiency is greatly 
improved.

Linear secret sharing scheme

Beimel first proposed the definition of LSSS in paper [33]: A secret sharing scheme Π 
over a collection of parties P is described linear on Zp when:

Fig. 1  An instance of the data access process in CP-ABE

Fig. 2  An instance of the integrated access control structure

Fig. 3  An instance of the hierarchical access control process
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(1)	 The shares of all the parties make up a vector on Zp.
(2)	 Such a matrix M for Π is existed, which is used for producing shares. M has 

l rows and n columns. For i = 1, 2, . . . , l , the ith row Mi of M is marked by a 
party ρ(i) where function ρ satisfies: {1, 2, . . . , l} → e . Given a column vector 
�v = (s, r2, . . . , rn) , in which s ∈ Zp is the shared secret and r2, . . . rd ∈ Zp are ran-
domly chosen, M�v is the vector constructed by m shares of s decided by Π. The 
share �i = (M�v)i is part of party ρ(i).

It is shown in [33] that each LSSS has the linear reconstruction feature: Assume that 
there exists an LSSS Π corresponding to the access structure T, and S∈T is an arbi-
trary authorized set, I ⊂ {1, . . . , l} is denoted as I = {i : ρ(i) ∈ S} . There are constants 
{ωi ∈ Zp}i∈I that makes 

∑

i∈I ωi�i = s , in which {�i} are shares of arbitrary secret s 
decided by Π. In addition, {ωi} will be found under polynomial time in the size of the 
share-generating matrix M.

There will exist a vector like that ω · (1, 0, . . . , 0) = −1 and ω ·Mi = 0 for all i ∈ I for 
any unauthorized set of rows I.

It can be obtained by mathematical derivation for a randomly selected vector 
�v = (s1, . . . , sj , . . . , sn) , where sj ∈ Zp is the jth secret of the n secrets that need to be 
recovered, and it corresponds to a non-leaf node in the tree structure. When recovering 
a secret, if the set of attributes possessed can satisfy this non-leaf node, then {ωi ∈ Zp}i∈I 
will be found under the polynomial time which satisfies 

∑

i∈I ωi,jM
T
i = εj , where εj is a 

row vector whose length is n with the jth element is 1 and the remaining elements are 0. 
Then we can get sj =

∑

i∈I ωi,j�i.

Marking method to construct LSSS matrix

Beimel proved that the access control strategy described by tree structure can be con-
verted to matrix M in LSSS, but no specific conversion method is given in [33]. Until 
2011, Lewko and Waters presented a construction method for an LSSS matrix in [34]: 
Given an access tree defined by a Boolean formula, it can be converted to an LSSS matrix 
by a marking method. And any one of the propositional paradigms can find its Boolean 
formula. The specific conversion method can be found in [33].

An example of hierarchical access control using LSSS matrix

There is a hierarchical access tree T which is shown in Fig. 2, and its Boolean formula is 
(A AND (B AND (C OR D))). We can use the above marking method to convert it to an 
LSSS matrix by Formula 1 as:

Next, we give an example of how to use the LSSS matrix to achieve hierarchical access 
control.

(1)M =







1 1 0

0 −1 1

0 0 −1

0 0 −1






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When encrypting, we randomly select a vector �v = (s1, s2, s3) = (2, 5, 3) , in which 
s1, s2, s3 are secrets assigned to the non-leaf nodes in Fig. 2. Then we can calculate λ by 
Formula 2:

From “Linear secret sharing scheme”, we know sj =
∑

i∈I ωi,j�i , where 
I = {i : ρ(i) ∈ S},ρ(i) can convert the ith row into the attribute represented by this 
row, and S is the user’s attribute set. Thus, we can get Formula 3:

Obviously, we must get ωj if we want to get sj , then we make the following formula 4 
derivation:

We make MT
Aωj = εj , so sj = �v · εj . Then we can compute εj as a row vector whose 

length is n with the jth element is 1 and the remaining elements are 0.
When decrypting, if a decryptor only has the attributes B, C, i.e., it only satisfies the 

partial access structure, then he can get ω2,ω3 by Formula 5 and 6:

Thus, ω3 =

(

0

−1

)

 , ω2 =

(

−1

−1

)

 . Finally, he can get s3 and s2 from Formulas 7 and 8:

(2)� = M · �v =







1 1 0

0 −1 1

0 0 −1

0 0 −1






·





2

5

3



 =







7

−2

−3

−3







(3)sj = ωT
j �A where �A =

















�1

.

.

.

�i

.

.

.

�l

















i∈I

(4)sj = sTj = �
T
Aωj = (MA · �vT )Tωj = �v · (MT

Aωj) where MA =

















M1

.

.

.

Mi

.

.

.

Ml

















i∈I

(5)MT
Aω3 =





0 0

−1 0

1 −1



 · ω3 = ε3 =





0

0

1





(6)MT
Aω2 =





0 0

−1 0

1 −1



 · ω2 = ε2 =





0

1

0





(7)s3 = ωT
3 �A =

(

0 −1
)

·

(

−2

−3

)

= 3

(8)s2 = ωT
2 �A =

(

−1 −1
)

·

(

−2

−3

)

= 5
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Similarly, if the decryptor has the attributes A, B, and C, then he satisfies the entire 
access structure, and all the secrets s1, s2, s3 can be computed by the above steps.

AHAC: attribute‑based hierarchy data access control scheme
In the chapter, first we give the overview and the security assumptions of AHAC. After 
that, we design the core algorithm of AHAC, namely AHAC-CP-ABE. Finally, we pre-
sent the system operations of AHAC detailedly.

Scheme overview

The system framework of AHAC is shown in Fig. 4. Firstly, central authority (CA) per-
forms the system initialization operation and generates system attributes and relevant 
keys. Then, double encryption mechanism are used to promote the efficiency, that is, 
data owner chooses n symmetric keys {ck1, . . . , ckn} to encrypt the data files {f1, . . . , fn} 
respectively using a symmetric encryption algorithm (AES, DES, etc.), and encrypts 
{ck1, . . . , ckn} using AHAC-CP-ABE algorithm. The symmetric encryption algorithm 
with high efficiency is used to encrypt the files of large volume, and the CP-ABE algo-
rithm is used to encrypt the symmetric key of small volume. Compared with the sym-
metric encryption algorithm, the performance of CP-ABE algorithm is relatively lower. 
However, the CP-ABE algorithm can bring the obvious advantage in key management, 
using which we can easily implement the access control of encrypted data. Thus, we uti-
lize such double encryption method to achieve the secure, efficient and fine-grained data 
access control in the cloud.

The user then transfers the two ciphertexts to cloud server (CS) and CS stores them for 
sharing. When a data visitor wishes to obtain the data files, he should contact CA and 
CA distributes corresponding private keys to him according to his attributes. Then, this 
data visitor obtains the ciphertexts from CS. When his attributes match partial or entire 
access control structure, he can decrypt the symmetric keys that associated with this 
part. At last, the data visitor is able to get the corresponding files using the symmetric 

Fig. 4  The system framework of AHAC
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keys. It is clear from our framework that only one encryption and decryption operation 
is needed to share multiple files securely, while traditional schemes have to do multiple 
encryption and decryption operations.

Security assumptions

In this section, we will present security assumptions for several entities in the system.
We consider that CS is honest but curious in AHAC like the related work [35] do, that 

is, CS will honestly perform the task of private key distribution yet it is also trying to 
gain the contents of the data files and symmetric keys stored in it. Besides, CS is online 
all the time to provide stable services.

CA is fully trusted and is online all the time. There is a security approach for CA to 
transfer private key to users. Users can get the services of the system at any time.

For any number of unauthorized users, they may launch collusion attacks and try to 
obtain the confidential data.

AHAC‑CP‑ABE

The AHAC-CP-ABE includes four functions: system initialization, private key produc-
tion, encryption and decryption. These functions make the following cases: when a data 
visitor’s attributes match a part of the access control structure, he can decrypt the data 
that associate with this part, and when the entire access structure is satisfied, all the data 
can be decrypted. Here are the details of the algorithm:

(1)	System initialization

Function 1 takes an attribute set U of system and a parameter k specifying the system 
security as input, and produces a system master key MK and a corresponding public key 
PK.

(2)	Private key production

As shown in Function 2, it inputs PK, MK, and the attribute set S of a user, and pro-
duces a user private key SK that is related to S.
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(3)	 Encryption

As shown in Function 3, the encryption function inputs a plaintext set {mj , j ∈ (1, n)} , 
PK, and an LSSS matrix structure (M, ρ) , and returns a ciphertext CT. For an LSSS 
matrix structure (M, ρ) , the dimension of M is l × n , Mi is the ith row of M, and ρ(i) can 
convert Mi into the attribute represented by it.

(4)	 Decryption

As shown in Function 4, CT and SK are inputs, and outputs is plaintext set mj . MA is 
a matrix composed of a set of row vectors in M that corresponds to the attribute set S 
associated with SK. εj is a row vector with length n, in which the jth element is 1 and the 
remaining elements are 0. I = {i : ρ(i) ∈ S}.
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The detailed operation process of AHAC

AHAC consists of six operations: System initialization, encryption of data files, encryp-
tion of symmetric keys, user authorization, decryption of symmetric keys and decryp-
tion of data files.

(1)	 System setup

CA designates an attribute set U and invokes Function 1 to produce a master key MK 
and a public key PK, and MK is safely stored in CA.

(2)	 Encryption of data files

Data owner (DO) chooses n symmetric keys {ck1, . . . , ckn} to encrypt his data files 
{f1, . . . , fn} by a symmetric encryption algorithm respectively. The data file ciphertext are 
denoted as: EF = {Eck1(f1), . . . ,Eckn(fn)}.

(3)	 Encryption of symmetric keys

DO defines access trees {T1, . . . ,Tn} for his data files {f1, . . . , fn} respectively and inte-
grates them into a single access tree T. Then, he uses marking method to converted T to 
LSSS matrix structure (M, ρ) . Next, he calls Function 3 to encrypt his symmetric keys 
{ck1, · · · , ckn} and generates a symmetric key ciphertext CT. Finally, he sends CT and EF 
to CS and CS stores them.
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(4)	 User authorization

For any data visitor, CA specifies a set S of attributes and calls Function 2 to output the 
corresponding private key SK.

(5)	 Decryption of symmetric keys

When a user wants to obtain some files from CS, CS first checks whether his attrib-
utes match partial or entire access control structure of those data files. If not, CS refuses 
the user’s request; otherwise, CS sends CT to the user. After obtaining CT, the user 
calls Function 4 to get the symmetric keys. When his attributes satisfy a part of the 
access tree, he can decrypt the symmetric keys that associated with this part, assuming 
{ck1, . . . , ckn} . Only when his attributes match the entire access control structure, he can 
obtain all the symmetric keys.

(6)	 Decryption of data files

In the last step, the user downloads {Eck1(f1), . . . ,Eckn(fn)} and uses {ck1, . . . , ckn} to 
decrypt the data files {f1, . . . , fn} by the symmetric decryption algorithm.

To further improve the efficiency, we make the following transformation:

where {ck1, . . . , ckn} are n symmetric keys. After then, we call Function 3 to encrypt 
{ck

′

1, . . . , ck
′

n} and generates a symmetric key ciphertext CT. When decrypting, we call 
Function 4 to get the symmetric keys. In Function 4, once we successfully decrypt a ck ′

j , 
we can stop the decryption process immediately, since ck ′

j contains all the contents of the 
rest symmetric keys.

Security analysis and performance evaluation
In this chapter, we give the analysis for the security and the evaluation results for the 
performance.

Security analysis

We give the security features of AHAC based on the security assumptions presented in 
chapter  4.2, containing data confidentiality, collusion defense and fine-grained access 
control.

(1)	 Data confidentiality

AHAC-CP-ABE algorithm is designed on top of Waters’s algorithm [7]. The security of 
his scheme is based on d-Parallel BDHE assumption.

ck
′

n = ckn,

ck
′

n−1 = ckn−1 ∪ ck
′

n,

ck
′

1 = ck1 ∪ ck
′

2
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d-Parallel BDHE assumption: Select a bilinear group G of prime order p with gen-
erator g, and select β , s, b1, . . . , bq ∈ Zp at random. Even if the adversary gets

it’s hard for him to get e(g , g)βq+1s ∈ GT .
There exists a main difference between AHAC-CP-ABE algorithm and his algo-

rithm. In AHAC-CP-ABE, we use all the elements in the secret vector �v to allow 
multiple secrets to be carried in an access control policy, under which multiple 
plaintexts are encrypted. That is to say, AHAC-CP-ABE exploits all the elements 
in vector �v , using each of them to encrypt every plaintext respectively, as shown in 
Function 3, whereas in Waters’s CP-ABE algorithm, just one element in the vector is 
used for encrypting a plaintext [7] and for multiple plaintexts, their algorithm needs 
to be executed multiple times. In [7], Waters’s CP-ABE algorithm has the selectively 
security in d-Parallel BDHE assumption. Therefore, AHAC-CP-ABE has the same 
security under the same assumption.

In AHAC, data files are encrypted using symmetric encryption keys, and these 
keys are then encrypted using AHAC-CP-ABE. In this mechanism, just the cipher-
texts of the files and the ciphertexts of the keys are given to cloud servers. Since the 
used symmetric encryption algorithm, such as AES, is secure, the security of this 
mechanism merely relies on the security of AHAC-CP-ABE. In the above paragraph, 
we have shown that AHAC-CP-ABE is secure under d-Parallel BDHE assumption. 
Thus, the AHAC is secure under the same model.

(2)	 Collusion defense

Any number of unauthorized users may launch collusion attacks, trying to access 
the confidential data files. In AHAC-CP-ABE, CA chooses an element t randomly 
for each user and uses t to generate a private key for each of them. When a user 
decrypts a ciphertext, he should compute e(g , g)αsj first, which requires the compo-
nents of his private key contain the same t. That is to say, different data visitors can’t 
integrate their private keys to strengthen their decryption power, since they have 
different values of t in private keys. Therefore, AHAC can resist collusion attacks 
effectively.

(3)	 Fine-grained access control

In AHAC, the LSSS matrix access structure is transformed from an access tree 
which supports “AND” “OR”, and “OF” threshold operations, and it can represent 
any complex access control policy. Only data visitors who own the attributes match-
ing the access control structure can obtain the plaintext successfully. Thus, AHAC 
realizes fine-grained access control.

�y =















g , gs, gβ , . . . , g (β
q)
, , g (β

q+2)
, . . . g (β

2q)

∀1≤j≤q gs·bj , gβ/bj , . . . g (β
q/bj), , g (β

q+2/bj), . . . g (β
2q/bj)

∀1≤j,k≤q,k �=jg
βsbk/bj , . . . , gβ

qsbk/bj














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Performance evaluation

We evaluate the performance of AHAC-CP-ABE from two aspects: its time costs, and 
the storage costs of ciphertext and private key. Both are compared with those of tradi-
tional CP-ABE [6], LSSS-based CP-ABE (hereinafter referred to as LS-CP-ABE) [7], and 
FH-CP-ABE [8].

We make the following access policy: assume that the plaintext M = (m1,m2, . . . ,mn) , 
for the traditional CP-ABE and LS-CP-ABE, n policies are needed respectively for 
m1,m2, . . . ,mn as:

Policy(1): {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND · · ·AND atti+n−1}

Policy(2): {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND · · ·AND atti+n−2}

Policy(n−1): {(att1, att2, . . . , atti, j of i) AND atti+1}

Policy(n): {att1, att2, . . . , atti, j of i}

FH-CP-ABE and AHAC-CP-ABE only need one access policy with n access structure 
level as:

Policy: {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND . . .AND atti+n−1}

In Table 1, we compare the performance of four CP-ABE algorithms by theoretical cal-
culation. µ represents the global attribute set, ω ∈ µ represents the attribute informa-
tion contained in the user’s private key, c represents the attribute contained in the access 
structure, n represents the access structure hierarchy, the power operation on the group 
G0 is E0, the power operation on the group GT is ET, and the multiplication calculation 
on the group is M. P represents the pairing operation in group G0. The element size on 
group G0 is represented as l0, and the element size on group GT is represented as lT. 
Due to the trivial time consumption of hash operation, the time consumption of hash is 
ignored. As shown in Table 1, AHAC-CP-ABE has high performance in all aspects.

We conduct detailed experiments to simulate the complete access control process, in 
which all four algorithms are implemented based on JPBC [36]. In the experiments, a 
super singular elliptic curve y2 = x3 + x is adopted of which the group order is 160 bits 
on a 512-bit finite field. The experiments are performed on a computer with Pentium 
G4560 3.50 Hz processor, and 8.00 GB RAM. We take the average of 10 experiments as 
results to make them more accurate.

· · · · · ·

Table 1  Compare of the performance of four algorithms

Scheme CP-ABE [6] FH-CP-ABE [8] LS-CP-ABE [7] AHAC-CP-ABE

Setup time 2E0 + ET+P 2E0 + ET + P 2E0 + ET + P 2E0 + ET + P

Private key generation time (2+ 2ω)E0+

(ω + 1)M

(2+ 2ω)E0+

(ω + 1)M

(2+ ω)E0 +M (2+ ω)E0 +M

Encryption time (2c + 1)nE0+

nET + nM

(2c + n)·

(E0 + ET +M)

(3c + 1)nE0+

nET + (c + 1)nM

(3c + n)E0+

nET + (n+ c)M

Decryption time cnET + nM+

(2c + 1)nP

cET + nM+

(2c + 1)P

cnET + nM+

(2c + 1)nP

cET +M+

(2c + 1)P

Private key storage (2ω + 1)l0 (2ω + 1)l0 (2+ ω)l0 (2+ ω)l0

Ciphertext storage (2c + 1)nl0 + nlT (2c + n)l0+

(n+ c)lT

(2c + 1)nl0 + nlT (2c + n)l0 + nlT
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The private key generation time of four algorithms have been shown in Fig. 5. As 
the attribute number increases, the private key production time costs and the private 
key storage costs of AHAC-CP-ABE and LS-CP-ABE grow slower than those of the 
other two algorithms. This will significantly reduce the pressure of CA.

Figure  6 shows the encryption and decryption time costs with two fixed access 
structure levels as attributes increase. We can see that the time costs by encryption 
and decryption of AHAC-CP-ABE and FH-CP-ABE are always less than those of the 
other two algorithms.

Figure  7 shows the encryption and decryption time costs with different access 
structure level and fixed attribute number N = 30 respectively. It’s obvious that the 
encryption and decryption time costs of FH-CP-ABE and AHAC-CP-ABE are con-
stants when the number of access structure levels increases, while in traditional CP-
ABE and LS-CP-ABE there are rapid linear growth in the time costs.

From Figs. 5, 6 and 7, we can conclude that the time consumptions by encryption 
and decryption of AHAC-CP-ABE are still less than those of FH-CP-ABE. However, 
in the cloud environment with big data, the gap of them will be widened. Moreover, 
the private key production time consumption by private key production of AHAC-
CP-ABE is much less than that of FH-CP-ABE.

Figure 8 shows the storage cost of private key. As the attribute number increases, 
the private key storage costs of AHAC-CP-ABE and LS-CP-ABE grow slower than 
those of the other two algorithms.

Figure 9a shows the storage cost of ciphertext with two fixed access structure levels 
as attributes increase. We can see that the ciphertext storage costs of FH-CP-ABE 
and AHAC-CP-ABE are very close, while the costs of traditional CP-ABE and LS-CP-
ABE are about twice as those of them, since in this experiment, the access structure 
level is set to two. Figure 9b shows the storage cost of ciphertext with different access 
structure level and fixed attribute number N = 30 respectively. We can see that the 
ciphertext storage costs of AHAC-CP-ABE and FH-CP-ABE increase slightly when 

Fig. 5  Private key generation time
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the number of access structure level increases, and the ciphertext storage costs of tra-
ditional CP-ABE and LS-CP-ABE increase sharply.

From Figs.  8 and 9, we can conclude that the ciphertext storage consumption of 
AHAC-CP-ABE is still less than that of FH-CP-ABE, and furthermore the private key 
storage consumption of AHAC-CP-ABE is obviously less than that of FH-CP-ABE.

Conclusions
Most of existing data access control schemes of CP-ABE do not consider the hier-
archical access relationships of multiple shared data files, and just need data own-
ers to generate multiple ciphertexts to meet the hierarchical access requirement, 
which would incur substantial computation overheads. To solve this problem, we first 
give an efficient hierarchical CP-ABE algorithm based on LSSS and furthermore, we 

Fig. 6  Encryption and decryption time when the attribute number increases
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construct AHAC, which uses an integrated access structure that makes users be able 
to encrypt multiple data files with hierarchical access relationships at once. When a 
data visitor’s attributes match a part of the access control structure, he can obtain 
the data that associate with this part by just one decryption. In addition, AHAC is 
secure, and has very low costs both in computation and storage aspects compared 
with related works.

Fig. 7  Encryption and decryption time when the structure level increases
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In the future, we will work towards using blockchain technology to expand the single 
authority to multiple authorities, improve the security and stability of the authority, and 
support the accountability of authority.

Fig. 8  The storage cost of private key

Fig. 9  The storage cost of ciphertext
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