
An efficient attribute‑based hierarchical data
access control scheme in cloud computing
Heng He1,2*, Liang‑han Zheng1,2, Peng Li1,2, Li Deng1,2, Li Huang1,2 and Xiang Chen1,2

Introduction
The advent of the mobile Internet era has brought data sharing into people’s daily life,
and the relevant platforms are also widely used, like Facebook, Badoo and MySpace.
In the meantime, cloud computing has become a promising technology used for mas-
sive data sharing [1]. Before sharing data, users usually choose to encrypt data to pro-
tect their security. One traditional method is to use symmetric encryption, the other is
to use public key encryption [2–4]. Nevertheless, there are some problems with these
methods. Some of them cannot achieve flexible access control [2], some schemes are
poor in performance [3], and some have defects in security [4]. Therefore, attribute-
based encryption (ABE) [5] was proposed to overcome these problems in unreliable
storage environment. The access control strategy of ciphertext-policy ABE (CP-ABE) is
encrypted into the ciphertext [6]. This feature makes it very suitable for data sharing. In
CP-ABE, the time of plaintext encryption is only linearly proportional to the attribute
number, so it’s efficient. Shamir secret sharing scheme [6] is the foundation of traditional

Abstract 

Security issues in cloud computing have become a hot topic in academia and indus‑
try, and CP-ABE is an effective solution for managing and protecting data. When data
is shared in cloud computing, they usually have multiple access structures that have
hierarchical relationships. However, existing CP-ABE algorithms do not consider such
relationships and just require data owners to generate multiple ciphertexts to meet the
hierarchical access requirement, which would incur substantial computation over‑
heads. To achieve fine-grained access control of multiple hierarchical files effectively,
first we propose an efficient hierarchical CP-ABE algorithm whose access structure is
linear secret sharing scheme. Moreover, we construct an attribute-based hierarchical
access control scheme, namely AHAC. In our scheme, when a data visitor’s attributes
match a part of the access control structure, he can decrypt the data that associate
with this part. The experiments show that AHAC has good security and high perfor‑
mance. Furthermore, when the quantity of encrypted data files increases, the superior‑
ity of AHAC will be more significant.

Keywords:  Cloud computing, Attribute-based encryption, Hierarchical access
structure, Linear secret sharing

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit‑
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

RESEARCH

He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49
https://doi.org/10.1186/s13673-020-00255-5

*Correspondence:
heheng@wust.edu.cn
1 School of Computer
Science and Technology,
Wuhan University of Science
and Technology, Wuhan,
China
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00255-5&domain=pdf

Page 2 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

CP-ABE algorithm. In 2011, a more efficient algorithm based on linear secret sharing
scheme (LSSS) was proposed [7].

In actual application scenarios, shared data files usually have multiple access structures
that have hierarchical relationships. This relationship is common in the health and mili-
tary fields. Most CP-ABE do not consider this hierarchical relationship and just require
data owners to generate multiple ciphertexts to encrypt these files, which would incur
substantial computation overheads. Wang proposed a File Hierarchy ABE scheme (FH-
CP-ABE) [8], which integrates multiple different access structures with hierarchical rela-
tionships into a single access structure. When a data visitor’s attributes match the partial
access structure, he can decrypt the data that associate with this part. Only when the
entire access structure is satisfied, all the data can be decrypted. Since the data owner
does not need to generate multiple access structures and ciphertexts, the efficiency is
greatly improved. However, FH-CP-ABE uses a tree access structure, so its efficiency is
still low.

In this article, our contributions are as follows:

(1)	 We design a hierarchical CP-ABE algorithm whose access structure is LSSS matrix.
In the algorithm, multiple hierarchical access control structures of data files are
integrated into a single LSSS matrix, so all the data are encrypted into an entire
ciphertext.

(2)	 Based on the proposed CP-ABE algorithm, we construct an Attribute-based Hier-
archical data Access Control scheme (AHAC) in the cloud computing. In AHAC,
we achieve efficient and flexible access control. When a data visitor’s attributes
match a part of the access control structure, he can decrypt the data that associ-
ate with this part. Moreover, the scheme just requires one operation of encryption
and decryption to complete the work that traditional schemes have to do multiple
encryption and decryption.

(3)	 We conduct security analysis and performance evaluation for AHAC. Security
analysis shows that AHAC has prominent security features. Performance evalu-
ation demonstrates that the private key production time and storage cost of our
scheme are only 25 percent of FH-CP-ABE, and the encryption and decryption
time and ciphertext storage cost also have advantages.

The remaining parts of this paper are organized as follows. In “Related work” section,
we introduce some related work in this field. In “Preliminaries” section, we introduce
preliminaries which contain some notions and definitions. Then, the detailed construc-
tion of AHAC is presented in “AHAC: attribute-based hierarchy data access control
scheme” section. In “Security analysis and performance evaluation” section, we provide
security analysis and performance evaluation. Finally, the conclusions are given in “Con-
clusions” section.

Related work
The fuzzy identity-based encryption [5] put forward by Sahai and Waters in 2005 is the
prototype of ABE. The basic ABE can only represent the “threshold” operation of attrib-
utes, and the threshold parameters are set by the authorized authority rather than by

Page 3 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

the sender. Cheung realized the first CP-ABE scheme, which can just support “AND”
gate access control strategy [9]. To implement a more flexible strategy, a new CP-ABE
was designed by Bethencourt. His scheme applies the tree access control structure to
realize the “AND”, “OR”, and “OF” strategy, and achieves fine-grained access control
[6]. However, it cannot provide strong security. In 2008, Goyal and Jain put forward a
CP-ABE that has selectively security in the decisional-Bilinear Diffie-Hellman (d-BDH)
assumption [10]. Nevertheless, the time consumption by encryption and decryption,
and the sizes of its private key and ciphertext grow up by n3.42 (n represents the attrib-
ute number associated with the access control tree), which limits its practicability. In
2011, Lewko and Waters proposed a technology which can transform an access control
tree to an LSSS representation. This technique makes it possible to replace tree struc-
ture with matrix structure. Thus, in the same year, Waters designed a CP-ABE scheme
using matrix structure [7]. Its time consumption by encryption and decryption, and the
sizes of private key and ciphertext increase linearly with its attribute number. Besides,
the scheme has selectively security in the decisional q-parallel BDH Exponent (d-Par-
allel BDHE) assumption [7]. Some schemes [11–15] have applied CP-ABE to realize file
access control in the cloud. There are also some schemes to improve the algorithm itself,
such as [16, 17] fix the ciphertext size to improve performance, and [18, 19] improve
security through authority control or accountability, and [20–22] support attribute revo-
cation to improve practicability. Scheme [23] supports proxy computing to private serv-
ers, and [24] supports hidden access policy, and [25] proposes a lightweight and efficient
CP-ABE. However, none of them consider the hierarchical access relationships of multi-
ple shared files.

Researchers also proposed some hierarchical CP-ABE based on tree or LSSS matrix
structure. The schemes proposed in [26–28] use multiple hierarchical authorized organ-
izations to create secret keys cooperatively for users, and alleviate the burden of a single
authority center. In [29–31], schemes without central authority were further proposed,
which improved the system security. In [32], there is a hierarchical relationship between
attributes, and attributes with high permission can replace the attributes with low per-
mission when decrypting. In [8], FH-CP-ABE is proposed for cloud data access control,
and an integrated tree access structure is used for encrypting all the data. However, its
efficiency is still not high. It should be noticed that in our scheme, we focus on the issue
of hierarchical access relationships of multiple shared files, which is the same as [8].

Preliminaries
First of all, we present the related preliminaries of AHAC, then we describe an example
of using these techniques to implement hierarchical access control, and last we give the
definition of d-Parallel BDHE.

Hierarchical sccess control

In the traditional CP-ABE scheme, users’ attributes either satisfy the access control
structure to obtain plaintext, or do not satisfy the access control structure to obtain
plaintext. As shown in Fig. 1, only user 1 and 4 can recover the plaintext, because their
attributes match the access control structure.

Page 4 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

In hierarchical access control, multiple different access structures with hierarchi-
cal relationships can be integrated into a single access structure. As shown in Fig. 2,
T1, T2 represents the access structures of m1, m2 accordingly, and obviously they have
hierarchical relationship, so they can be integrated into a single access structure T. As
shown in Fig. 3 when a data visitor’s attributes match the partial access structure, he
can decrypt the data that associate with this part (User 2). Only when the entire access
structure is satisfied, all the data can be decrypted (User 1). Since the data owner does
not need to generate multiple access structures and ciphertexts, the efficiency is greatly
improved.

Linear secret sharing scheme

Beimel first proposed the definition of LSSS in paper [33]: A secret sharing scheme Π
over a collection of parties P is described linear on Zp when:

Fig. 1  An instance of the data access process in CP-ABE

Fig. 2  An instance of the integrated access control structure

Fig. 3  An instance of the hierarchical access control process

Page 5 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

(1)	 The shares of all the parties make up a vector on Zp.
(2)	 Such a matrix M for Π is existed, which is used for producing shares. M has

l rows and n columns. For i = 1, 2, . . . , l , the ith row Mi of M is marked by a
party ρ(i) where function ρ satisfies: {1, 2, . . . , l} → e . Given a column vector
�v = (s, r2, . . . , rn) , in which s ∈ Zp is the shared secret and r2, . . . rd ∈ Zp are ran-
domly chosen, M�v is the vector constructed by m shares of s decided by Π. The
share �i = (M�v)i is part of party ρ(i).

It is shown in [33] that each LSSS has the linear reconstruction feature: Assume that
there exists an LSSS Π corresponding to the access structure T, and S∈T is an arbi-
trary authorized set, I ⊂ {1, . . . , l} is denoted as I = {i : ρ(i) ∈ S} . There are constants
{ωi ∈ Zp}i∈I that makes

∑

i∈I ωi�i = s , in which {�i} are shares of arbitrary secret s
decided by Π. In addition, {ωi} will be found under polynomial time in the size of the
share-generating matrix M.

There will exist a vector like that ω · (1, 0, . . . , 0) = −1 and ω ·Mi = 0 for all i ∈ I for
any unauthorized set of rows I.

It can be obtained by mathematical derivation for a randomly selected vector
�v = (s1, . . . , sj , . . . , sn) , where sj ∈ Zp is the jth secret of the n secrets that need to be
recovered, and it corresponds to a non-leaf node in the tree structure. When recovering
a secret, if the set of attributes possessed can satisfy this non-leaf node, then {ωi ∈ Zp}i∈I
will be found under the polynomial time which satisfies

∑

i∈I ωi,jM
T
i = εj , where εj is a

row vector whose length is n with the jth element is 1 and the remaining elements are 0.
Then we can get sj =

∑

i∈I ωi,j�i.

Marking method to construct LSSS matrix

Beimel proved that the access control strategy described by tree structure can be con-
verted to matrix M in LSSS, but no specific conversion method is given in [33]. Until
2011, Lewko and Waters presented a construction method for an LSSS matrix in [34]:
Given an access tree defined by a Boolean formula, it can be converted to an LSSS matrix
by a marking method. And any one of the propositional paradigms can find its Boolean
formula. The specific conversion method can be found in [33].

An example of hierarchical access control using LSSS matrix

There is a hierarchical access tree T which is shown in Fig. 2, and its Boolean formula is
(A AND (B AND (C OR D))). We can use the above marking method to convert it to an
LSSS matrix by Formula 1 as:

Next, we give an example of how to use the LSSS matrix to achieve hierarchical access
control.

(1)M =







1 1 0

0 −1 1

0 0 −1

0 0 −1







Page 6 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

When encrypting, we randomly select a vector �v = (s1, s2, s3) = (2, 5, 3) , in which
s1, s2, s3 are secrets assigned to the non-leaf nodes in Fig. 2. Then we can calculate λ by
Formula 2:

From “Linear secret sharing scheme”, we know sj =
∑

i∈I ωi,j�i , where
I = {i : ρ(i) ∈ S},ρ(i) can convert the ith row into the attribute represented by this
row, and S is the user’s attribute set. Thus, we can get Formula 3:

Obviously, we must get ωj if we want to get sj , then we make the following formula 4
derivation:

We make MT
Aωj = εj , so sj = �v · εj . Then we can compute εj as a row vector whose

length is n with the jth element is 1 and the remaining elements are 0.
When decrypting, if a decryptor only has the attributes B, C, i.e., it only satisfies the

partial access structure, then he can get ω2,ω3 by Formula 5 and 6:

Thus, ω3 =

(

0

−1

)

 , ω2 =

(

−1

−1

)

 . Finally, he can get s3 and s2 from Formulas 7 and 8:

(2)� = M · �v =







1 1 0

0 −1 1

0 0 −1

0 0 −1






·





2

5

3



 =







7

−2

−3

−3







(3)sj = ωT
j �A where �A =

















�1

.

.

.

�i

.

.

.

�l

















i∈I

(4)sj = sTj = �
T
Aωj = (MA · �vT)Tωj = �v · (MT

Aωj) where MA =

















M1

.

.

.

Mi

.

.

.

Ml

















i∈I

(5)MT
Aω3 =





0 0

−1 0

1 −1



 · ω3 = ε3 =





0

0

1





(6)MT
Aω2 =





0 0

−1 0

1 −1



 · ω2 = ε2 =





0

1

0





(7)s3 = ωT
3 �A =

(

0 −1
)

·

(

−2

−3

)

= 3

(8)s2 = ωT
2 �A =

(

−1 −1
)

·

(

−2

−3

)

= 5

Page 7 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

Similarly, if the decryptor has the attributes A, B, and C, then he satisfies the entire
access structure, and all the secrets s1, s2, s3 can be computed by the above steps.

AHAC: attribute‑based hierarchy data access control scheme
In the chapter, first we give the overview and the security assumptions of AHAC. After
that, we design the core algorithm of AHAC, namely AHAC-CP-ABE. Finally, we pre-
sent the system operations of AHAC detailedly.

Scheme overview

The system framework of AHAC is shown in Fig. 4. Firstly, central authority (CA) per-
forms the system initialization operation and generates system attributes and relevant
keys. Then, double encryption mechanism are used to promote the efficiency, that is,
data owner chooses n symmetric keys {ck1, . . . , ckn} to encrypt the data files {f1, . . . , fn}
respectively using a symmetric encryption algorithm (AES, DES, etc.), and encrypts
{ck1, . . . , ckn} using AHAC-CP-ABE algorithm. The symmetric encryption algorithm
with high efficiency is used to encrypt the files of large volume, and the CP-ABE algo-
rithm is used to encrypt the symmetric key of small volume. Compared with the sym-
metric encryption algorithm, the performance of CP-ABE algorithm is relatively lower.
However, the CP-ABE algorithm can bring the obvious advantage in key management,
using which we can easily implement the access control of encrypted data. Thus, we uti-
lize such double encryption method to achieve the secure, efficient and fine-grained data
access control in the cloud.

The user then transfers the two ciphertexts to cloud server (CS) and CS stores them for
sharing. When a data visitor wishes to obtain the data files, he should contact CA and
CA distributes corresponding private keys to him according to his attributes. Then, this
data visitor obtains the ciphertexts from CS. When his attributes match partial or entire
access control structure, he can decrypt the symmetric keys that associated with this
part. At last, the data visitor is able to get the corresponding files using the symmetric

Fig. 4  The system framework of AHAC

Page 8 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

keys. It is clear from our framework that only one encryption and decryption operation
is needed to share multiple files securely, while traditional schemes have to do multiple
encryption and decryption operations.

Security assumptions

In this section, we will present security assumptions for several entities in the system.
We consider that CS is honest but curious in AHAC like the related work [35] do, that

is, CS will honestly perform the task of private key distribution yet it is also trying to
gain the contents of the data files and symmetric keys stored in it. Besides, CS is online
all the time to provide stable services.

CA is fully trusted and is online all the time. There is a security approach for CA to
transfer private key to users. Users can get the services of the system at any time.

For any number of unauthorized users, they may launch collusion attacks and try to
obtain the confidential data.

AHAC‑CP‑ABE

The AHAC-CP-ABE includes four functions: system initialization, private key produc-
tion, encryption and decryption. These functions make the following cases: when a data
visitor’s attributes match a part of the access control structure, he can decrypt the data
that associate with this part, and when the entire access structure is satisfied, all the data
can be decrypted. Here are the details of the algorithm:

(1)	System initialization

Function 1 takes an attribute set U of system and a parameter k specifying the system
security as input, and produces a system master key MK and a corresponding public key
PK.

(2)	Private key production

As shown in Function 2, it inputs PK, MK, and the attribute set S of a user, and pro-
duces a user private key SK that is related to S.

Page 9 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

(3)	 Encryption

As shown in Function 3, the encryption function inputs a plaintext set {mj , j ∈ (1, n)} ,
PK, and an LSSS matrix structure (M, ρ) , and returns a ciphertext CT. For an LSSS
matrix structure (M, ρ) , the dimension of M is l × n , Mi is the ith row of M, and ρ(i) can
convert Mi into the attribute represented by it.

(4)	 Decryption

As shown in Function 4, CT and SK are inputs, and outputs is plaintext set mj . MA is
a matrix composed of a set of row vectors in M that corresponds to the attribute set S
associated with SK. εj is a row vector with length n, in which the jth element is 1 and the
remaining elements are 0. I = {i : ρ(i) ∈ S}.

Page 10 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

The detailed operation process of AHAC

AHAC consists of six operations: System initialization, encryption of data files, encryp-
tion of symmetric keys, user authorization, decryption of symmetric keys and decryp-
tion of data files.

(1)	 System setup

CA designates an attribute set U and invokes Function 1 to produce a master key MK
and a public key PK, and MK is safely stored in CA.

(2)	 Encryption of data files

Data owner (DO) chooses n symmetric keys {ck1, . . . , ckn} to encrypt his data files
{f1, . . . , fn} by a symmetric encryption algorithm respectively. The data file ciphertext are
denoted as: EF = {Eck1(f1), . . . ,Eckn(fn)}.

(3)	 Encryption of symmetric keys

DO defines access trees {T1, . . . ,Tn} for his data files {f1, . . . , fn} respectively and inte-
grates them into a single access tree T. Then, he uses marking method to converted T to
LSSS matrix structure (M, ρ) . Next, he calls Function 3 to encrypt his symmetric keys
{ck1, · · · , ckn} and generates a symmetric key ciphertext CT. Finally, he sends CT and EF
to CS and CS stores them.

Page 11 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

(4)	 User authorization

For any data visitor, CA specifies a set S of attributes and calls Function 2 to output the
corresponding private key SK.

(5)	 Decryption of symmetric keys

When a user wants to obtain some files from CS, CS first checks whether his attrib-
utes match partial or entire access control structure of those data files. If not, CS refuses
the user’s request; otherwise, CS sends CT to the user. After obtaining CT, the user
calls Function 4 to get the symmetric keys. When his attributes satisfy a part of the
access tree, he can decrypt the symmetric keys that associated with this part, assuming
{ck1, . . . , ckn} . Only when his attributes match the entire access control structure, he can
obtain all the symmetric keys.

(6)	 Decryption of data files

In the last step, the user downloads {Eck1(f1), . . . ,Eckn(fn)} and uses {ck1, . . . , ckn} to
decrypt the data files {f1, . . . , fn} by the symmetric decryption algorithm.

To further improve the efficiency, we make the following transformation:

where {ck1, . . . , ckn} are n symmetric keys. After then, we call Function 3 to encrypt
{ck

′

1, . . . , ck
′

n} and generates a symmetric key ciphertext CT. When decrypting, we call
Function 4 to get the symmetric keys. In Function 4, once we successfully decrypt a ck ′

j ,
we can stop the decryption process immediately, since ck ′

j contains all the contents of the
rest symmetric keys.

Security analysis and performance evaluation
In this chapter, we give the analysis for the security and the evaluation results for the
performance.

Security analysis

We give the security features of AHAC based on the security assumptions presented in
chapter 4.2, containing data confidentiality, collusion defense and fine-grained access
control.

(1)	 Data confidentiality

AHAC-CP-ABE algorithm is designed on top of Waters’s algorithm [7]. The security of
his scheme is based on d-Parallel BDHE assumption.

ck
′

n = ckn,

ck
′

n−1 = ckn−1 ∪ ck
′

n,

ck
′

1 = ck1 ∪ ck
′

2

Page 12 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

d-Parallel BDHE assumption: Select a bilinear group G of prime order p with gen-
erator g, and select β , s, b1, . . . , bq ∈ Zp at random. Even if the adversary gets

it’s hard for him to get e(g , g)βq+1s ∈ GT .
There exists a main difference between AHAC-CP-ABE algorithm and his algo-

rithm. In AHAC-CP-ABE, we use all the elements in the secret vector �v to allow
multiple secrets to be carried in an access control policy, under which multiple
plaintexts are encrypted. That is to say, AHAC-CP-ABE exploits all the elements
in vector �v , using each of them to encrypt every plaintext respectively, as shown in
Function 3, whereas in Waters’s CP-ABE algorithm, just one element in the vector is
used for encrypting a plaintext [7] and for multiple plaintexts, their algorithm needs
to be executed multiple times. In [7], Waters’s CP-ABE algorithm has the selectively
security in d-Parallel BDHE assumption. Therefore, AHAC-CP-ABE has the same
security under the same assumption.

In AHAC, data files are encrypted using symmetric encryption keys, and these
keys are then encrypted using AHAC-CP-ABE. In this mechanism, just the cipher-
texts of the files and the ciphertexts of the keys are given to cloud servers. Since the
used symmetric encryption algorithm, such as AES, is secure, the security of this
mechanism merely relies on the security of AHAC-CP-ABE. In the above paragraph,
we have shown that AHAC-CP-ABE is secure under d-Parallel BDHE assumption.
Thus, the AHAC is secure under the same model.

(2)	 Collusion defense

Any number of unauthorized users may launch collusion attacks, trying to access
the confidential data files. In AHAC-CP-ABE, CA chooses an element t randomly
for each user and uses t to generate a private key for each of them. When a user
decrypts a ciphertext, he should compute e(g , g)αsj first, which requires the compo-
nents of his private key contain the same t. That is to say, different data visitors can’t
integrate their private keys to strengthen their decryption power, since they have
different values of t in private keys. Therefore, AHAC can resist collusion attacks
effectively.

(3)	 Fine-grained access control

In AHAC, the LSSS matrix access structure is transformed from an access tree
which supports “AND” “OR”, and “OF” threshold operations, and it can represent
any complex access control policy. Only data visitors who own the attributes match-
ing the access control structure can obtain the plaintext successfully. Thus, AHAC
realizes fine-grained access control.

�y =















g , gs, gβ , . . . , g (β
q)
, , g (β

q+2)
, . . . g (β

2q)

∀1≤j≤q gs·bj , gβ/bj , . . . g (β
q/bj), , g (β

q+2/bj), . . . g (β
2q/bj)

∀1≤j,k≤q,k �=jg
βsbk/bj , . . . , gβ

qsbk/bj















Page 13 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

Performance evaluation

We evaluate the performance of AHAC-CP-ABE from two aspects: its time costs, and
the storage costs of ciphertext and private key. Both are compared with those of tradi-
tional CP-ABE [6], LSSS-based CP-ABE (hereinafter referred to as LS-CP-ABE) [7], and
FH-CP-ABE [8].

We make the following access policy: assume that the plaintext M = (m1,m2, . . . ,mn) ,
for the traditional CP-ABE and LS-CP-ABE, n policies are needed respectively for
m1,m2, . . . ,mn as:

Policy(1): {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND · · ·AND atti+n−1}

Policy(2): {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND · · ·AND atti+n−2}

Policy(n−1): {(att1, att2, . . . , atti, j of i) AND atti+1}

Policy(n): {att1, att2, . . . , atti, j of i}

FH-CP-ABE and AHAC-CP-ABE only need one access policy with n access structure
level as:

Policy: {(att1, att2, . . . , atti, j of i) AND atti+1 AND atti+2 AND . . .AND atti+n−1}

In Table 1, we compare the performance of four CP-ABE algorithms by theoretical cal-
culation. µ represents the global attribute set, ω ∈ µ represents the attribute informa-
tion contained in the user’s private key, c represents the attribute contained in the access
structure, n represents the access structure hierarchy, the power operation on the group
G0 is E0, the power operation on the group GT is ET, and the multiplication calculation
on the group is M. P represents the pairing operation in group G0. The element size on
group G0 is represented as l0, and the element size on group GT is represented as lT.
Due to the trivial time consumption of hash operation, the time consumption of hash is
ignored. As shown in Table 1, AHAC-CP-ABE has high performance in all aspects.

We conduct detailed experiments to simulate the complete access control process, in
which all four algorithms are implemented based on JPBC [36]. In the experiments, a
super singular elliptic curve y2 = x3 + x is adopted of which the group order is 160 bits
on a 512-bit finite field. The experiments are performed on a computer with Pentium
G4560 3.50 Hz processor, and 8.00 GB RAM. We take the average of 10 experiments as
results to make them more accurate.

· · · · · ·

Table 1  Compare of the performance of four algorithms

Scheme CP-ABE [6] FH-CP-ABE [8] LS-CP-ABE [7] AHAC-CP-ABE

Setup time 2E0 + ET+P 2E0 + ET + P 2E0 + ET + P 2E0 + ET + P

Private key generation time (2+ 2ω)E0+

(ω + 1)M

(2+ 2ω)E0+

(ω + 1)M

(2+ ω)E0 +M (2+ ω)E0 +M

Encryption time (2c + 1)nE0+

nET + nM

(2c + n)·

(E0 + ET +M)

(3c + 1)nE0+

nET + (c + 1)nM

(3c + n)E0+

nET + (n+ c)M

Decryption time cnET + nM+

(2c + 1)nP

cET + nM+

(2c + 1)P

cnET + nM+

(2c + 1)nP

cET +M+

(2c + 1)P

Private key storage (2ω + 1)l0 (2ω + 1)l0 (2+ ω)l0 (2+ ω)l0

Ciphertext storage (2c + 1)nl0 + nlT (2c + n)l0+

(n+ c)lT

(2c + 1)nl0 + nlT (2c + n)l0 + nlT

Page 14 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

The private key generation time of four algorithms have been shown in Fig. 5. As
the attribute number increases, the private key production time costs and the private
key storage costs of AHAC-CP-ABE and LS-CP-ABE grow slower than those of the
other two algorithms. This will significantly reduce the pressure of CA.

Figure 6 shows the encryption and decryption time costs with two fixed access
structure levels as attributes increase. We can see that the time costs by encryption
and decryption of AHAC-CP-ABE and FH-CP-ABE are always less than those of the
other two algorithms.

Figure 7 shows the encryption and decryption time costs with different access
structure level and fixed attribute number N = 30 respectively. It’s obvious that the
encryption and decryption time costs of FH-CP-ABE and AHAC-CP-ABE are con-
stants when the number of access structure levels increases, while in traditional CP-
ABE and LS-CP-ABE there are rapid linear growth in the time costs.

From Figs. 5, 6 and 7, we can conclude that the time consumptions by encryption
and decryption of AHAC-CP-ABE are still less than those of FH-CP-ABE. However,
in the cloud environment with big data, the gap of them will be widened. Moreover,
the private key production time consumption by private key production of AHAC-
CP-ABE is much less than that of FH-CP-ABE.

Figure 8 shows the storage cost of private key. As the attribute number increases,
the private key storage costs of AHAC-CP-ABE and LS-CP-ABE grow slower than
those of the other two algorithms.

Figure 9a shows the storage cost of ciphertext with two fixed access structure levels
as attributes increase. We can see that the ciphertext storage costs of FH-CP-ABE
and AHAC-CP-ABE are very close, while the costs of traditional CP-ABE and LS-CP-
ABE are about twice as those of them, since in this experiment, the access structure
level is set to two. Figure 9b shows the storage cost of ciphertext with different access
structure level and fixed attribute number N = 30 respectively. We can see that the
ciphertext storage costs of AHAC-CP-ABE and FH-CP-ABE increase slightly when

Fig. 5  Private key generation time

Page 15 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

the number of access structure level increases, and the ciphertext storage costs of tra-
ditional CP-ABE and LS-CP-ABE increase sharply.

From Figs. 8 and 9, we can conclude that the ciphertext storage consumption of
AHAC-CP-ABE is still less than that of FH-CP-ABE, and furthermore the private key
storage consumption of AHAC-CP-ABE is obviously less than that of FH-CP-ABE.

Conclusions
Most of existing data access control schemes of CP-ABE do not consider the hier-
archical access relationships of multiple shared data files, and just need data own-
ers to generate multiple ciphertexts to meet the hierarchical access requirement,
which would incur substantial computation overheads. To solve this problem, we first
give an efficient hierarchical CP-ABE algorithm based on LSSS and furthermore, we

Fig. 6  Encryption and decryption time when the attribute number increases

Page 16 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

construct AHAC, which uses an integrated access structure that makes users be able
to encrypt multiple data files with hierarchical access relationships at once. When a
data visitor’s attributes match a part of the access control structure, he can obtain
the data that associate with this part by just one decryption. In addition, AHAC is
secure, and has very low costs both in computation and storage aspects compared
with related works.

Fig. 7  Encryption and decryption time when the structure level increases

Page 17 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

In the future, we will work towards using blockchain technology to expand the single
authority to multiple authorities, improve the security and stability of the authority, and
support the accountability of authority.

Fig. 8  The storage cost of private key

Fig. 9  The storage cost of ciphertext

Page 18 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49

Abbreviations
CP-ABE: Ciphertext-policy attribute-based encryption; AHAC: Attribute-based hierarchical data access control scheme;
ABE: Attribute-based encryption; LSSS: Linear secret sharing scheme; PHR: Personal health record; FH-CP-ABE: File hierar‑
chy attribute-based encryption scheme; d-BDH: Decisional-Bilinear Diffie-Hellman; d-Parallel BDHE: Decisional q-parallel
Bilinear Diffie-Hellman Exponent; CA: Central Authority; CS: Cloud server; DO: Data owner.

Acknowledgements
Not applicable.

Author Contributions
Conceptualization HH and LZ; Implementation HH, LZ, and PL; Validation LD, LH, and XC; Writing and editing HH and LZ.
All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61602351, 61802286,
61502359, the Hubei Provincial Natural Science Foundation of China under Grant No. 2018CFB424.

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary informa‑
tion files]

Competing interests
The authors declare no competing interests.

Author details
1 School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China. 2 Hubei
Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, China.

Received: 2 October 2019 Accepted: 20 November 2020

References
	1.	 Rittinghouse JW, Ransome JF (2009) Cloud computing: implementation, management, and security. CRC press,

Boca Raton
	2.	 Kallahalla M, Riedel E, Swaminathan R, Wang Q, Fu K (2003) Scalable secure file sharing on untrusted storage. Paper

presented at the 2nd USENIX Conference on File and Storage Technologies, San Francisco, CA, 31–31 March 2003
	3.	 di Vimercati S D C, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) Over-encryption: management of access con‑

trol evolution on outsourced data. Paper presented at the 33rd International Conference on Very Large Data Bases,
Vienna, 23–27 September 2007

	4.	 Ateniese G, Fu K, Green M, Hohenberger S (2006) Improved proxy re-encryption schemes with applications to
secure distributed storage. ACM Trans Inf Syst Secur 9:1–30. https​://doi.org/10.1145/11273​45.11273​46

	5.	 Sahai A, Waters B (2005) Fuzzy identity-based encryption. Paper presented at the 24th annual international confer‑
ence on Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May 2005

	6.	 Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. Paper presented at the 2007
IEEE Symposium on Security and Privacy, Washington, USA, 20–26 May 2007

	7.	 Waters B (2011) Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realiza‑
tion. Paper presented at the 14th international conference on Practice and theory in public key cryptography
conference on Public key cryptography, Taormina, Italy, 6–9 March 2011

	8.	 Wang S, Zhou J et al (2016) An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE
Trans Inf Forensics Secur 11:1265–1277. https​://doi.org/10.1109/TIFS.2016.25239​41

	9.	 Cheung L, Newport C (2007) Provably secure ciphertext policy ABE. Paper presented at the 14th ACM Conference
on Computer and Communications Security, Alexandria, Virginia, 29 October–2 November 2007

	10.	 Goyal V, Jain A, Pandey O, Sahai A (2008) Bounded ciphertext policy attribute based encryption. Paper presented at
the 35th International Colloquium on Automata, Languages, and Programming, Reykjavik, Iceland, 7–11 July 2008

	11.	 He H, Zhang J et al (2017) A fine-grained and lightweight data access control scheme for WSN-integrated cloud
computing. Cluster Comput 20:1457–1472. https​://doi.org/10.1007/s1058​6-017-0863-y

	12.	 Li J, Zhang Y et al (2018) Secure attribute-based data sharing for resource-limited users in cloud computing. Com‑
put Secur 72:1–12. https​://doi.org/10.1016/j.cose.2017.08.007

	13.	 Li J, Yao W et al (2017) Flexible and fine-grained attribute-based data storage in cloud computing. IEEE Trans Serv
Comput 10:785–796. https​://doi.org/10.1109/TSC.2016.25209​32

	14.	 Zhang Y, Zheng D et al (2018) Security and privacy in smart health: efficient policy-hiding attribute-based access
control. IEEE Internet Things J 5:2130–2145. https​://doi.org/10.1109/JIOT.2018.28252​89

	15.	 Kumar Premkamal Praveen, Kumar Pasupuleti Syam et al (2018) A new verifiable outsourced ciphertext-policy
attribute based encryption for big data privacy and access control in cloud. J Ambient Intell Hum Comput
10:2693–2707. https​://doi.org/10.1007/s1265​2-018-0967-0

	16.	 Susilo W, Yang G, Guo F et al (2018) Constant-size ciphertexts in threshold attribute-based encryption without
dummy attributes. Inf Sci 429:349–360. https​://doi.org/10.1016/j.ins.2017.11.037

https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1109/TIFS.2016.2523941
https://doi.org/10.1007/s10586-017-0863-y
https://doi.org/10.1016/j.cose.2017.08.007
https://doi.org/10.1109/TSC.2016.2520932
https://doi.org/10.1109/JIOT.2018.2825289
https://doi.org/10.1007/s12652-018-0967-0
https://doi.org/10.1016/j.ins.2017.11.037

Page 19 of 19He et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:49 	

	17.	 Wei T, Geng Y et al (2017) Attribute-based access control with constant-size ciphertext in cloud computing. IEEE
Trans Cloud Comput 99:1–1. https​://doi.org/10.1109/TCC.2015.24402​47

	18.	 Qiao H, Ren J et al (2018) Compulsory traceable ciphertext-policy attribute-based encryption against privilege
abuse in fog computing. Future Gener Comput Syst 88:107–116. https​://doi.org/10.1016/j.futur​e.2018.05.032

	19.	 Yu G, Ma X et al (2017) Accountable CP-ABE with public verifiability: how to effectively protect the outsourced data
in cloud. Int J Found Comput Sci 28:705–723. https​://doi.org/10.1142/S0129​05411​74001​47

	20.	 Xue L, Yu Y et al (2018) Efficient attribute-based encryption with attribute revocation for assured data seletion. Inf
Sci 479:640–650. https​://doi.org/10.1016/j.ins.2018.02.015

	21.	 Li J, Yao W et al (2017) User collusion avoidance CP-ABE with efficient attribute revocation for cloud storage. IEEE
Syst J 99:1–11. https​://doi.org/10.1109/JSYST​.2017.26676​79

	22.	 Naruse T, Mohri M et al (2015) Provably secure attribute-based encryption with attribute revocation and grant
function using proxy re-encryption and attribute key for updating. Hum Centric Comput Inf Sci 5:8. https​://doi.
org/10.1186/s1367​3-015-0027-0

	23.	 Li R, Shen C, He H et al (2017) A lightweight secure data sharing scheme for mobile cloud computing. IEEE Trans
Cloud Comput 99:1–1. https​://doi.org/10.1109/TCC.2017.26496​85

	24.	 Khan F, Li H, Zhang L, et al (2017) An expressive hidden access policy CP-ABE. Paper presented at the 2017 IEEE
Second International Conference on Data Science in Cyberspace, Shenzhen, China, 26–29 June 2017

	25.	 He H, Li R, Dong X et al (2014) Secure, efficient and fine-grained data access control mechanism for P2P storage
cloud. IEEE Trans Cloud Comput 2:471–484. https​://doi.org/10.1109/tcc.2014.23787​88

	26.	 Chase M (2007) Multi-authority attribute based encryption. Paper presented at the 4th Theory of Cryptography
Conference Amsterdam, The Netherlands, 21–24 February 2007

	27.	 Bozovic V, Socek D, Steinwandt R et al (2012) Multi-authority attribute-based encryption with honest-but-curious
central authority. Int J Comput Math 89:268–283. https​://doi.org/10.1080/00207​160.2011.55564​2

	28.	 Wang Y, Li F, et al (2015) Achieving lightweight and secure access control in multi-authority cloud. Paper presented
at the Trustcom 2015, Helsinki, Finland, 20–22 Aug 2015

	29.	 Lin H, Cao Z, Liang X, Shao J (2008) Secure Threshold Multi Authority Attribute Based Encryption without a Central
Authority. Paper presented at the 9th International Conference on Cryptology in India, Kharagpur, India, 14–17
December 2008

	30.	 Chase M, Chow S S M (2009) Improving privacy and security in multi-authority attribute-based encryption. In
Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13
November 2009

	31.	 Jung T, Li X, Wan Z, et al (2013) Privacy preserving cloud data access with multi-authorities. Paper presented at the
INFOCOM 2013, Turin, Italy, 14–19 April 2013

	32.	 Liu X, Ma J, Xiong J et al (2014) Ciphertext-policy hierarchical attribute-based encryption for fine-grained access
control of encryption data. Int J Netw Secur 16:437–443. https​://doi.org/10.6633/IJNS.20141​1.16(6).05

	33.	 Beimel A (1996) Secure schemes for secret sharing and key distribution. Dissertation, Israel Institute of Technology
	34.	 Lewko A, Waters B (2011) Decentralizing attribute-based encryption. Paper presented at the 30th Annual Interna‑

tional Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011
	35.	 Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable, and fine-grained data access control in cloud

computing. In Proceedings of the 29th IEEE International Conference on Computer Communications, San Diego,
California, USA, 14–19 March 2010

	36.	 Caro AD, Iovino V (2011) jPBC: Java pairing based cryptography. In Proceedings of the 2011 IEEE Symposium on
Computers and Communications, Kerkyra, Greece, 28 June–01 July 2011

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCC.2015.2440247
https://doi.org/10.1016/j.future.2018.05.032
https://doi.org/10.1142/S0129054117400147
https://doi.org/10.1016/j.ins.2018.02.015
https://doi.org/10.1109/JSYST.2017.2667679
https://doi.org/10.1186/s13673-015-0027-0
https://doi.org/10.1186/s13673-015-0027-0
https://doi.org/10.1109/TCC.2017.2649685
https://doi.org/10.1109/tcc.2014.2378788
https://doi.org/10.1080/00207160.2011.555642
https://doi.org/10.6633/IJNS.201411.16(6).05

	An efficient attribute-based hierarchical data access control scheme in cloud computing
	Abstract
	Introduction
	Related work
	Preliminaries
	Hierarchical sccess control
	Linear secret sharing scheme
	Marking method to construct LSSS matrix
	An example of hierarchical access control using LSSS matrix

	AHAC: attribute-based hierarchy data access control scheme
	Scheme overview
	Security assumptions
	AHAC-CP-ABE
	The detailed operation process of AHAC

	Security analysis and performance evaluation
	Security analysis
	Performance evaluation

	Conclusions
	Acknowledgements
	References

