
Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1
http://www.hcis-journal.com/content/3/1/1

RESEARCH Open Access

Publishing and discovering
context-dependent services
Naseem Ibrahim1*, Mubarak Mohammad2 and Vangalur Alagar2

*Correspondence:
naseem.ibrahim@asurams.edu
1Department of Mathematics and
Computer Science, Albany State
University, Georgia, USA
Full list of author information is
available at the end of the article

Abstract

In service oriented computing, service providers and service requesters are main
interacting entities. A service provider publishes the services it wishes to make public
using service registries. A service requester initiates a discovery process to find the
service that meets its requirements using the service registries. Current approaches for
the publication and discovery do not realize the essential relationship between the
service contract and the conditions in which the service can guarantee its contract.
Moreover, they do not use any formal methods for specifying services, contracts, and
compositions. Without a formal basis it is not possible to justify through a rigorous
verification the correctness conditions for service compositions and the satisfaction of
contractual obligations in service provisions. In our recent works, we have identified the
role of contextual information, trustworthiness information and legal rules in service
provision. This paper focuses on the publication and discovery of trustworthy
context-dependent services as supported by the novel framework FrSeC. It introduces a
novel ranking algorithm that ranks trustworthy context-dependent services according
to the degree they match service requesters requirements. Finally, this paper
introduces a prototype implementation for the matching and ranking of services as
supported by FrSeC.

Keywords: Service publication, Service discovery, Service ranking, Context-awareness,
Trustworthy service provision

Introduction
In traditional Service-oriented Architecture (SOA) interactions, the three main interact-
ing elements are the service provider, the service requester and the service registry. The
service provider defines a service and publishes it through the service registry. The ser-
vice registry acts as a data center that holds the services published by the different service
providers. The service requester accesses the registry to get information about avail-
able services. It will then use this information to select a specific service that meets its
requirements and will interact with the service provider of the selected service.
Hence, the main activities in SOA are service publication, service discovery and ser-

vice provision. Service publication refers to the process of defining service contracts by
service providers and publishing them through available service registries. Service discov-
ery is the process of finding services that have been previously published and that meet
the requirements of a service requester [1]. Typically, service discovery includes service

© 2013 Ibrahim et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 2 of 22
http://www.hcis-journal.com/content/3/1/1

query, service matching, and service ranking. Service requesters define their require-
ments as service queries. Service matching refers to the process of matching the service
requester requirements, as defined in the service query, with the published services. Ser-
vice ranking is the process of ordering the matched services according to the degree
they meet the requester requirements. The ranking will enable the service requester
to select a specific or a most relevant service from the list of candidate services. Ser-
vice provision refers to the process of executing a selected service. The execution may
include some form of an interaction between the service requester and the service
provider.
In practice, before publishing services a service provider defines the contract that

can be guaranteed by a service. This contract includes the functionalities and quality of
services guarantees that the provider can make. But such guarantees are not absolute. A
service cannot guarantee its contract in all situations. It can only guarantee its contract
in a predefined set of conditions. These conditions are usually related to the context of
the service provider and requester. Context information has been defined as any infor-
mation used to characterize the situation of an entity, such as location, time and purpose
[2]. Legal rules also play a crucial role in constraining the publication and discovery of
services. For example, a wireless phone provider may include in the service contract a
guarantee of excellent quality, but this guarantee is not absolute. It may have a constrain-
ing condition stating that in order to ensure excellent quality, the consumer should be
located within 1000 meters from cell phone stations. This constraint is related to the con-
textual information of the service consumer. In addition, local legal rules may black-out
wireless service in secure-critical locations. Such legal rules should be an essential part of
every contract.
It is necessary to distinguish between legal rules and nonfunctional requirements. If

a nonfunctional property is “a soft” requirement it may be ignored. However ignoring a
legal rule is equivalent to a “legal violation”, which might land in legal disputes and even
lead to loss of entire business. In essence, not enforcing a legal rule prevents the execution
of a contract. Almost all current approaches use only functional and nonfunctional prop-
erties to enable the publication, discovery and provision of services. In [3], no distinction
is made between legal rules and nonfunctional properties. Failure to include contextual
information and legal rules will only mislead the consumer to believe in the advertised
excellent quality of wireless service, regardless of where the consumer is domiciled which
is not true.
To remedy the drawbacks of available service provision frameworks we have introduced

two main concepts [4-6]. The first is a formal service model, which is called Config-
uredService. In this model, service and contract are packaged together. The service part
includes functional and nonfunctional aspects of service, and the data parameters and
attributes that are essential to define the functional and nonfunctional aspects. The con-
tract part includes business rules, legal aspects, and context information. The second
concepts is the Formal Framework for Providing Context-dependent Services (FrSeC) in
which ConfiguredServices and their compositions are formally embedded. Service publi-
cation, service discovery, service selection and ranking, and service delivery are rigorously
defined. The significance here is the way context information is defined for each stage, and
is used in the interactions between the different components of the architecture elements
in order to sustain the trustworthiness properties at all stages.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 3 of 22
http://www.hcis-journal.com/content/3/1/1

Motivation and contribution

In FrSeC, we have introduced contextual information, trustworthiness properties and
legal rules as first class elements in both service publication and discovery. The intro-
duction of contextual information and legal rules in service contracts introduces many
challenges in service adaptation during service rediscovery process. The main goal of
this paper is to address these challenges, and offer novel approaches for service publica-
tion, discovery and ranking, taking into consideration contextual information and legal
rules.
This paper is structured as follows. First, we provide an overview of our formal frame-

work for providing context dependent services FrSeC [4-6]. FrSeC supports the provision
of services with context dependent services. Second, we focus on the publication and
discovery of context-dependent services. We provide a novel formal notation for service
publication. The three issues that we emphasize are context, legal rules, and adaptabil-
ity. In FrSeC, service providers publish only ConfiguredServices in the service registry. A
ConfiguredService is a structure that bundles together service functionality, service con-
tract, and provision context. Service requesters query the service registry to find available
ConfiguredServices. Often there is a semantic gap between the service query and the ser-
vices in the registry. To deal with this, we introduced in the third part of this paper three
novel query types for service discovery, and a ranking algorithm. Fourth, we discuses
adaptability in FrSeC. Fifth, we introduce a prototype implementation of the ranking and
matching supported by FrSeC. Finally, we briefly compare our work with the related work
and provide concluding remarks.

An overview of FrSeC
This section briefly introduce the formal framework for providing context-dependent ser-
vices FrSeC. The introduction of the main elements of FrSeC is essential to understand
the contribution of this paper, namely the publication, discovery and ranking of services
supported by FrSeC.
FrSeC was motivated by the need for a framework that supports the publication, dis-

covery and provision of services with context-dependent contracts. The main elements
of FrSeC are shown in Figure 1. A complete formal definition of FrSeC is presented in the
two recent papers [4,6]. Below is a brief summary of FrSeC elements.

Service Provider (SP)

It is the entity that provides an implementation of a service specification. The service
specification is published by the SP using SRe.

Service Registry (SRe)

It is a central repository for services, in which Service Providers publish their services and
PU discovers services. It includes semantic definitions for domain specific concepts.

Context Gathering Unit (CGU)

FrSeC contains at least three context gathering units. One unit collects contextual infor-
mation to assist SR in formulating their service queries. Another unit collects contextual
information relevant to SP. The third unit collects contextual information to assist EU and



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 4 of 22
http://www.hcis-journal.com/content/3/1/1

  Service 
Requester

  Service 
  ProviderExecution

  Engine

 Service 
 Registry*1

1 *

Query
Service
 lookup

LookupResult
P

u
b

lish

Plan(s)

Response

Response

Request

Planning
   Unit

P
lan

s

S
elected

 P
lan

     Plan
Selection
     Unit

 Context
Information

B
ro

w
se

B
ro

w
se

D
o

m
ain

 In
fo

Authentication
     Agency

TokenToken To
ken

Request Certificate

 C
o

n
te

xt
In

fo
rm

at
io

n

 Context
Gathering
    Unit 

 C
o

n
te

xt
In

fo
rm

at
io

n

E
xe

cu
ti

o
n

 C
o

n
te

xt

 Context
Gathering
    Unit 

 Context
Gathering
    Unit 

Plan

Figure 1 FrSeC Architecture. A presentation of the architectural components of the FrSeC architecture and
the interactions between those components.

PU in dynamic planning activities. A central context manager may be added to monitor
and trigger the adaptive context-aware behavior of the framework.

Service Requester (SR)

It is the entity requiring a certain functionality to be satisfied. It represents the client side
of the interaction. It can be an application or another service. SR defines its requirements
in a service query.

The Authentication Agency (AU)

It is the entity responsible for ensuring trustworthy access to SRe. It provides requesters
with certificates (tokens) that allow them to access SRe. The certificate type depends on
the legal and contextual information of the requester.

Planning Unit (PU)

It is responsible for managing the service discovery process by interacting with SR, SRe
and AU. It also defines service composition. The composition includes defining the plans
that can satisfy a query requirement. A plan defines the execution logic of a service or
multiple services that collectively achieve the functional, nonfunctional and trustworthi-
ness requirements of the requester. A complete formal composition theory is defined in
[5]. This theory considers the functional, nonfunctional, legal and contextual parts of the
service when defining the composition result.

Plan Selection Unit (PSU)

It is responsible for helping SR to select one or more plans from the set of plans received
from PU. For each plan received, it requests additional information, such as data parame-
ters, from SR and verifies that the information in the plan is complete with respect to the
request. If it finds the information incomplete the chosen plan is ignored, otherwise the
plan is selected for SR.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 5 of 22
http://www.hcis-journal.com/content/3/1/1

Execution Unit (EU)

It is responsible for managing the provision of services. It executes the selected plan. The
execution process will include communicating with the service providers involved in the
plan by sending service requests and obtaining service responses.

Service publication
Service providers publish service contracts through the Service Registry (introduced
above) in order to make them available for discovery. In current approaches (discussed in
the RelatedWork Section), the service contract includes only the functional and nonfunc-
tional requirements together with any semantic information the service provider wishes
to make public. But in FrSeC the service definition is much richer. It includes the ser-
vice contract together with the related contextual conditions. Hence, we introduced the
concept ConfiguredService, which is a structure in which service functionality, service
contract, and service provision context are bundled together. SP publishes the two main
elements, namely the contract and context, in the ConfiguredService.
The contract includes function, nonfunctional properties and legal issues. The context

part of the ConfiguredService includes the main parts context info and context rules. The
context info defines the contextual information of theConfiguredService. The context rules
define the contextual information related to SR that should be true for SP to guarantee its
ConfiguredService contract.

Example 1. Table 1 shows a ConfiguredService of a Car Repair Shop. The repair shop
charges 60$ per hour and requires a deposit of 300$ with the condition that the car owner
is a member of the Canadian Automotive Association (CAA).

In [5], we introduced the novel service model ConfiguredService. ConfiguredService is
formally defined using amodel-based approach. The formal model is built from set theory
and logic. Below is a formal presentation of ConfiguredService.

Constraints

A constraint is a logical expression, defined over data parameters and attributes in first
order predicate logic. If C denotes the set of all such logical expressions, X ∈ C is a
constraint. The following notation is used in our definition:

• T denotes the set of all data types, including abstract data types and Dt ∈ Tmeans Dt
is a datatype.

• v : Dt denotes that v is either constant or variable of type Dt.
• Xv is a constraint on v. If v is a constant then Xv is true.
• Vq denotes the set of values of data type q.
• x : � denotes a logical expression x ∈ C defined over the set of parameters �.

Parameters

A parameter is a 3-tuple, defining a data type, a variable of that type, and a constraint on
the values assumed by the variable. We denote the set of data parameters as � = {λ =
(Dt, v,Xv)|Dt ∈ T, v : Dt,Xv ∈ C}.



Ib
rahim

etal.H
um

an-centric
Com

puting
and

Inform
ation

Sciences
2013,3:1

Page
6
of22

http
://w

w
w
.hcis-journal.com

/content/3/1/1

Table 1 RepairShop ConfiguredService description

ConfiguredService Function NonFunctional Legal ContextRule ContextInfo

RepairShop Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price=60$/h deposit=300$
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

A description of the RepairShop ConfiguredService containing the contract and context information.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 7 of 22
http://www.hcis-journal.com/content/3/1/1

Attributes

An attribute has a name and type, and is used to define some semantic information
associated with the name. The set of attributes is α = {(Dt, vα)|Dt ∈ T, vα : Dt}.

Context

A context is formalized as a 2-tuple β = 〈r, c〉, where r ∈ C, built over the contextual
information c. Context information is formalized using the notation in [7]: Let τ : DIM
→ I, where DIM = {X1,X2, . . . ,Xn} is a finite set of dimensions and I = {a1, a2, . . . , an} is
a set of types. The function τ associates a dimension to a type. Let τ(Xi) = ai, ai ∈ I. We
write c as an aggregation of ordered pairs (Xj, vj), where Xj ∈ DIM, and vj ∈ τ(Xj).

Example 2. Using the context notation, the contextual information of ConfiguredSer-
vice RepairShop(rs) presented in Table 1, is written as βrs = 〈rrs, crs〉, where rrs =
{(membership == caa)} is the context rule and crs = {(Location,Montreal)} is the
contextual information of the service provider.

Contract

A contract is a 3-tuple σ = 〈f , κ , l〉, where the service function f, the set of nonfunctional
properties κ and the set l of legal issues that bind the service contract are defined below.

Example 3. Using this formalism the RepairShop contract presented in Table 1, is written
as σrs = 〈frs, κrs, lrs〉.

• Service function: A service function is a 4-tuple f = 〈g, i, pr, po〉, where g is the
function signature, i is the function result, pr is the precondition, and po is the
postcondition. A signature is a 3-tuple g = 〈n, d,u〉, where n is the function
identification name, d is the set of function parameters and u is the function address,
the physical address on a network that can be used to call a function. The result is
defined as i = 〈m, q〉, where m is the result identification name and q is the set of
parameters resulting from executing the ConfiguredService. The precondition pr and
the postcondition po are data constraints.

Example 4. The RepairShop contract functionality presented in Table 1, is formally
written as frs = 〈grs, irs, prrs, pors〉, where

– grs = 〈nrs, drs,urs〉, where nrs = (ReserveRS), drs =
{(CarBroken, bool), (deposit, double), (CarType, string), (failureType, string)},
and urs = (XXX).

– irs = 〈mrs, qrs〉, wheremrs = (ResultRS) and
qrs = {(HasAppointment, bool), (numberOfHours, int)}.

– prrs = {(CarBroken == true)} and pors = {(HasAppointment == true)}.

• Nonfunctional property: Defined as a 6-tuple κ = 〈ρ, ε,ψ , η, p, tr〉. The safety
guarantee ρ includes time guarantee ρt and data guarantee ρd . The time guarantee is
defined as the time the service takes to provide its function. The data guarantee refers
to the accuracy of data. The security guarantee ε defines the set of security protocols
that the Service Provider has followed to guarantee confidentiality and integrity
constraints. The reliability guarantee ψ refers to the guaranteed maximum time



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 8 of 22
http://www.hcis-journal.com/content/3/1/1

between failures. The availability guarantee η refers to the guaranteed maximum
time for repairs. The price is defined as a 3-tuple p = 〈a, cu,un〉, where a is the price
amount defined as a non negative double, cu is currency tied to a currency type
cType, and un is the pricing unit. Provider Trust is defined as a 3-tuple
tr = 〈ce, pg, re〉. Lowest price guarantee pg is represented by a Boolean flag that is
true when a ConfiguredService can guarantee its price to be lower than the price of
any other ConfiguredService providing the same functionality. Client
recommendations ce and recommendations from independent organizations re can
be defined as sets of ordered pairs representing the clients or organization and
associated recommendation.

Example 5. The nonfunctional property in the RepairShop contract presented in
Table 1, is formalized as κrs = 〈prs〉, prs = 〈ars, curs,unrs〉, where ars = (60) is the
cost, curs = (dollar) is the currency, and unrs = (hour) is the pricing unit.

• Legal issues: A legal issue is a rule, expressed as a logical expression in C. A rule may
imply another rule, however no two rules may conflict each other. We write
l = {y|y ∈ C} to represent the set of legal rules. The legal aspect of the RepairShop
contract presented in Table 1, is formally written as
lrs = {(deposit = 300), (CarType == toyota)}.

Putting the above definitions together we arrive at a formal definition for ConfiguredSer-
vice.

Definition 1. A ConfiguredService is a 4-tuple s = 〈�,α,β , σ 〉, where � is a set of
parameters, α is a set of attributes, β is a context, and σ is a contract.

Service discovery
To be able to select and invoke a service that meets its requirements, a service requester
should initiate a discovery process. The discovery process includes service query, ser-
vice matching, and service ranking. First, SR defines his requirements in the service
query. Second, the query is matched with available ConfiguredServices by PU. Third, PU
ranks available candidate ConfiguredServices. Fourth, SR with the help of PSU, selects
a ConfiguredService from the set of ranked ConfiguredServices. The novelty of the dis-
covery process supported by FrSeC is two-fold. First, the discovery process takes into
consideration legal requirements and context conditions together with functional and
nonfunctional requirements. Second, depending on the requirements of the service
requester, FrSeC supports the two types of queries traditional style and buffet style. The
rest of this section discusses service query and matching. Service ranking is discussed
separately in the next section.

Traditional style

In traditional style discovery, the requester has a clear idea about the requirements. But,
the semantic information necessary to define the query is missing. Hence, SR accesses
SRe to get the domain knowledge which will help in defining the query. The query process
can be defined in the following steps:

1. SR sends a request to the AU for a certificate to access SRe.
2. AU provides the certificate depending on the legal and contextual information of SR.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 9 of 22
http://www.hcis-journal.com/content/3/1/1

3. SR, with the help of the certificate, browses SRe to gain domain knowledge.
4. SRe provides SR with domain knowledge, such as available domains and their

associated functionalities.
5. SR uses this domain knowledge to construct the query and sends it to PU.
6. PU defines and sends service lookups to SRe.
7. The service lookup result is then used by PU to perform matching between the

query and available services.
8. PU defines the query result (plan) and sends it to SR with any feedback if necessary.

Traditional style discovery can be either exact-match discovery or weighted-match
discovery as discussed below.

Exact-match

In exact-match discovery, the requester requires an exact match to the requirements.
The candidate ConfiguredServices should be able to guarantee all the requirements. The
exact-match query, as shown in Figure 2, consists of the five main parts required function,
required nonfunctional properties, required legal issues, consumer contextual informa-
tion, and authentication certificate. The query also contains the set of parameters that
it can understand. This set is a subset of the parameters associated with the functional-
ity it chose when accessing SRe. The required nonfunctional properties are a subset of
the nonfunctional properties associated with the functionality defined in SRe. The three
following definitions formalize an exact-match query.

Definition 2. An exact-match query qe is defined as qe = 〈f̂ , κ̂ , ĉ, l̂,E, �̂〉, where f̂ is a query
required function, κ̂ is the nonfunctional requirement, l̂ is the legal rules requirements, ĉ is
the contextual information of the service consumer, E is the authentication certificate and
�̂ is the set of parameters SR can provide or understand. The formal definitions of context
information, legal rules and parameters are identical to the definitions in the previous
section.

Definition 3. The required function is defined as f̂ = 〈p̂r, p̂o, D̂, ŜF〉, where p̂r is the set
of preconditions of the required function, p̂o is the set of postconditions of the required

ServiceQuery

ContextInfo

Dimension

RequiredLegalissues RequiredNonFunctioalRequiredFunction

Functionality

Precondition

Postcondition

Parameter

Complex

Simple

ConfiguredService
          Trust

OtherNF

hasA

is-A

n1 n

n

1

n Zero or many

Concept

1 Exactly one

Domain

Price

ProviderTrust

n

1

1

n

n

Authentication
   Certificate

Value

Figure 2 Exact-match query. The content of a traditional style query of type exact-match.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 10 of 22
http://www.hcis-journal.com/content/3/1/1

function, D̂ = (x : x|string) is the associated domain as defined in SRe and ŜF = (x :
x|string) is the functionality as defined in SRe. The formal definition of precondition and
postcondition is identical to the one in the previous section.

Definition 4. The required nonfunctional property is defined as κ̂ = 〈ρ̂, ε̂, ψ̂ , η̂, p̂, t̂r〉,
where ρ̂ is the required safety guarantee, ε̂ is the required security guarantee, ψ̂ is the
required availability guarantee, η̂ is required the reliability guarantee, p̂ is the maximum
price required and t̂r is the required provider trust guarantee. The formal definition of each
of those nonfunctional properties is identical to the definition in the previous section.

Example 6. If a service requester is attempting an exact-match query for the repair
shop functionality defined in Table 1, the query could be defined as qe = 〈f̂ , κ̂ , ĉ, l̂,E, �̂〉
where:

• f̂ = 〈p̂r, p̂o, D̂, ŜF〉, where p̂r = {(CarBroken == true)},
p̂o = {(HasAppointment == true)}, D̂ = (CarDomain), and
ŜF = (RepairShopFunctionality).

• κ̂ = 〈p̂〉, where p̂ = 〈â, ĉu, ûn〉, â = (50), ĉu = (dollar) and ûn = (hour).
• l̂ = {(deposit = 500)}.
• ĉ = {(membership == caa)}.
• �̂ = {(CarBroken, bool), (deposit, double), (CarType, string), (failureType, string)}
After receiving the lookup result from SRe, PU will match available ConfiguredServices

with the service query. In exact-match the matching process will result in a ServiceType
which is a list of candidate ConfiguredServices. All ConfiguredServices in the ServiceType
provide the exact match to all the requirements defined in the service query. For each
ConfiguredService in the lookup result the matching will:

1. compare the query functionality with the ConfiguredService functionality,
2. compare the query nonfunctional requirements with the ConfiguredService

nonfunctional properties,
3. compare the query legal issues with the ConfiguredService legal rules, and
4. use the query contextual information to make sure the ConfiguredService context

rules are met.

Weighted-match

The formal definition of the weighted-match query is very close to the exact-match query.
The only difference is the inclusion of the weights. In weighted-match discovery, the
requester knows the requirements, however unsure about them. SR states the require-
ments in a query with the expectation that the best matched services, that might not
be exact matches, will be given. That is, the ConfiguredServices received by the service
requester do not have to match all the stated requirements. When stating the query the
requester assigns a weight, representing the priority, with every property requirement.
A higher weight indicates a higher priority. SR can also state exact property to indicate
that an exact match is necessary for this particular property. Stating the weight is valid
for the elements of the required function, nonfunctional requirements and the required
legal rules. With respect to contextual information, SR can state more than one possible
set of contextual information. As an example, the context information for service delivery



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 11 of 22
http://www.hcis-journal.com/content/3/1/1

can be either the service be delivered at home or at office. Each contextual information
will be assigned a weight to indicate the preference of the requester. In our further discus-
sion we assume that the assigned weights belong to the set {Low, BelowAverage, Average,
AboveAverage, High, Exact}, in which the values are listed in strictly decreasing order of
priority.

Definition 5. A weighted-match query is defined as qw = 〈f̂ , κ̂ , ĉ, l̂,E, �̂,�〉, where
f̂ , κ̂ , l̂, ĉ, E and �̂ are defined as in the traditional query, and � : (x ∈ {Low,
BelowAverage,Average,AboveAverage,High,Exact}) → (y ∈ {p̂r, p̂o, ρ̂, ε̂, ψ̂ , η̂, p̂, t̂r, l̂, ĉ} is
a function that assign weights to the elements of the weighted-match query.

Example 7. Adding weights to the query defined in Example 6 the weighted-match style
query will be defined as qw = 〈f̂ , κ̂ , ĉ, l̂,E, �̂,�〉 where f̂ , κ̂ , ĉ, l̂, E and �̂ are defined
as in Example 6, and � = {((CarBroken == true),Exact), ((HasAppointment = =
true),Exact), (p̂,High), ((deposit = 500),Average)}.
The matching process in weighted-match discovery considers all possible Configured-

Services even if some properties are not satisfied. All candidate ConfiguredServiceswill be
included in the matching result ServiceType, with the exception of the ConfiguredServices
that do not provide a match for a requirement with Exact weight.

Buffet style

The main difference between traditional style and buffet style is that in traditional style
the requester is more or less clear about the requirements in order to be able to define
the query in terms of these requirements, whereas in buffet style the requester is not at all
clear about the requirements. Hence, the SRe is browsed for available ConfiguredServices
and a query is defined only in terms of existing ConfiguredServices. The buffet style query
process can be defined in the following steps:

1. SR sends a request to the AU for a certificate to access SRe.
2. AU provides the certificate depending on the legal and contextual information of

SR.
3. SR, with the help of the certificate, browses SRe for available ConfiguredServices.
4. SRe provides SR with high level information about the set of available

ConfiguredServices.
5. SR defines the query in terms of specific ConfiguredServices and sends it to PU.
6. PU will access the SRe to get the complete information about the required

ConfiguredServices.
7. SRe will verify that SR has the required authentication to use the required

ConfiguredServices.
8. PU defines the query result (plan) to include the complete ConfiguredServices

information and sends it to SR with any feedback if necessary.

No matching process is necessary in buffet style, because the service requester is
querying only ConfiguredServices. As a consequence, the definition of buffet style query,
shown in Figure 3, consists of the three main parts required ConfiguredService, consumer



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 12 of 22
http://www.hcis-journal.com/content/3/1/1

ServiceQuery

ContextInfo

Dimension

RequiredConfiguredService Parameter

ComplexSimple

1 n

n

1

Authentication
   Certificate

Value

Figure 3 Buffet style query. The content of a buffet style query.

contextual information, and authentication certificate. The following two definitions
formalize a buffet style query.

Definition 6. A buffet style query is defined as qb = 〈ĉs, ĉ,E, �̂〉, where ĉs is the required
ConfiguredService defined as in Section 2, ĉ is the contextual information of the service
consumer defined as in Section 2, E is the authentication certificate and �̂ is the set of
parameters SR can provide or understand, all defined as in Section 2.

Example 8. If SR is attempting a buffet style query for the Configured-
Service RepairShop defined in Table 1, the query will be defined as qb =
〈ĉs, ĉ,E, �̂〉, where ĉs = srs. ĉ = {(membership == caa)}, and �̂ =
{(CarBroken, bool), (deposit, double), (CarType, string), (failureType, string)}.

Service ranking
In buffet-style the service requester queries for a concrete ConfiguredService, and hence
no ranking is necessary. Service ranking is necessary for weighted-match service queries,
for the following reasons. In exact matching, the only difference between the Configured-
Services in the ServiceType is the order they were discovered. A ConfiguredService A that
was discovered before ConfiguredService B will precede it in the ServiceType list. This is
because all services provide an exact match to the requirements, which is not the case in
weighted-match. For a weighted-match, the position of a service in a ServiceType should
indicate the degree to which the requester requirements are met. That is, in weighted-
match search a service that appears first in a ServiceType should have the best match with
the stated requirements than a service that appears later in the ServiceType list. These
considerations have motivated us to discover a ranking method.
In FrSeC, the ranking process is performed by PU. The process takes as inputs the

weighted-match query and the ServiceType, and generates as output an ordered Service-
Type. The ranking process can be defined in the following 3 steps.

Formweight vector

In formulating a weighted-match query the requester assigns a weight to each property
that is relevant for him. PU extracts these weights and constructs the weight vector, as in
Equation 1, where Qw is the weighted-match query weight vector and wi is the weight of



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 13 of 22
http://www.hcis-journal.com/content/3/1/1

property i as defined by the service requester. Property i can be a precondition, a postcon-
dition, a nonfunctional requirement or a legal requirement. The number of properties n
depends on the weighted-match query defined by the service requester.

Qw =[w1,w2,w3, ..,wn] (1)

We have mentioned earlier that the weight can be {Low, BelowAverage, Average, AboveAv-
erage, High, Exact}. ConfiguredServices that do not satisfy Exact values are filtered when
doing the weighted-match matching. So the possible weight values are {Low, BelowAver-
age, Average, AboveAverage, High}. We assume in further discussion that weight values are
whole numbers in the range 1 . . . 5, where 1 denotes Low and 5 denotes High.

Construct weightmatrix

By using the weight vectors constructed in Step 1, the weight matrix for the Config-
uredServices in the ServiceType is constructed. This is shown in Equation 2, where n is
the number of properties defined in Equation 1 and m is the number of ConfiguredSer-
vices in the ServiceType. Each column represents the weights of the properties in a single
ConfiguredService. Each row represents the weights of a single property in the different
ConfiguredServices.

CSw =

⎡
⎢⎢⎢⎣
w1,1 w2,1 .. wm,1
w1,2 w2,2 .. wm,2
.. .. .. ..

w1,n w2,n .. wm,n

⎤
⎥⎥⎥⎦ (2)

The value of the ConfiguredService property weight depends on the property type. If a
property j is a precondition, postcondition, legal rule (without values) or a security prop-
erty, a weight wi,j is equal to 1, if ConfiguredService i satisfies property j and is equal to 0
otherwise. If property j is price, legal rule (with values), availability or time-safety, wi,j is
calculated according to Equation 3, where z is the required property value as defined in the
weighted-match query and x is the actual property value specified in ConfiguredService.

wi,j =

⎧⎪⎪⎨
⎪⎪⎩
1 if x ≤ z
1 −

(
x−z
2z−z

)
= 2 − x

z if z < x < 2z
0 if x ≥ 2z

(3)

Equation 3 assumes that actual value that is more than double the required value will be
given a weight of 0. Anything that is less than the required value will be given 1. And
an actual value between the required value and double the required value will be given a
weight that depends on how close the actual value is to the required value. For example, if
the required price as defined in the service query is 50, an actual ConfiguredService price
of 55 should be given a better weight than a price of 80.
If property j is reliability, wi,j is calculated according to Equation 4, where z is the

required reliability value as defined in the weighted-match query and x is the Configured-
Service actual reliability value.

wi,j =

⎧⎪⎪⎨
⎪⎪⎩
1 if x ≥ z
1 −

(
z−x
z− z

2

)
= 2x

z − 1 if z
2 < x < z

0 if x ≤ z
2

(4)



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 14 of 22
http://www.hcis-journal.com/content/3/1/1

Equation 4 assumes that actual values that is less than half the required value will be
given a weight of 0. A value that is more than the required value will be given a weight
of 1. And an actual value between the required value and half the required value will be
given a weight that depends on how close the actual value is to the required value. The
main difference between reliability and other properties is that reliability values represent
a minimum while other properties represent a maximum.

Calculate weights for ranking

A single weight value for each ConfiguredService is computed, and the services are ranked
based on these weights. Equation 5 uses the results of steps one and two to calculate the
raking weight vector.

W = Qw × CSw (5)

The ranking weight vector W contains the weights of the different ConfiguredServices.
These weights are used to rank the ConfiguredServices. The ConfiguredService with the
highest weight value is placed first in the ServiceType. The ConfiguredService with the
second highest weight value is placed second in the ServiceType and so on for the rest of
the ConfiguredServices.

Example 9. Two ConfiguredServices RepairShopA and ReapirShopB provide the func-
tionality required in Example 7. They don’t provide an exact match to the nonfunc-
tional and legal requirements, but rather a partial match. The list of properties will
include: {RequiredPrecondition, RequiredPostcondition, RequiredPrice, RequiredDeposit}.
The RequiredPrecondition and the RequiredPostcondition will be filtered out because
they require an exact match. So we are left with RequiredPrice and RequiredDeposit.
Hence, the weighted-match query weight vector is Qw = [

High Average
]
. In numbers,

Qw = [
5 3

]
. ConfiguredService RepairShopA (rsA) has a cost of rsAc = 40$/hour

and requires a deposit of rsAd = 600$. ConfiguredService RepairShopB (rsB) has a cost
of rsBc = 70$/hour and requires a deposit of rsBd = 400$. Hence, the ConfiguredServices
weight matrix is defined, using Equations 2 and 3, as:

CSw =
[
wrsA,c wrsB,c
wrsA,d wrsB,d

]

where, wrsA,c = 1, wrsB,d = 1 and:

wrsA,d = 2 − 600
500

= 0.8

wrsB,c = 2 − 70
50

= 0.6

The ranking weight vector will then be defined using Equation 5 as:

W =
[
5 3

] [
1 0.6
0.8 1

]
=

[
7.4 6

]

Hence, ConfiguredService RepairShopA scores 7.4 and ranked first, while ConfiguredSer-
vice RepairShopB scores 6 and ranked second.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 15 of 22
http://www.hcis-journal.com/content/3/1/1

FrSeC adaptability
One of the main features of FrSeC is its ability to adapt to situations that trigger a need for
a rediscovery or re-ranking process. Below is a discussion of the most important triggers
and how they are handled in FrSeC.

Context change

The discovery process uses the contextual information of the service requester at service
discovery time. But during service execution, the contextual information of the service
requester might have changed. As a consequence, the contextual rules of the discovered
service(s) might be violated, other services may be more suitable. In order to deal with the
dynamic change in context we introduce an adaptable discovery mechanism. In FrSeC,
this mechanism includes the following steps:

1. CGU senses the new context information and informs SR.
2. SR generates a new query with the new context information.
3. The context change may result in a change to the security level. So SR contacts AU

with the new context information.
4. AU sends a new token to SR.
5. SR sends the new query to the PU which will initiate a new discovery process.
6. PU will send a new plan with the set of new ordered ConfiguredServices.
7. EU will migrate from the old ConfiguredService to the new ConfiguredService.

Failure in service availability

During service execution, the executing service might fail or become unavailable. For
example, the wireless router might fail. FrSeC is designed to adapt to service failures.
In our design, PU uses ServiceType, and not specific ConfiguredServices when defining
query result. The list ServiceType contains ordered ConfiguredServices that can meet the
requirements of a specific query. These ServiceTypes will be part of the plan sent to EU.
During run time, if a ConfiguredService fails or becomes unavailable, the EU will select
the next ConfiguredService in the ServiceType. The worst case is that an equivalence class
has only one ConfiguredService and it fails. The feedback loop in FrSeC will restart the
discovery process in this case.

New alternative services

Service executions may be performed over days, or even months. But service selection
and binding are usually performed only the first time the requester uses the service. This
might not be practical because new services might be available during this long execution
time. The new alternative services might be new services or old services with new modi-
fied contracts. A new contract might include a lower price or a better quality. For example,
a wireless provider with cheaper price and same quality guarantees might become avail-
able. In order to adapt to new alternative services during run time, SR registers with PU.
This registration will guarantee that PU will inform SR in case of a new ConfiguredSer-
vice that provides the requester the required functionality becomes available. Thus, SR
can initiate a new discovery process.

New contract rules

Contracts bound to ConfiguredServices may be either strict or flexible. In a strict con-
tract, the life-time of contract is made explicit. Providers and requesters are bound by this



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 16 of 22
http://www.hcis-journal.com/content/3/1/1

timeline. In a flexible contract, there is no life-time specification, which allows providers
to change the contract terms at any point of time. For example, the service provider might
increase the price of his wireless Internet connection. Providers might not be aware of
the identity of their clients. This design decision was made to enshrine privacy issues. In
FrSeC, providers inform EU of changes to service contract. At the time of service delivery,
EU informs SR of changes to the contract and delivers the service only upon receiving the
acceptance of new contract terms from SR. In order not to deny service, requesters are
allowed to initiate a rediscovery process in accordance with the new contract terms.

New requester requirements

Some service executions might be too long and during this service time the require-
ments of the requester might change. To deal with new requirements, the requester has
the choice of a rediscovery process or a re-ranking process. In the rediscovery process
the requester will define a new query and go through all steps of service discovery. In
a re-ranking process, the requester will ask PU to re-rank the ConfiguredServices in the
ServiceType taking into consideration the new assigned weights to the elements in the
modified query.

Evaluation and experiments
To evaluate the contributions presented in this paper, a Java based application has been
implemented to represent the Planning Unit. This application takes as input the set of
ConfiguredService that provide a specific functionality as returned from the Service Reg-
istry, and the service query. The application will then match between the service query
and the candidate ConfiguredServices taking into consideration the functional, nonfunc-
tional, legal, and contextual information. Two types of matching has been implemented 1)
exact match and 2) weighted-match. The ranking algorithm has also been implemented.
Figure 4 shows a snap shot of the Planning Unit application.

The application was tested on a standard PC using an Intel Centrino processor with
4GB of memory and runningWindows 7 Professional. The average matching and ranking
time was in in milliseconds for each ConfiguredService which eliminate the concerns of
scalability issues.
The tool was tested on multiple case studies including the Automotive Emergency Case

Study. Table 2 shows the set of ConfiguredServices that are matched and ranked according
to the service requester query presented in Table 3. The matching and ranking result of
these ConfiguredServices are:

• ConfiguredService RepairShop5 is matched by 100.0%
• ConfiguredService RepairShop4 is matched by 88.19%
• ConfiguredService RepairShop1 is matched by 83.33%
• ConfiguredService RepairShop2 is matched by 80.56%
• ConfiguredService RepairShop3 is matched by 78.12%

Related work
Related work can be divided into related publication approaches and related service
discovery approaches.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 17 of 22
http://www.hcis-journal.com/content/3/1/1

Figure 4 Planning unit tool. A snapshot of the planning unit tool.

The most notable publication approaches are UML-based such as [8,9], WSDL [10],
OWL-S [11], WSMO [12], SOADL [13], SRML [14], and (SOFM) [15]. These approaches
are compared and the result of comparison is presented in Table 4. It is clear that all
approaches support the modeling of the functional behavior. Nonfunctional and trust-
worthiness properties are only supported in a simple manner by few approaches. Con-
textual information is not represented by any approach, hence the relationship between
contract and context is totally ignored. A couple of approaches, which have ignored the
modeling of nonfunctional and trustworthiness properties, have used formal methods
and conducted formal verification. Except for UML and Web services languages most of
the approaches provide a minimum amount of tools to support the modeling using their
service models.
The most notable service discovery approaches are SeGSeC [16], eFlow [17], SELF-

SERV [18], SHOP2 [19], SWORD [20], Argos [21], FUSION [22], Proteus [23], SPACE
[24], StarWSCoP [25], METEOR-S [26], SeCSE [27], DynamiCoS [28] and TSCN [29].
These approaches have been compared with respect to the following criteria.



Ib
rahim

etal.H
um

an-centric
Com

puting
and

Inform
ation

Sciences
2013,3:1

Page
18

of22
http

://w
w
w
.hcis-journal.com

/content/3/1/1

Table 2Multiple RepairShop ConfiguredServices descriptions

ConfiguredService Function NonFunctional Legal ContextRule ContextInfo

RepairShop1 Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price = 60$/h Client
Rec.=5

deposit=300$
Warranty= 3
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

RepairShop2 Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price=50$/h
Client Rec.=4 Rec-
ommended by
CAA

deposit=400$
Warranty= 2
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

RepairShop3 Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price=40$/h
Client Rec.=3 Rec-
ommended by
CAA

deposit=500$
Warranty= 1
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

RepairShop4 Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price=70$/h
Client Rec.=5 Rec-
ommended by
CAA

deposit=300$
Warranty= 4
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

RepairShop5 Name:ReserveRS
Pre:CarBroken==T
Post:HasAppointment==T
Address: XXX

InputParameters:
CarBroken:bool
deposit:double
CarType:string
failureType:string

ResultName:ResultRS
OutputParameters:
HasAppointment:bool
numberOfHours:int

Price=40$/h
Client Rec.=5 Rec-
ommended by
CAA

deposit=250$
Warranty= 4
PriceCondition:
CarType=toyota

membership==CAA (location,montreal)

A descriptions of 5 ConfiguredServices providing the same RepairShop functionality.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 19 of 22
http://www.hcis-journal.com/content/3/1/1

Table 3 Service query description

Service
query

Function NonFunctional Legal ContextInfo

Repair
Shop
Query

RequiredPre:
CarBroken==T
Weight=6
RequiredPost:
HasAppointment==T
Weight =6

Parameters:
CarBroken:bool
deposit:double
CarType:string
failure
Type:string

Price = 45$/h
Weight = 3
Client Rec. = 4
Weight = 3
Recommended
by CAA
Weight = 3

deposit = 280$
Weight = 4
Warranty= 3
Weight = 5
PriceConditione:
CarType=toyota
Weight = 6

membership==CAA
(location,montreal)

A description of the service query content.

• Dynamic selection: The service provision framework should be designed to allow
service requesters specify the requirements with the full knowledge that some service
bindings may occur only at run time.

• Dynamic composition: With the increased number of services and the increased
composition complexity, it is difficult to have all service compositions predefined in a
static manner.

• Context support: Contextual information is essential at service publication, service
query, service selection and planting, and service execution.

• Semantic support: Semantic information is essential at service specification, service
query, and service composition.

• Formal: Formalism is necessary to 1) verify the interaction between services by
making sure there are no incompatible behaviors between services in a composition,
2) achieve correct automatic composition by verifying that the composition satisfies
the requirements of the requester, and 3) check the conformance of requester
requirements and the contracts of the services being provided.

• Negotiation support: Each service requester has his own set of requirements. In
many cases, none of the available services may fully match these requirements. The
service provision framework should provide a mechanism to support the negotiation
between service requesters and providers.

• Nonfunctional and trust: The consideration of nonfunctional and trustworthiness
properties in service publication, discovery and ranking is essential.

• Replanning support: At run time, the contextual information of the service consumer
and requester might change. The service provision framework should support a
replanning process to generate a new plan that best satisfies the requirements in the
new context.

• Fault-tolerance: If a service fails or becomes unavailable at run time, the service
provision framework should recover from this failure by selecting alternative services.

Table 4 Related service publication

Functional Nonfunctional Legal Context Formal Verification Tool

and trust rules support support

UML-based YES SOME SOME NO NO NO YES

SRML YES NO SOME NO YES YES YES

SOADL YES SOME NO NO YES YES YES

SOFM YES SOME NO NO YES YES NO

WSDL YES NO NO NO NO NO YES

OWL-S WSMO YES SOME NO NO NO NO YES

A list of related service publication approaches.



Ib
rahim

etal.H
um

an-centric
Com

puting
and

Inform
ation

Sciences
2013,3:1

Page
20

of22
http

://w
w
w
.hcis-journal.com

/content/3/1/1

Table 5 Related service discovery

Dynamic Dynamic Context Semantic Formal Negotiation Nonfunctional Replanning Fault-

selection composition support support support & trust support tolerance

SeGSeC YES YES YES YES NO NO NO YES YES

eflow YES No NO SOME NO NO NO NO YES

Self-serv YES NO NO NO NO NO NO NO NO

SHOP2 YES YES SOME YES NO NO NO NO NO

SWORD NO YES NO SOME NO NO NO NO NO

Argos NO YES YES YES NO NO NO NO -

Composer YES NO YES YES NO NO SOME NO -

FUSION YES YES NO NO NO NO NO YES -

Protus YES YES NO NO NO NO SOME YES YES

SPACE YES NO NO NO YES NO NO YES YES

StarWSCop YES YES NO YES NO NO YES NO YES

Meteor-s YES NO NO YES NO NO YES YES -

SeCSE YES NO NO NO NO NO YES YES YES

DynamiCos YES YES NO YES YES NO NO NO NO

TSCN YES NO NO NO YES NO NO NO NO

A list of related service discovery approaches.



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 21 of 22
http://www.hcis-journal.com/content/3/1/1

The result of this comparison is presented in Table 5 and it shows the following:

1. With the exception of SWORDandArgos, all approaches support dynamic selection.
2. Dynamic composition is considered by almost half of the approaches. In most of

these approaches AI planning techniques are used.
3. Contextual information is used by very few approaches. In these approaches,

context is used to filter the services, but not to constrain the service contract.
Hence, the relationship between the contract and context is not considered.

4. Semantic information using ontology is supported by almost half of the
approaches. The use of ontology restrains the semantic support due to the
complexity and difficulty of composing ontologies.

5. With the exception of three approaches, all remaining approaches are not formally
based. This will limit their verification support.

6. None of the investigated approaches supports negotiation.
7. The support of nonfunctional and trustworthiness properties is very simple and

limited.
8. Replanning is supported by almost half of the approaches. With the exception of

protus, approaches that support replanning do not support dynamic composition
and hence the replanning is manually performed.

9. Fault-tolerance is supported by only few approaches. A number of approaches such
as Argos, Composer, FUSION and Meteor-s do not mention fault-tolerance.
Hence, by default we consider that they do not support fault tolerance.

Conclusion and future work
We have presented FrSeC that supports the publication, discovery, and provision of ser-
vices with context-dependent contracts. FrSeC is formally based and considers legal rules
and contextual conditions during service provision. It also supports an adaptive rediscov-
ery and reranking operations. We are currently working on a detailed service architecture
extended with flexible contracts and trustworthiness guarantees. We are developing a set
of tools and a process model in order to provide a platform in which service-oriented
applications within the confines of FrSeC can be developed.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main contributions of NI are defining the ConfiguredService structure for service publication, defining the query
structures for service discovery, and defining the service ranking algorithm. The major contribution of MM includes
defining a service oriented architecture which influenced the formal framework FrSeC. VA has contributed to the
formalization of the framework and issues related to adaptability. All authors participated in drafting and approving the
paper manuscript.

Author details
1Department of Mathematics and Computer Science, Albany State University, Georgia, USA. 2Department of Computer
Science and Software Engineering, Concordia University, Montreal, Canada.

Received: 6 January 2012 Accepted: 28 December 2012
Published: 17 January 2013

References
1. Papazoglou MP (2008) Web services: principles and technology, First edition. Prentice Hall, England, UK
2. Dey AK (2001) Understanding and using context. Perso Ubiquitous Comput 5: 4–7
3. OSullivan J (2007) Towards a precise understanding of service properties. Phd thesis, Queensland University of

Technology, Brisbane, Australia



Ibrahim et al. Human-centric Computing and Information Sciences 2013, 3:1 Page 22 of 22
http://www.hcis-journal.com/content/3/1/1

4. Ibrahim N, Alagar VS, Mohammad M (2011) Managing and Delivering Trustworthy Context-Dependent Services. In:
proceedings of the 2011 IEEE 8th International Conference on e-Business Engineering (ICEBE), Beijing China, pp
358–363

5. Ibrahim N, Alagar V, Mohammad M (2011) Specification and verification of context-dependent services. In: Kovács L,
Pugliese R, Tiezzi F (eds) Proceedings of the 7th International Workshop on Automated Specification and Verification
of Web Systems, Reykjavik Iceland. Volume 61 of EPTCS, pp 17–33

6. Ibrahim N, Mohammad M, Alagar V (2011) An architecture for managing and delivering trustworthy
context-dependent services. In: Proceeding of the 8th IEEE International Conference on Services Computing,
Washington, DC, USA, pp 737–738

7. Wan K (2006) Lucx: Lucid enriched with context. Phd thesis, Concordia University, Montreal, Canada
8. Mayer P, Schroeder A, Koch N (2008) MDD4SOA: Model-Driven Service Orchestration. In: EDOC ’08: Proceedings of

the 2008 12th International IEEE Enterprise Distributed Object Computing Conference. IEEE Computer Society 2008,
Washington, DC, USA, pp 203–212

9. Service oriented architecture Modeling Language (SOAML) (2008) Specification for the UML Profile and Metamodel
for Services (UPMS). OMG Submission document: ad/2008-11-01. Available at http://www.omgwiki.org/SoaML/
doku.php?id=specification

10. WSDL (2001) Web Services Description Language 1.1. W3C Note. March, http://www.w3.org/TR/wsdl
11. Martin D, Paolucci M, McIlraith S, Mark McDermott D, McGuinness D, Parsia B, Payne T, Sabou M, Solanki M, Srinivasan

N, Sycara K (2004) Bringing Semantics to Web Services: The OWL-S Approach. In: First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004), San Diego, California, USA, pp 243–277

12. Zaremba M, kerrigan M, Mocan A, Moran M (2006) Web services modeling ontology. In: Cardoso J, Sheth AP(eds)
Semantic Web Services, Processes and Applications. Springer, pp 63–87

13. Jia X, Ying S, Zhang T, Cao H, Xie D (2007) A new architecture description language for service-oriented architecture.
In: Sixth International Conference on Grid and Cooperative Computing (GCC 2007), Urumchi, Xinjiang, China, pp
96–103

14. Marino J, Rowley M (2009) Understanding SCA (Service Component Architecture). Person Education, Inc., Boston,
MA, USA

15. Cao XX, Miao HK, Xu QG (2008) Modeling and refining the service-oriented requirement. In: TASE ’08: Proceedings of
the 2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering. IEEE Computer
Society, Washington, DC, USA, pp 159–165

16. Fujii K, Suda T (2009) Semantics-based context-aware dynamic service composition. ACM Trans Autonomous
Adaptive Syst 4(2): 1–31

17. Casati F, Ilnicki S, Jin Lj, Krishnamoorthy V, Shan MC (2000) Adaptive and dynamic service composition in eFlow. In:
Proceedings of the 12th Int’l Conference on Advanced Info. Systems Engineering. Springer-Verlag, pp 13–31

18. Sheng QZ, Benatallah B, Dumas M, Mak EOY (2002) SELF-SERV: a platform for rapid composition of web services in a
peer-to-peer environment. In: Proceedings of the 28th international conference on Very Large Data Bases, VLDB
Endowment, Hong Kong, China, pp 1051–1054

19. Wu D, Parsia B, Sirin E, Hendler J, Nau D, Nau D (2003) Automating DAML-S web services composition using SHOP2.
In: Proceedings of 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, pp 195–210

20. Ponnekanti SR, Fox A (2002) SWORD: A developer toolkit for web service composition. In: Proceedings of the 11th
International WWW Conference, Honolulu, Hawaii, USA. http://www2002.org/CDROM/alternate/786/index.html

21. Ambite JL, Weathers M (2005) Automatic composition of aggregation workflows for transportation modeling. In:
Proceedings of the 2005 national conference on Digital government research, Digital Government Society of North
America, Atlanta, GA, USA, pp 41–49

22. VanderMeer D, Datta A, Dutta K, Thomas H, Ramamritham K, Navathe SB (2003) FUSION: A system allowing dynamic
web service composition and automatic execution. In: Proceedings of the IEEE Int. Conference on E-Commerce
Technology, IEEE Computer Society, p 399

23. Ghandeharizadeh S, Knoblock C, Papadopoulos C, Shahabi C, Alwagait E, Ambite JL, Cai M, Chen CC, Pol P, Schmidt
R, Song S, Thakkar S, Zhou R (2003) Proteus: A system for dynamically composing and intelligently executing web
services. In: Proceedings of the 1st International Conference on Web Services, Las Vegas, NV, USA, pp 17–21

24. Jin C, Wu M, Ying J (2009) A Structure-based approach for dynamic services composition. J Software 4(8): 891–898
25. Sun H, Wang X, Zhou B, Zou1 P (2003) Research and implementation of dynamic web services composition. In:

Zhou X, Jahnichen S, Xu M, Cao J (eds) Advanced Parallel Processing Technologies, 5th International Workshop,
APPT 2003, Volume 2834 of Lecture Notes in Computer Science. Springer-Verlag, pp 457–466

26. Verma K, Gomadam K, Sheth AP, Miller JA, Wu Z (2005) The METEOR-S Approach for configuring and executing
dynamic web processes. Technical report, LSDIS Lab, University of Georgia, Athens, Georgia

27. Penta MD, Bastida L, Sillitti A, Baresi L, Maiden N, Melideo M, Tilly M, Spanoudakis G, Cruz JG, Hutchinson J, Ripa G
(2009) SeCSE–Service centric system engineering: An overview. In: Nitto ED, Sassen AM, Traverso P, Zwegers A (eds)
At Your Service: Service-Oriented Computing from an EU Perspective. The MIT Press, Cambridge, Massachusetts,
USA, pp 241–272

28. Silva E, Pires LF, van Sinderen M (2009) Supporting dynamic service composition at runtime based on end-user
requirements. In: Proceedings of the 1st Workshop on User-generated Services (UGS2009) at the 7th International
Joint Conference on Service Oriented Computing, (ICSOC 2009), Stockholm, Sweden, pp 20–30

29. Fan G, Yu H, Chen L, Liu D (2009) An approach to analyzing dynamic trustworthy service composition. In:
Gómez-Pérez A, Yu Y, Ding Y (eds) The Semantic Web, Fourth Asian Conference, ASWC 2009, Shanghai, China,
December 6-9, 2009. Proceedings, Volume 5926 of Lecture Notes in Computer Science. Springer, pp 261–275

doi:10.1186/2192-1962-3-1
Cite this article as: Ibrahim et al.: Publishing and discovering context-dependent services. Human-centric Computing
and Information Sciences 2013 3:1.

http://www.omgwiki.org/SoaML/doku.php?id=specification
http://www.omgwiki.org/SoaML/doku.php?id=specification
http://www.w3.org/TR/wsdl
http://www2002.org/CDROM/alternate/786/index.html

	Abstract
	Keywords

	Introduction
	Motivation and contribution

	An overview of FrSeC
	Service Provider (SP)
	Service Registry (SRe)
	Context Gathering Unit (CGU)
	Service Requester (SR)
	The Authentication Agency (AU)
	Planning Unit (PU)
	Plan Selection Unit (PSU)
	Execution Unit (EU)

	Service publication
	Constraints
	Parameters
	Attributes
	Context
	Contract

	Service discovery
	Traditional style
	Exact-match
	Weighted-match

	Buffet style

	Service ranking
	Form weight vector
	Construct weight matrix
	Calculate weights for ranking


	FrSeC adaptability
	Context change
	Failure in service availability
	New alternative services
	New contract rules
	New requester requirements

	Evaluation and experiments
	Related work
	Conclusion and future work
	Competing interests
	Authors' contributions
	Author details
	References

