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Abstract

We study the survivable network design problem (SNDP) for simultaneous unicast and
anycast flows in networks where the link cost follows All Capacities Modular Cost
(ACMC) model. Given a network modeled by a connected, undirected graph and a set
of flow demands, this problem aims at finding a set of connections with a minimized
network cost in order to protect the network against any single failure. This paper
proposes a new Genetic Algorithm with an efficient encoding to solve the SNDP in
networks with ACMC model (A-SNDP). Our encoding scheme is simple and allows large
search space. Extensive simulation results on real large topology instances show that
the proposed algorithm is much more efficient than the Tabu Search and other
conventional Genetic Algorithm in terms of minimizing the network cost.

Keywords: Survivable network design; All capacities modular cost; Anycast; Unicast;
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Introduction
There are many types of connection for data transmission over the Internet. The most

popular type of connection is from one node to another, which is called unicast. An

anycast connection is also from one node to another, the difference is that the destination

node has a one or many replicated servers which back up for it. Anycast has in recent

years become increasingly popular for adding redundancy to many Internet services

[1–3]. Anycast connection is currently used in many applications such as Domain Name

Service (DNS), Web Service, Overlay Network, peer-to-peer (P2P) systems, Content

Delivery Network (CDN), software distribution. The popularity of anycast technology will

increase in the near future, since many new services that use both unicast and anycast

paradigms are being developed.

In the Internet, any network failure can cause serious consequences, e.g., a single link

failure affected more than 30,000 users and it takes 12 hours to fix [3]. Therefore, the

design of survivable networks is a crucial problem. For the commnunication networks,

the research in [4] presented detailed information on protecting as well as restoring them

with specifies techniques such that organization time and money can be saved. Also, in

the survivable network design problem (SNDP) with simultaneous unicast and anycast

flows, the common objective is to minimize the network cost to protect network against

failures. To guarantee the survivability, we adopt the protection approach [5–10] in that
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each connection must include a working path and a link-disjoint backup path. The working

path is used for data transmission in failure-free state of the network. If there is a single link

failure on the working path, the failed connection is then switched to the backup path.

In [5] Gładysz et al. have considered the SNDP for networks using ACMC (All

Capacities Modular Cost) link cost model (here after called by A-SNDP). In the ACMC

model, a link has many bandwidth levels, each level has a corresponding cost. Many flow

demands can go through the same link thus the link cost is defined as the total of required

bandwidth from all demands on that link. The network cost is defined as the total of all

link cost. The A-SNDP problem is defined as follows. Given a network modeled by an

undirected graph where the link cost follows ACMC model and a set of survivable flow

demands between node pairs with correspon-ding bandwidth and type of connection

(anycast or unicast), this problem aims at finding a set of connection for all flow demands

such that the network cost is minimized. The authors in [5] have also proposed a heuristic

for A-SNDP using Tabu Search. However, their result is still far from optimal approach.

Genetic algorithm (GA) has been proved effective on NP-hard problem [11]. There have

been a lot of research works on using GA approach to solve NP-hard problem, particularly

in net-work design problem [9,12]. In our previous work [12], we have developed a genetic

algorithm for A-SNDP called CDE-GA that uses Connection Database Encoding for

individual representation. However, this encoding method is complex and search space is not

diverse enough, thus it limits the performance of GA approach in solving A-SNDP problem.

In this paper, we propose new individual encoding scheme called Complete Connection

Encoding (CCE) with genetic algorithm for solving A-SNDP. CCE encoding is simple, and

it helps to create more new individuals and enlarge the search space to find better solution

in large network instances. We then design the evolution operators using CCE and simulate

our proposed algorithm with three typical network instances (Polska, Germany, Atlanta)

and two large instances (Germany50, America). We compare the results with Tabu Search

[5] and CDE-GA. Results obtained in experimentation show that our proposed algorithm

are much better than the compared algorithms in terms of minimizing network cost.

The rest of this paper is organized as follows. Section "Problem description and related

works" describes problem and the related works. Our new approach to encode individual

and the proposed GA algorithm to solve A-SNDP is shown in Section "Genetic algorithm

for solving A-SNDP". Experimental results are given in Section "Experimental results".

The paper concludes with Section "Conclusion" by discussion and future works.
Problem description and related works

The SNDP is generally presented in [13] that considers both economics and reliability in

telecommunication network design. The SNDP has to guarantee the survivability of a

network system against single or multiple failures and also to minimize the network cost. In

both cases, single [5–10] and multiple failures [14], the most popular way mentioned in the

literature is the single backup path approach. The main idea of this method is as follows:

Each connection has a working path and a backup path, if there is a single link failure on

the working path, the failed connection is then switched over its backup path [5–10]. In this

work, we consider the protection network from any single failure and assume that one

backup path is dedicated for one working path. The approach of using shared backup path

[13] is not considered in the scope of this paper.
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The A-SNDP problem is described as follows. Given an undirected graph G = (V, E) and

a set of customer demand between node pairs with corresponding bandwidth and type of

connection (anycast or unicast). Like a unicast connection, an anycast connection is also

from one node to another, the difference is that the destination node has one or many

replicated servers which back up for it (see Figure 1). In this problem, the cost of a link

follows All Capacities Modular Cost model [3], that means a link has many bandwidth

levels, each level has a corresponding cost. Many flow demands can go through the same

link thus the cost of a link is defined as the total of required bandwidth from all demands

on that link. The goal is to find a set of connection for all demands such that the network

cost (NCost) is minimized:

NCost ¼
X

i

ci

where ci = Ck, if Bk−1 <
X

j

Rij < Bk
Figure 1 The example of survivable unicast transmission. A) Unicast B) Anycast.
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here, ci is the cost of link i; Bk and Ck is bandwidth and corresponding cost in level k; Rij is

the required bandwidth from the demand j on the link i.

In the literature, there are many papers focus on minimizing the network cost for

SNDP problem (see [5,9,15]) and references therein). They use branch – and – bounds

or branch – and – cut methods to find optimal solution. These methods can only use

for networks with small number of nodes. For larger networks, they have proposed

many heuristics such as evolutionary algorithms, tabu search and simulated annealing.

In [9], Nissen and Gold applied the evolution strategy (ES) to solve this problem. It is

shown by the authors that when using ES, a larger population can achieve better result

than a smaller one by avoiding or delaying convergence on local suboptimal. However,

this algorithm is applied in the network which has only unicast flows.

With the network which has both anycast and unicast flows, Walkowiak et al.

presented a heuristic algorithm for solving A-SNDP [16]. The main idea of this

algorithm is based on Flow Deviation method [15] and Local Search algorithm [17].

They achieved a very good result with small networks such as the Polska instance and

showed that the average gap of the proposed heuristic to the optimal result is around

7.11%. Furthermore, they also built a Tabu Search algorithm based on hill climbing

method with some heuristics to solve this problem [5]. Experiments on three network

instances which are Polska (12 nodes, 36 links), Germany (17 nodes, 52 links) and

Atlanta (26 nodes, 82 links) showed many promising results. In particular with Polska

network (smallest instances), they achieve the average gap to optimal results is 2.57%

for 70% anycast/30% unicast case and 2.00% for 80% anycast/20% unicast case. It is

observed that by using TS, even on a small network instance like Polska, there is still a

significant gap to the optimal result, therefore, the result obtained by Tabu Search

algorithm can be further improved.

In [18], Huynh et al. proposed the FBB heuristic (FBB1 and FBB2) for solving

A-SNDP. The main idea of FBB1 is based on the use of redundant bandwidth

corresponding with paid cost level in each link and that of FBB2 is the combination of

FBB1 and the Tabu Search algorithm (TS). Experiments conducted on three network

instances (Polska, Germany and Atlanta) show that FBB1 and FBB2 have better result

than that of TS [5]. However, the improvement of FBB in compared with TS is still not

significant.

In [12], Binh et.al proposed a new algorithm called CDE-GA based on Genetic

Algorithm for solving A-SNDP. A new characteristic of this algorithm is to use a new

encoding called Connection Database based Encoding (CDE). They also experimented

on three instances which are Polska, Germany and Atlanta network [5,16]. With each

instance, they randomly create 10 test sets that are different from the content of

customers’ demands. The results show that the proposed approach is quite effective

with A-SNDP. On the big instances (likely Germany and Atlanta network), CDE-GA

has much better results than Tabu Search. However, on the small network (likely Polska

network), the deviation of the results found by CDE-GA and the results found by Tabu

Search is not significant. Other drawback of CDE-GA is that in the mutation operator,

only the identification of backup path is changed so it is difficult to create more new

paths, thus it limits the search space of GA approach in solving A-SNDP problem.

In the next section, we develop our new Genetic Algorithm by proposing a new

scheme to encode an individual for solving the A-SNDP. This scheme is expected to
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improve the effectiveness in terms of network cost when adopting GA for this problem,

especially on large scale network instances.
Genetic algorithm for solving A-SNDP

Individual representation

In the design of a Genetic Algorithm, the encoding is the most important task. There

are some methods to encode each individual in a population, such as binary encoding,

integer encoding… In this paper, we propose a new encoding mecha-nism, called

Complete Connection Encoding (CCE) to encode individuals in GA. An individual built

by CCE is presented as follows: Each individual T (i.e. a complete solution) is a set of

substrings. Each substring Ti, represents a flow demand i and has two parts: the

working path and the backup path. Illustration of an individual is shown in Figure 2.

To initialize an individual T, we create each of its substring Ti in turn. The working path

of Ti is built by using a path finding algorithm. After that, all the link of this path will be

deleted from the graph to find the backup path of Ti. using the same path finding

algorithm. Therefore, to initiate an individual that represents a solution of A-SNDP, we

need the time is O(|D|.n2) where n is the number of nodes.

Genetic operators

Crossover operator We apply two different crossover operators: one-point crossover and

path crossover. In one-point crossover, we combine the substrings from T1 .. Ti with T’i+1…T’n
to create the child. In path crossover, we combine the working path of the first parent T

with the backup path of the second parent T’ to create the child Tchild (see Figure 3). With

the second type of crossover, sometimes, the working path and the corresponding backup

path are not link-disjoint anymore. Thus, we have to check the child again and if any

substring violates the link-disjoint condition, it will be replaced by the corresponding

substring from its parent.
Mutation operator We choose some individuals in the current population randomly.

Then, with each selected indivi-dual, we choose one substring i randomly and replace

its working path as well as backup path by other couple of link-disjoint paths satisfying

the demand i.
Figure 2 An example representing an individual built by CCE, where each row represents a solution
for a demand; |D| is number of flow demands.



Figure 3 Illustration of the path crossover operator between parent T and T’, which reproduces the
child Tchild.
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Structure of genetic algorithm for solving A-SNDP

Below is pseudo-code of our proposed algorithm. In line 4, 7 and 14, noGeneration,

noCrossover and noMutation stand for the number of generation, the number of crossover

operator and the number of mutation operator, respectively.



Table 1 Topology instances for experiments

Parameters Networks

Polska Germany17 Atlanta Germany50 TA2

Nodes 12 17 26 50 65

Links 36 52 82 176 216

Unicast/Anycast 65/12 119/13 234/22 80/20 80/20
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Experimental results

We run our proposed algorithm (CCE-GA) independently and compare its perform-

ance with the Tabu Search [5] and CDE-GA [12]. All the programs are run on a

machine with Intel Core 2 Duo U7700, RAM 2GB, Windows 7 Ultimate, and are

installed by C++ and Java language.
Problem instances

In our experiments, we used five real world instances including the Polska, Germany17,

Atlanta, Germany50 and America (TA2) topologies. All can be downloaded from

http://sndlib.zib.de [19]. With each instance, we fix the number of flow demands and

randomly create 10 test sets which are different from the content of customers’

demands (see Table 1).
Parameters setting

For both CDE-GA and CCE-GA, the number of individual is 300 and the number of

generation is 300. This is based on our observation from experiments that when we

used larger values, the result is not better. In CCE-GA, we set the one-point crossover

probability to 17% and the path crossover probability is also 17%. The selection of

crossover probability value is tuned after many experiments with the range from 10%

to 50%. The mutation rate is set to a small value (3%). Experiment is repeated 10 times

for each test set.
Figure 4 Comparision between the best and the average result found by Tabu Search, CDE-GA and
CCE-GA on Polska network.

http://sndlib.zib.de/


Figure 5 Comparision between the best and the average result found by Tabu Search, CDE-GA and
CCE-GA on Germany17 network.
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Result and discussion
Figures 4, 5, 6, 7 and 8 show the computational results of three compared algorithms

on five network instances. For each network, we compare the minimum and the

average network cost found. It is notable that the minimum and the average result

found by CCE-GA are better than the one found by Tabu Search and CDE-GA on

almost problem instances. For example in the Figure 4 (Polska network), the minimum

network cost found by CCE-GA are 11% and 6% better than Tabu Search and

CDE-GA, respectively.

The average cost found by CCE-GA are 15% and 10% better than Tabu Search and

CDE-GA, respectively. The same results can be observed in Figure 8; The best network

cost found by CCE-GA are 8% and 4% better than Tabu Search and CDE-GA, while

the average network cost found by CCE-GA are better than Tabu Search and CDE-GA

about 7% and 6%.
Figure 6 Comparision between the best and the average result found by Tabu Search, CDE-GA and
CCE-GA on Atlanta network.



Figure 7 Comparision between the best and the average result found by Tabu Search, CDE-GA and
CCE-GA on Germany50 network.
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These above results prove the efficiency of Genetic Algorithms over Tabu Search for

this problem. These results also demonstrate the efficiency of our new encoding

scheme because it helps to increase the performance of CCE-GA in compare with

CDE-GA. As we have explained in previous section, the new encoding scheme can ex-

ploit a larger search space. Therefore it can find a better result than that of CDE-GA.

To demonstrate the efficiency of CCE-GA over CDE-GA on large scale networks, we

present the detail results on a small network (Polska, Table 2) and on a larger network

(TA2, Table 3). For Polska network, the average cost found by CCE-GA are better than

that found by CDE-GA on 8/10 problem instances (except the test #3 and the test #5)

For TA2 network, the average cost found by CCE-GA are always better than that of

CDE-GA. This is because the CDE-GA only works well on small network but not for

large scale network. We also observe that for all test sets, the minimum cost found by

CCE-GA is much better than that of CDE-GA.
Figure 8 Comparision between the best and the average result found by Tabu Search, CDE-GA and
CCE-GA on TA2 network.



Table 2 The best and average results found on polska network after 10 running times

Test # Cost Tabu CDE-GA CCE-GA

1 Min 13550 12812 12130

Mean 14777 13923 12653

2 Min 14962 13898 13200

Mean 15270 14670 13860

3 Min 14010 12218 12722

Mean 15511 13289 13309

4 Min 11226 11484 10792

Mean 12616 12359 11045

5 Min 14654 13176 14054

Mean 13691 14318 14690

6 Min 12714 12480 11464

Mean 12899 13262 11866

7 Min 16238 15850 15326

Mean 17160 16709 16305

8 Min 12038 12298 12168

Mean 12320 13099 12719

9 Min 12042 11846 11186

Mean 12990 12386 11939

10 Min 15284 14590 13570

Mean 15284 15300 14556

Table 3 The best and average results found on ta2 network after 10 running times

Test # Cost Tabu CDE-GA CCE-GA

1 Min 894440 850640 848320

Mean 905968 880571 862527

2 Min 843280 836120 785480

Mean 850613 837814 785480

3 Min 835280 817800 781480

Mean 842613 817800 781480

4 Min 841280 822120 798640

Mean 842613 827586 813037

5 Min 858440 836120 806960

Mean 861756 844252 814589

6 Min 825280 806120 779800

Mean 827413 810386 789364

7 Min 816120 799800 778640

Mean 818986 808289 786980

8 Min 841280 832120 784960

Mean 844280 835773 794862

9 Min 831280 814960 771480

Mean 834746 821565 784582

10 Min 841280 818640 774320

Mean 844480 834137 785542
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Table 4 The comarision of the average running time (in second) found by tabu search,
cde-ga and cce-ga

Polska Germany17 Atlanta Germany50 TA2

CCE-GA 18 21 95 1951 26216

CDE-GA 13 21 78 941 13232

TabuSearch 1 5 36 666 6514
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To compare the tested algorithms in terms of running time, we calculate the average

running time of all 10 test sets for each algorithm. Table 4 shows that CCE-GA takes

much more running times in compare with Tabu Search and CDE-GA. But if the run-

ning time for Tabu Search, CDE-GA is increased, the best result is not improved.

The above observation can be explained more clearly in Figures 9 and 10, which

show the convergence rate of CDE-GA and CCE-GA on TA2 network. Here, because

the gap of the convergence rate between CDE-GA and CCE-GA is too large from the

first generation to 14th generation so we draw from the 15th generation. It is notable

that CCE-GA converge more quickly than CDE-GA from the 15th generation. cost over

the failures.
Conclusion
In this paper, we proposed a new algorithm called CCE-GA for solving A-SNDP. This

algorithm uses a new simple encoding scheme called Completely Connection

Encoding (CCE) to enlarge the search space to find better solution in large network

instances. Experiments are conducted on real network topologies on show that our

proposed approach is very efficient in solving A-SNDP. On the big instances, such as

Atlanta, Germany50 and TA2 networks, the best and average result found by

CCE-GA are much better than CDE-GA and Tabu Search. However, CCE-GA takes

much more running times in compare with Tabu Search and CDE-GA to find best

result. But if the running time for Tabu Search, CDE-GA is increased, the best result

is not improved.
Figure 9 The convergence rate of CDE-GA and CCE-GA to find the min cost on TA2 network.



Figure 10 The convergence rate of CDE-GA and CCE-GA to find the mean cost on TA2 network.
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In the future, we are planning to improve this algorithm for solving bigger instances

in a reasonable time. Moreover, we hope that we can find the other approach with

better results for A-SNDP.
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