
RESEARCH Open Access

A novel fault tolerant service selection framework
for pervasive computing
Salaja Silas1*, Kirubakaran Ezra2 and Elijah Blessing Rajsingh1

* Correspondence:
blessingsalaja@gmail.com
1Karunya University, Coimbatore,
TamilNadu, India 641114
Full list of author information is
available at the end of the article

Abstract

Background: Service selection in pervasive computing is significant as it requires
identifying the best service provider based on users requirements. After identifying
the best service provider, when a service is being executed, service disruptions
happen due to various faults.

Methods: Though attempts are made to provide best services to the user, executing
the service without service disruptions becomes an important challenge in the
pervasive environment. In this paper, a novel Fault tolerant Service Selection
Framework (FTSSF) has been proposed.

Results: Adequate theoretical analysis was carried out and experimental results were
obtained for the proposed framework and have been compared with the existing
techniques.

Conclusion: The results prove that the proposed framework is efficient and fault
tolerant.

Keywords: Pervasive computing, Service selection, Multi criteria decision making pro-
blem, PROMETHEE, Monitoring, Fault handling, Fault tolerant

Introduction
Pervasive computing is an emerging area of research where the computing devices are

embedded in the environments. The devices that provide services are termed as service

providers. Service providers differ in terms of hardware components, operating systems

and capability [1]. The pervasive environment consists of a set of service providers and

a set of users. Each and every service provider provides a set of services. Pervasive

environments can have many service providers providing services with similar func-

tionality but possessing different criteria. The different criteria [2] that influence the

service selection in pervasive environments are availability [3], cost [4], reliability [5,6],

capability [3], mobility [7], responsiveness [8], trust [3,9] and locality [7]. Users, who

require a service, will be requested to provide their preferences for the criteria. The

Service Selection Framework [2,10-12] selects a service provider from a finite set of

service providers based on a finite set of user preferences and the service is executed

by the selected service provider. There is uncertainty in pervasive environments due to

mobility, volatile network topology and light weight terminals. Therefore the web ser-

vice selection models cannot be straight forwardly extended for pervasive computing.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

© 2012 Silas et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:blessingsalaja@gmail.com
http://creativecommons.org/licenses/by/2.0

During service execution, service disruptions can happen due to faults in the pervasive

environment. Shiva Chetan et al. [13] classified the faults that occur in the pervasive sys-

tem as service failures, device failures, network failures and application failures. These

faults greatly interrupt the service execution and will lead to a situation where service

providers are constrained to complete their service requests. During such cases, the Ser-

vice Selection framework have to invoke once again the service selection methodology

to identify the next best service provider and the new service execution has to be re-

started. In most cases, multiple services are offered by the service provider. Therefore,

during such faults, one or more services will be affected thereby giving rise to higher ser-

vice delay and service recovery overhead. Though attempts are made to provide best ser-

vices to the user, executing the service without service disruptions, with minimal service

delay and service recovery overhead is an important challenge in the pervasive

environment.

This has motivated the authors to investigate and propose a novel Fault tolerant Service

Selection Framework for pervasive computing. This novel framework has been presented

in this paper. The objective is to provide the best service anywhere, any time without any

service disruption and with minimal service delay, minimal service recovery overhead and

high success rate. The proposed framework has been designed to have mechanisms to

automatically complete the execution of the disrupted service during fault.

In this paper, adequate theoretical analysis was also carried out and experimental

results were obtained for the proposed framework and have been compared with the

existing techniques. The experimental results prove that the proposed framework is

efficient and fault tolerant. The success rate of the proposed framework is also high

with minimal service recovery overhead and minimal service delay. It was also

observed that the load on the service provider affects the service recovery overhead

and the mobility affects the fault tolerance behavior of the system.

First, the related work has been discussed. Second, the fault tolerant service selection

framework has been proposed. Third, the theoretical analysis on the proposed frame-

work has been discussed. Fourth, the experimental results have been discussed and

then concluded.

Related work
In recent years, researchers have focused on proposing fault tolerant mechanisms to

provide seamless services in web service, MANET and pervasive computing. Some of

the relevant fault tolerant schemes are discussed in this section.

San-Yih Hwang et al. [14] proposed to use finite state machine to model the per-

mitted invocation sequences of web service operations. The approach applied to real

industrial applications with a handful of atomic web services because it conformed to

industrial standards and allowed for quick WS selection at runtime in a dynamic envir-

onment. However, when the number of atomic web services became large, construc-

tion of a composition took too much time, which made the approach impractical.

Chia-Feng Lin et al. [15] proposed Relaxable QoS based Service Selection (RQSS)

that helped to composite web application development by discovering feasible web ser-

vices based on functionalities and QoS criteria of user requirements. The RQSS recom-

mended prospective service candidates to users by relaxing QoS constraints, if no

suitable or available web service could exactly fulfill user requirements. The RQSS

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 2 of 14

algorithm increased the system availability and reliability to a certain extent but failed

to address the performance of the algorithm during faults.

Chen-Liang Fang et al. [16] proposed a fault tolerant web service model called fault

tolerant SOAP or FT-SOAP through which web services could be built with higher

resilience to failure. The major contribution of FT-SOAP was to prove that web ser-

vices built on a SOAP framework enjoy higher flexibility compared to those built on

CORBA.

The web service selection models cannot be straight forwardly extended for pervasive

computing due to its volatile network topology.

Koushanfer et al. [17] proposed heterogeneous back-up scheme that addressed the

problem of embedded sensor network fault tolerance, where one type of resources was

substituted with another. The heterogeneous fault tolerance techniques for sensor net-

works included the ones where communication and sensing were mutually backing up

each other. The heterogeneous back up scheme provided a low cost, low overhead,

high resilient fault tolerant technique but it have not considered about the application

failure.

Weigang Wu et al. [18] proposed a permission-based message efficient mutual exclu-

sion (MUTEX) algorithm for mobile ad hoc networks (MANETs). The proposed algo-

rithm tolerated link or host failures, using timeout-based mechanisms and was able to

handle dozes and disconnections [18] of mobile hosts. Permission based MUTEX algo-

rithm was efficient, reliable and independent of any logical topology. The MUTEX

based algorithm fails when there is a communication fault.

Shameem et al. [19] proposed Self Healing for Autonomic Pervasive Computing

(SHAPC) that stored all the crucial information’s including log status of the faulty

device. The healing manager re-collected all the information for the device to restore

to its previous condition. Information distribution process distributed the essential

information among the other existing devices. This process assisted the faulty device to

securely maintain all the important information’s. Re-assignment process was responsi-

ble for finding an alternate device that was available and compatible with the faulty

device that was required for smooth functionality. The main drawback of SHAPC is

that the system requires user intervention whenever the selection of the service was

based on the user’s preferences. Shameem et al. [20] proposed a middleware service

for pervasive advertisements to improve mobile business. The authors considered ubi-

quitous access, privacy and security. The middleware did not consider communication

failures or network failures.

Peizhao hu et al. [21] proposed a model-based autonomic context management sys-

tem for pervasive computing that dynamically configured and reconfigured its context

information by gathering and preprocessing functionality, which provided fault tolerant

provisioning of context information. The approach used standard based descriptions of

context information sources that increased openness, interoperability and scalability of

context-aware systems. The model saved energy, communication and processing

resources, as sensors were attached to the context management system and activated

dynamically. Peizhao hu et al. [21] discussed the fault due to sensor failures but had

not considered other failures such as communication failures, service failures, applica-

tion failures and network failures.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 3 of 14

Amir Padovitz et al. [22] proposed an ECORA framework for context-oriented perva-

sive computing and reasoned about context under uncertainty. The framework fol-

lowed an agent-oriented hybrid approach, combining centralized reasoning services

with context-aware, reasoning capable mobile software agents. Amir Padovitz et al.

[22] stated that the following combination was important to develop an adaptive con-

text-aware pervasive computing system. They were (1) a unifying context model with

algorithms to reason about context under uncertainty, (2) event-based communication

as an awareness mechanism, and (3) the ability of components to move as an agility

mechanism. It did not consider the communication failure.

Themistoklis et al. [23] proposed a Starfish based self-healing framework for perva-

sive computing systems that followed the Self-Managed Cell architectural paradigm.

Starfish was an instantiation of an SMC for wireless sensor networks. It had an

embedded policy system that allowed reconfiguration on individual nodes, remote

access control to remote resources. It supported adaptation on nodes thereby allowing

deployment of new strategies at run-time. Starfish based self healing framework

enabled to recover only from sensor failures and did not consider other faults in perva-

sive computing.

Salaja et al. [2] proposed a Service Selection Framework adopting PROMETHEE

methodology (SSF-P) for pervasive environments. The service authority of SSF con-

sisted of Service Registration Unit, User Registration Unit, Service Selection Unit, Ser-

vice Delivery Unit, Feedback unit and Trust Management Unit. The service

registration overhead and the service selection time were very minimal, but the service

recovery overhead and the service delay were high. And the framework was also not

fault tolerant.

Therefore an attempt has been made to propose a Fault Tolerant Service Selection

Framework for pervasive environment that would be tolerant to all types of fault with

minimal service recovery overhead and service delay without compromising on service

registration overhead and success rate. In the next section, the proposed novel Fault

Tolerant Service Selection Framework has been discussed in detail.

A novel fault tolerant service selection (FTSS) framework
The Figure 1 shows the proposed fault tolerant service selection framework. The Fra-

mework consists of Service Registration Unit, User Registration Unit, Service Selection

Unit, Service Delivery Unit, Monitoring & Fault handling unit and Trust Management

Unit. Each Service provider furnishes the services it wishes to provide and registers it

with the service registration unit. The service provider database consists of details of

the service provider and the service database consists of details of different services

that the service authority can provide. The user registration unit facilitates willing

users who are interested in availing the services to register and also provides access

control mechanisms for successful interactions.

The service selection unit helps in identifying the required service provider based on

the users requirements. It selects the best service through PROMETHEE methodology

[2] and provides to the user. PROMETHEE Method [24-28] is an outranking method

used to solve multi-criteria problems, which are considered to be NP- complete [7].

PROMETHEE methodology has been implemented to select the best Service Provider

based on the users’ requirement [2]. This methodology provides the users to select the

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 4 of 14

criteria of their own interest based on their requirement and also to give preferences to

those criteria in terms of weights.

The method requires two inputs for processing. They are information from i) the

user and ii) the Service provider. The user provides their preference for all k criteria cr

as weights {wj,j = 1,2,...k} that are normalized to 1. The normalized user preferences

are called as weighted user preferences. The service providers provide the information

of all their services. The service providers that offer relevant services are grouped to

form nfs feasible service providers.

The preference function is calculated for maximization criterion as well as the mini-

mization criterion. For maximization criterion, the preference function Pj (sx,sy) gives

the preference of service provider sx over service provider sy for the observed devia-

tions as defined below.

Pj(sx, sy) = Fj[dj(sx, sy)]∀sx, sy ∈ S (1)

where dj(sx,sy) = crj(sx)-crj(sy) for which 0 ≤ Pj(sx,sy) ≤ 1 where S is a set of service

providers offering a particular service. For minimization criterion, the preference func-

tion is calculated by the following Pj (sx,sy) is defined as

Pj(sx, sy) = Fj[−dj(sx, sy)]∀sx, sy ∈ S (2)

The Qualitative Preference function is defined as

P(d) =

{
0, d ≤ 0

1, d > 0
(3)

The pair wise comparisons of various criteria are performed from the feasible set of

service providers and the aggregated preference indices are defined. Let sx,sy Î S,

where S is a set of service providers offering a particular service, then the Aggregated

Figure 1 Proposed Fault Tolerant Service Selection Framework.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 5 of 14

Preference Indices which is the weighted summation of all the service provider is given

by ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π(sx, sy) =
k∑
j=1

Pj(sx, sy)wj

π(sy, sx) =
k∑
j=1

Pj(sy, sx)wj

(4)

π (sx,sy) expresses the degree in which the service provider sx preferred over the ser-

vice provider sy over all the criteria and π (sy,sx) expresses the degree in which the ser-

vice provider sy is preferred over service provider sx. The net outranking flow for each

service provider sa is the net difference between the positive and negative outranking

flows and is obtained using

φ(sa) =
1

nfs − 1

(∑
x∈s

π(sa, sx) −
∑
x∈s

π(sx, sa)

)
(5)

where nfs is the number of feasible service providers. The service selection unit

selects the service provider with the highest net outranking flow as the best service

provider.

The accounting unit computes the total cost of the service and the service delivery

unit delivers the services to the user. The Feedback unit collects the user’s satisfaction

for the delivered service and provides it to the trust management unit. The feedback

unit also calculates the service delay and provides the service satisfaction to the trust

management unit. The trust management unit facilitates computation of trust value for

every registered service provider and is stored in the service trust matrix.

Monitoring & Fault handling unit is the heart of the framework that provides fault

tolerance behavior. It monitors the services of the service provider and initiates correc-

tive measures whenever there is a fault thereby providing fault tolerance to the frame-

work. It keeps track of all the services that are allotted to the registered users’ and

monitors whether the execution of the allotted service has been completed successfully.

This is achieved by maintaining a log of all jobs (services under execution) consisting

of Job ID, service ID, user ID, Service Provider ID, Job status, report and the next

three ranked service provider ID. For effective monitoring, each service execution pro-

cess of the service provider is virtually divided into phases. The end of every phase of

the execution phase is indicated by check points. The Monitoring & Fault handling

unit monitors the service execution at every check point and takes a report of success-

ful completion of every phase.

When a fault occurs, the Monitoring & Fault handling unit waits for ‘t’ time to

examine whether it is a transient fault. If the services are not restored within ‘t’ time,

the Monitoring & Fault handling unit automatically hands over the report taken at the

check point to the next ranked service provider to complete the task and the service

execution is continued without any further delay. To avoid additional storage over-

heads at Monitoring & Fault handling unit, the report taken at checkpoint is overwrit-

ten during the next checkpoint.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 6 of 14

Monitoring and Fault Handling Algorithm

Step 1: Set Alloted_service_log parameters (J_ID, S_ID, U_ID, SP_ID, Status, Ranked_-

Service_Providers) in the Monitoring and Fault handling unit.

Step 2: For each service provider do

{ If (beacon signal == True)

{ For every job do

{Collect Job Status and Report at every check point

Verify and Update the Alloted_service_log

If (Job Status == Complete)

{Generate Job_Completion report (J_ID,S_ID,U_ID,SP_ID,

cost, delivery time, output, status)

Send Job_Completion report to the service delivery unit

}

}

}Else{ Wait for ‘t’ time

If (beacon signal == false)

{ For every Job do

{Update trust value

Retrieve last check point report

Select the next ranked service provider

Send handover request to the service provider through the service selection

unit.

Update Allotted_Service_Log.

}

}

}

}

Theoretical analysis
In this section, the theoretical analysis has been carried out to determine the service

recovery overhead, the maximum number of jobs that can be completed by np service

providers and the success rate for the proposed framework with and without fault. If

nfs be the feasible set of service providers, k be the number of criteria, y be the number

of faulty jobs and nf be the number of faulty service providers, then the Service recov-

ery Overhead Ocr for SSF-P [2] is found to be

Ocr = nf ynfs(k(nfs − 1) + 5) (6)

And the Service Recovery Overhead Ocr for FTSSF is found to be

Ocr = nf y (7)

If T is the total available time, t is the execution time of each job and N is the total

number of jobs submitted for execution, then

Case (i): When there are NO Faults

When there are no faults, the number of jobs Nc that can be completed by ONE ser-

vice provider is found to be

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 7 of 14

Nc =
(
T
t

)
(8)

However, if there are np service providers, then the number of jobs Nc that can be

completed is found to be

Nc =
np∑
j=1

(
Tj
tj

)
(9)

Then, for FTSSF, the success rate (SR) for np service providers is found to be

Nc =
np∑
j=1

(
Tj
tj

)
(10)

Case (ii): When there are Faults

When there are faults, the number of jobs Nc that can be completed by ONE service

provider is found to be

Nc =
(

T
t + tr

)
(11)

where tr is the recovery time of a faulty job.

However, if there are np service providers, then the number of jobs Nc completed by

np service providers with nf faulty service providers is found to be

Nc =
nf∑
j=1

(
Tj

tj + trj

)
+
np−nf∑
j=1

(
Tj
tj

)
(12)

Then for FTSSF, the Success rate (SR) for np service providers with nf faulty service

providers is found to be

SR =
nf∑
j=1

(
Tj

Nj(tj + trj)

)
+

np−nf∑
j=1

(
Tj
Njtj

)
(13)

Simulation results
The proposed fault tolerant service selection framework was implemented and the

simulation results were obtained for the proposed framework FTSSF, SSF-P [2] and

SHAPC [19]. The objective in comparing the proposed approach with SHAPC [19] is

that SHAPC provided an excellent self healing methodology for pervasive computing

and it outperformed all the other related frameworks. The FTSSF and SSF_P is com-

pared to show the improvement in performance in terms of service delay and service

recovery overhead without compromising on success rate and service registration over-

head. The proposed framework was simulated using Microsoft Visual studio 2008 c#

in .NET framework 3.5. Microsoft SQL server was used as a backend to store the

information about the service providers. The values of the parameters that are used in

the simulation are given in Table 1.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 8 of 14

Analysis on successful job completion

A pervasive environment was generated. The service providers were permitted to regis-

ter initially for providing services to the users. The users who are interested in availing

the services were also permitted to register. The mobility was set as 20 m/s. The total

number of jobs completed at a service provider with Zero fault for SSF-P, FTSSF for

different simulation time was obtained and is shown in Figure 2. Faults were induced

in the pervasive environment and the number of successful job completion in a parti-

cular service provider for FTSSF, SSF-P and SHAPC was obtained and is shown in

Figure 2.

It is observed that the proposed framework improves the number of successful job

completion. This is due to the fact that the proposed framework restores the service

execution quickly thereby enabling more number of jobs to be completed successfully.

Performance analysis in terms of success rate

The number of Service providers was set as 10. Each service provider was permitted to

offer services. The maximum load on the service provider was set as 20%. The mobility

was set as 20 m/s. Faults were induced in the environment such that 10% of the ser-

vice provider is at fault. The success rate for SSF-P (Zero Fault), FTSSF, SSF-P and

SHAPC was obtained and is shown in Figure 3.

The results show that at a particular time t, the success rate of proposed framework

is high. This is primarily because of the effective monitoring and fault handling of the

proposed framework.

Effect of mobility on success rate

The number of Service providers was set as 10. Each service provider was permitted to

offer services. The maximum load on the service provider was set as 20% and the ser-

vice providers were set to move randomly. The mobility of the service provider was

varied as 20 m/s, 40 m/s, 60 m/s, 80 m/s and the effect of mobility on the Success rate

of the proposed framework was studied and is shown in Figure 4

It is found that the mobility of the service provider affects the success rate.

Performance analysis in terms of service recovery overhead

The mobility was set as 20 m/s. The number of Service providers was set as 10. Each

service provider was permitted to offer services. The maximum load on the service

Table 1 Simulation Parameters

Sl. No. Simulation parameters Values

1 Number of Clusters 5 to 50

2 Mobility 0 to 100 m/s

3 Mobility model Random way point model

4 Number of service providers per cluster 2 to 20

5 Number of services in a service provider 2 to 25

6 Simulation Time 0 - 1000 sec

7 Number of Users 1 to 1000

8 Number of criteria 2 to 10

9 Percentage of faulty Service Provider 1% to 50%

10 Service Provider Load 1% (min) to 50% (max)

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 9 of 14

provider was set as 20%. Faults were induced in the environment such that 10% of the

service provider is at fault. The Service recovery overhead for the proposed framework,

SSF-P and SHAPC was obtained and the results are shown in Figure 5.

It was found that the service recovery overhead for the proposed framework is very

minimal and the proposed framework provides significant improvement in the service

recovery overhead.

Effect of service recovery overhead for different load

The number of Service providers was set as 10. Each service provider was permitted to

offer services. The maximum load on the service provider was set as 20%. Mobility was

set as 20 m/s. The load has been varied. Faults were induced in the environment. For

0

20

40

60

80

100

120

0 200 400 600 800 1000

A
ve

ra
ge

nu
m
be

ro
fj
ob

s
Co

m
pl
et
ed

Time (ms)

SSF_P, proposed
framework (with zero
fault)

proposed framework

SHAPC

SSF_P

Figure 2 Average Number of Jobs Completed.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Su
cc
es
s
Ra

te

Time (ms)

SSF_P, proposed
framework (with zero
fault)

proposed framework

SSP_F

SHAPC

Figure 3 Success Rate.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 10 of 14

different percentage of faulty service providers, the effect of service recovery overhead

for different loads on the service provider for the proposed framework was obtained

and is shown in Figure 6.

It was observed that as the load on the service provider is increased the service

recovery overhead also increases.

Analysis on service delay

The mobility was set as 20 m/s. The number of Service providers was set as 10. Each

service provider was permitted to offer services. The maximum load on the service

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Su
cc
es
s
Ra

te

Time (μs)

20 m/sec

40 m/sec

60 m/sec

80 m/sec

100 m/sec

Figure 4 Effect of mobility on the success rate.

0

200

400

600

800

1000

1200

0 10 20 30 40 50

Se
rv
ic
e
re
co

ve
ry

ov
er
he

ad

% of Faulty Service Providers

SSF_P

proposed framework

SHAPC

Figure 5 Service Recovery Overhead.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 11 of 14

provider was set as 20%. Faults were induced in the environment such that 10% of the

service provider is at fault. The average service delay for the proposed framework, SSF-

P and SHAPC was obtained and the results are shown in Figure 7.

It has been observed from Figure 7, the service delay is much lower for the proposed

framework. In addition, the service delay increases exponentially for every increase in

percentage of faulty service providers.

Conclusion
In this paper, a novel Fault Tolerant Service Selection Framework (FTSSF) for Perva-

sive Computing was proposed. The proposed framework was simulated and the experi-

mental results on the number of successful jobs completed, success rate, service

0

5

10

15

20

25

30

0 10 20 30 40 50

Se
rv
ic
e
re
co

ve
ry

ov
er
he

ad

% of Faulty Service Providers

20%

40%

60%

80%

100%

Figure 6 Effect of load on Service Recovery overhead.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50

Se
rv
ic
e
D
el
ay

(m
s)

% of faulty service providers

SSF_P

proposed framework

SHAPC

Figure 7 Service Delay.

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 12 of 14

recovery overhead, service delay was obtained for the proposed framework, SSF-P [2]

and SHAPC [19]. The experimental results prove that the proposed framework is effi-

cient and fault tolerant. It was also observed that the mobility affects the fault toler-

ance behavior of the system.

Acknowledgements
The authors wish to thank Karunya University for providing infrastructure for carrying out the simulation and financial
support. The authors thank the senior professors and the technical experts for providing valuable suggestions to
improve the quality of the research paper.

Author details
1Karunya University, Coimbatore, TamilNadu, India 641114 2BHEL, Trichy, India

Authors’ contributions
SS analyzed the requirement of fault tolerant behavior, designed the framework, conducted the experiment and
drafted the manuscript. KE supported in carrying out the experiment and drafted parts of the manuscript and revised
it. EBR contributed on the design of the framework and revised the manuscript content to high professional
standards. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 29 November 2011 Accepted: 11 March 2012 Published: 11 March 2012

References
1. Kim MJ, Kumar M, Shirazi BA (2006) Service discovery using volunteer nodes in heterogeneous pervasive computing

environments. Pervasive and Mobile Computing 2(3):313–343. doi:10.1016/j.pmcj.2006.04.002.
2. Silas S, Rajsingh EB, Ezra K (2011) Scalable and reliable methodology for service selection in pervasive computing. Proc

2011 3 rd Int Conf Electron Comput Technol 1:188–191
3. Ahamed SI, Sharmin M (2008) A trust-based secure service discovery (TSSD) model for pervasive computing. Comput

Commun 31(18):4281–4293. doi:10.1016/j.comcom.2008.07.014.
4. Mokhtar SB, Preuveneers D, Georgantas N, Issarny V, Berbers Y (2008) EASY: Efficient semAntic Service discoverY in

pervasive computing environments with QoS and context support. J Syst Softw 81(5):785–808. doi:10.1016/j.
jss.2007.07.030.

5. Chakraborty D, Joshi A (2003) Anamika: distributed service composition architecture for pervasive environments. ACM
SIGMOBILE Mobile Comput Comm 7(1):38–40. doi:10.1145/881978.881989.

6. Sailhan F, Issarny V (2005) Scalable service discovery for MANET. PERCOM ‘05 Proc Third IEEE Int Conf Pervasive Comput
Commun 235–244. doi:10.1109/PERCOM.2005.36

7. Kalasapur S, Kumar M, Shirazi BA (2007) Dynamic service composition in pervasive computing. IEEE Trans Parallel Distr
Syst 18(7):907–918

8. Dabrowski C, Mills K, Quirolgico S (2007) Understanding failure response in service discovery systems. J Syst Softw
81:785–808

9. Wang Y, Vassileva J (2007) Toward trust and reputation based web service selection: a survey. Proc Int Trans Syst Sci
Appl ITSSA J 3(2):118–132

10. Sharmin M, Ahmed S, Ahamed SI (2005) SAFE-RD (Secure, Adaptive, Fault Tolerant, and Efficient Resource Discovery) in
Pervasive Computing Environments. Int Conf Inf Technol, Coding Comput 2:271–276

11. Cai H, Xiaohui Hu, Qingchong Lu, Cao Q (2009) A novel intelligent service selection algorithm and application for
ubiquitous web services environment. Expert Syst Appl 36(2):2200–2212. doi:10.1016/j.eswa.2007.12.071.

12. Wang H-C, Lee C-S, Ho T-H (2007) Combining subjective and objective QoS factors for personalized web service
selection. Expert Syst Appl 32(2):571–584. doi:10.1016/j.eswa.2006.01.034.

13. Chetan S, Ranganathan A, Campbell R (2005) Towards fault tolerant pervasive computing. IEEE Tech Soc Mag
24(1):38–44. doi:10.1109/MTAS.2005.1407746.

14. Hwang S-Y, Ee-Peng Lim, Lee C-H, Chen C-H (2008) Dynamic web service selection for reliable web service
composition. IEEE Trans Serv Comput 1(2):104–116

15. Lin Chia-Feng, Sheu Ruey-Kai, Chang Yue-Shan, Yuan Shyan-Ming (2011) A relaxable service selection algorithm for
QoS-based web service composition. Inf Softw Technol 53(12):1370–1381. doi:10.1016/j.infsof.2011.06.010.

16. Fang C-L, Liang D, Lin F, Lin C-C (2007) Fault tolerant web services. J Syst Archit 53(1):21–38. doi:10.1016/j.
sysarc.2006.06.001.

17. Koushanfar F, Potkonjak M, Sangiovanni-Vincentell A (2002) Fault Tolerance Techniques for Wireless Ad Hoc Sensor
Networks. Sensors’ 2002: Proc IEEE 2:1491–1496

18. Wu W, Cao J, Yanga J (2008) A fault tolerant mutual exclusion algorithm for mobile ad hoc networks. Pervasive and
Mobile Computing 4:139–160. doi:10.1016/j.pmcj.2007.08.001.

19. Ahmed S, Ahamed SI, Sharmin M, Hasan CS (2009) Self-healing for autonomic pervasive computing. Autonomic
Communication, Springer US 285–307. doi: 10.1007/978-0-387-09753-4

20. Ahmed S, Sharmin M, Ahamed SI (2005) PerAd-service: A middleware service for pervasive advertisement in m-business.
COMPSAC: 29th Annu Int Comput Softw Appl Conf 2:17–18

21. Hu P, Indulska J, Robinson R (2008) An Autonomic Context Management System for Pervasive Computing. Sixth Annu
IEEE Int Conf Pervasive Comput Commun 2008:213–223

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/21243107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22419968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22419968?dopt=Abstract

22. Padovitz A, Loke SW, Zaslavsky A (2008) The ECORA framework: A hybrid architecture for context-oriented pervasive
computing. Pervasive and Mobile Computing 4:182–215. doi:10.1016/j.pmcj.2007.10.002.

23. Bourdenas T, Sloman M, Lupu EC (2010) Self-healing for pervasive computing systems. Architecting dependable
systems VII. Springer-Verlag Berlin, Heidelberg pp 1–25

24. Gao Z-P, Chen J, Qiu X-S, Meng L-M (2009) QoE/QoS driven simulated annealing-based genetic algorithm for Web
services selection. J China Universities of Posts Telecomm 16(1):102–107

25. Ozerol G, Karasakal E (2008) A parallel between regret theory and outranking methods for multicriteria decision making
under imprecise information. Theor Decis 65(1):45–70. doi:10.1007/s11238-007-9074-y.

26. Wei-xiang L, Bang-yi L (2010) An extension of the Promethee II method based on generalized fuzzy numbers. Expert
Syst Appl 37(7):5314–5319. doi:10.1016/j.eswa.2010.01.004.

27. Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) Decision Support PROMETHEE: a comprehensive literature
review on methodologies and applications. Eur J Oper Res 200(1):198–215. doi:10.1016/j.ejor.2009.01.021.

28. Roux O, Duvivier D, Dhaevers V, Meskens N, Artiba A (2008) Multicriteria approach to rank scheduling strategies. Int J
Prod Econ 112(1):192–201. doi:10.1016/j.ijpe.2006.08.020.

doi:10.1186/2192-1962-2-5
Cite this article as: Silas et al.: A novel fault tolerant service selection framework for pervasive computing.
Human-centric Computing and Information Sciences 2012 2:5.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Silas et al. Human-centric Computing and Information Sciences 2012, 2:5
http://www.hcis-journal.com/content/2/1/5

Page 14 of 14

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Related work
	A novel fault tolerant service selection (FTSS) framework
	Monitoring and Fault Handling Algorithm

	Theoretical analysis
	Case (i): When there are NO Faults
	Case (ii): When there are Faults

	Simulation results
	Analysis on successful job completion
	Performance analysis in terms of success rate
	Effect of mobility on success rate
	Performance analysis in terms of service recovery overhead
	Effect of service recovery overhead for different load
	Analysis on service delay

	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

