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Background
Cognitive-load theory (CLT) originated in the 1980s, when Sweller [1] argued that 
instructional design should be used to reduce the cognitive load on learners. Research-
ers continued developing and expanding the idea in the 1990s [2–4]. Several randomized 
controlled experiments generated a series of effects related to CLT [5]. The worked-
example effect is a typical example of a learning effect derived from CLT [6]. After learn-
ing basic theoretical knowledge, it is more effective for novices to study examples than to 
practice using problem exercises [7]. However, the worked-example effect is only appli-
cable to novices. As expertise increases, and the worked-example effect fades, such that 
actual practice solving problems becomes more effective. This is known as “the expertise 
reversal effect” [8].

Cognitive load theory and worked‑example effect

CLT is a theory related to instructional design. It has been claimed that the limited cog-
nitive resources of humans means that instructional methods must be designed carefully 
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to ensure that learners are able to utilize their cognitive resources efficiently. There are 
three types of cognitive load: intrinsic, extraneous, and germane. Intrinsic cognitive load 
is created by the complexity of materials [3, 4]. The more complex information is, the 
more intrinsic cognitive load a learner experiences. Unrelated activities or the inappro-
priate presentation of materials can hinder learning and generate extraneous cognitive 
load. As long as materials and learning goals remain constant, the intrinsic cognitive 
load will remain fixed. Changing an instructional procedure can alter the extraneous 
cognitive load on learners. Germane cognitive load is defined as the amount of human 
cognitive resources devoted to the intrinsic cognitive load and is highly related to the 
learner’s motivation and level of engagement in learning. Germane cognitive load is 
associated only with the instructional designs that increase the use of the working-mem-
ory resources to reduce intrinsic cognitive load during the learning process [9].

In 2010, Sweller revised the formulation of CLT that element interactivity is consid-
ered as the main source of intrinsic, extraneous, and germane cognitive load [9]. Reduc-
ing the number of interactive elements in learning materials can alleviate the intrinsic 
cognitive load, while extraneous load can be decreased by reducing the number of inter-
active elements in the instructional procedure [10]. Overall, cognitive load is a com-
bination of intrinsic and extraneous cognitive load. Therefore, the amount of working 
memory that is required when a learner is engaged in deciphering a number of interact-
ing elements determines the overall cognitive load during learning.

In the initial learning phase, without the aid of proper problem-solving schemas, a 
learner may try to solve problems by randomly searching through existing schemas in 
his long-term memory. This causes the learner to focus their attention on specific char-
acteristics of the problem and try to eliminate differences between current problem 
states and goal states rather than on schema-relevant principles. The attempt to elimi-
nate differences between problem states requires that the learner maintain multiple sub-
goals and consider different solutions, thereby leading to extraneous cognitive load [11]. 
On the other hand, if the learner has already developed an efficient problem-solving 
schema, studying worked-examples may become a redundant activity that contributes 
little or nothing to further development.

Recent research regarding example‑based learning strategies

Worked-examples do help if they are well designed and presented to the novice in an 
appropriate fashion. Studying worked-examples can be more effective and efficient than 
actively solving problems for novice learners. Thus, many example-based learning strat-
egies have been implemented in order to observe the learning effects on learners of vari-
ous skill levels.

Three approaches are commonly used to manipulate examples and problems when 
teaching a new learner. The first approach encourages the student to study several 
worked examples before practicing using several problems [12]. The second approach is 
to study one worked example first, and then to practice a similar problem, and continue 
switching between the two through several cycles (example-problem pairs). Sweller 
and Cooper [13] discovered that example-problem pairs may provide more help than 
does studying examples only. Other studies have shown that studying example-problem 
pairs is more effective than solving problems only [13–17]. The third approach involves 
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practicing a problem first, and then studying a similar (the same structure but differ-
ent data) worked example, and repeating this process several times (problem-example 
pairs). A few studies argued that let learners attempt to solve problems first and if they 
experience frustration, they might be more willing to study the worked-example and 
focus on the steps that they could not solve. [18, 19].

Reisslein et al. [19] showed that there is an interactive relationship between instruc-
tional procedures and prior knowledge. Learners with low prior knowledge appear to 
benefit most from example-problem pairs. Learners with high prior knowledge appear 
to benefit most from problem-example pairs. Van Gog et al. [20] examined four different 
conditions: worked-examples only, example-problem pairs, problem-example pairs, and 
problem solving only. Their results indicate that no differences exist between worked-
examples-only and example-problem pairs, nor between the problem-example pairs and 
problem-solving-only. However, the situations involving problem-example-pairs and 
problem-solving-only were less effective than those involving only worked-examples-
only or example-problem-pairs.

To summarize, example-problem pairs have been shown to be more effective than 
examples or problems only, and the effectiveness of each method may depend on the 
prior knowledge of the learners.

A CLT perspective: effectiveness of learning from examples and problems simultaneously

Despite substantial research into example-based learning, no study has examined the 
effectiveness of learning from examples and problems simultaneously.

Suppose a learner is doing his/her homework. If he/she were unable to find a way to 
solve a problem, what will he/she do? The students could try to find a similar worked-
example in the textbook and imitate those steps in solving the current problem. This 
practice of learning from examples and problems simultaneously does exist in real learn-
ing scenarios, and it may be a useful method for novices engaged in learning how to 
solve a problem.

Based on previous analysis, maintaining sub-goals and considering different solution 
options can lead to extraneous cognitive load. Excessive extraneous load can explain why 
problem solving is not effective for novice learners. However, problem solving provides 
more active thinking than does the study of examples, which may be the reason why 
problem solving can be beneficial to those with more expertise. In other words, prob-
lem solving allows proficient learners to gain more experience than they would simply 
by studying worked-examples. Learning from examples and problems simultaneously 
frees novice learners from the need to consider different solution options. They can then 
construct an effective problem-solving schema and immediately put it to practice in the 
process of problem solving.

According to the contiguity principle [21], using examples and problems simultane-
ously should be more effective than using examples and problems separately, particu-
larly when learners have to imitate worked-examples in order to solve current problems. 
When an example and a problem are separated from one another by time, people must 
use their limited cognitive resources to search their past experiences and come up with 
a satisfying match to the current problem. This generates extraneous cognitive load that 
is unrelated to the instructional goal. In contrast, when an example and a problem are 
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presented simultaneously, the learner can hold both together in working memory and 
therefore make meaningful connections between them.

If a learner has a high level of prior skill, the problem can be solved independently 
by using the worked-example as a reference. They do not need to devote limited cogni-
tive resources to scanning among schema that they have already developed. Therefore, 
from a CLT perspective, learning from examples and problems simultaneously may be 
an effective method for novices as well as proficient learners.

However, when viewed from a traditional perspective, there is a concern that learners 
who use examples and problems simultaneously may simply imitate the examples, rather 
than developing an understanding of them on a deeper level. This may lead to failure in 
far-transfer tests.

The present study

This study investigated the effectiveness of learning from examples and problems simul-
taneously. Both approaches were examined in learners with different levels of prior 
knowledge, and a near-transfer test and a far-transfer test were used to evaluate learning 
effectiveness. The control group learned from examples and problems separately.

Several researchers have used learner-controlled instruction, in which learners decide 
how long they need to learn something. Other studies have used learning time to meas-
ure cognitive load [22]. However, according to the revised formulation of CLT [9], both 
intrinsic and extraneous cognitive load are defined as the number of interacting ele-
ments that must be dealt with simultaneously. The number of tasks presented to a par-
ticular learner remains constant. When the learner has more time, he/she will have more 
time to deal with interacting elements, such that his/her self-reported cognitive load 
score may be lower [22]. Therefore, we determined that learning time should be fixed in 
order to obtain an accurate measurement of cognitive load.

To summarize, this study seeks to assess the effectiveness and efficiency of learning 
from examples and problems simultaneously, as opposed to learning from example-
problem pairs. Furthermore, the problem is addressed with regard to novices as well as 
proficient learners and we also sought to determine whether learning remains effective 
in a near-transfer test as well as a far-transfer test.

Methods
Participants and design

Participants included 93 freshmen college students in Taiwan. Among them, 49 partici-
pants were majoring in mathematics (30 male), and 44 participants were majoring in 
business (15 male). In Taiwan, senior high school students are placed in either the sci-
ence track or the social science track. The tracks diverge greatly in their mathematics 
and science curricula. Advanced math and science subjects are only taught in science 
track. In this study, the mathematics majors came from the science track, and the busi-
ness majors came from the social science track. There exists a significant difference in 
mathematical knowledge between these two majors. Both groups studied the basic con-
cepts and methods involved in differentiation, but had no experience applying them to 
solving optimization problems in calculus. The participants were randomly assigned to 
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one of two conditions: (1) simultaneous example and problem and (2) example-problem 
pairs. The study groups are presented in Table 1.

Materials

Prior‑knowledge test

The prior-knowledge test consisted of three questions with six items regarding basic 
concepts and methods for solving optimization problems. Examples of items are as fol-
lows: “What is a critical number of a function?” and “How do you set up a function from 
a word problem?” One of the problems in the pretest is presented in Fig. 1.

Training tasks

Examples and problems were selected from “Discussion” of the calculus textbook “Essen-
tial Calculus” [23]. The worked-examples consisted of a problem formulation, solution 
steps, and the final solution. Each worked-example and exercise problem contains four 
solution steps, including “set up the function,” “obtain the function of one variable,” “find 
the domain of the function,” and “obtain the critical number and check the answer.” Each 
step was clearly labeled and visually distinguished from the other steps. The worked-
example revealed the correct solution for the solution step, and the participants wrote 
their solution for the solution step in the exercise problem. The exercise problem in the 
same pair was highly similar to the worked example with regard to structure, but the 
surface features were different. Examples and problems from the training task are pre-
sented in Fig. 2 (examples) and Fig. 3 (problems).

Test tasks

The test consisted of six problems. Four of the problems had a similar structure but sur-
face features different from the training tasks, which were used for the near-transfer 
test. The other two problems had structural features that had not been learned from the 
training tasks, and these were used for the far transfer test. The examples of near-trans-
fer and far-transfer problems are presented in Figs. 4 and 5, respectively.

Self‑reported mental effort and difficulty rating scale

We employed two commonly used techniques for the measurement of cognitive load: 
the Mental Effort Rating Scale and the Difficulty Rating Scale.

Table 1  Group assignment by major

Major Simultaneous example and problem Example-problem pairs

Mathematics Business Mathematics Business

Total 25 22 24 22

Pretest: Find the absolute extrema of the function 34 43 xx − on [ ]3,1− ?

Fig. 1  Sample pretest problem
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The nine-point Mental Effort Rating Scale was developed by Paas [24]. In it, partici-
pants are asked to rate how much mental effort they had to invest in studying the pre-
ceding example or solving the preceding problem. Answer options range from (1) “very, 
very low mental effort” to (9) “very, very high mental effort.” This scale is widely used in 
educational research [2, 25, 26].

Problem: Which points on the graph of 24 xy −= are closest to the point ( )3,0 ?
Step1. Set up the function  
The distance function is given by

( ) ( )22 30 −+−= yxd .

Step2. Get the function of one variable 
Using the function 24 xy −= , you can rewrite the equations as

( ) ( )
222 340 −−+−= xxd , and

124 +−= xxd .

Because d is smallest when the expression inside the radical is smallest, you need only 
find the critical numbers of 1)( 24 +−= xxxf .

Step3. Find the domain of the function
The domain of f is the real number. So, there are no endpoints of the domain to 
consider.

Step4. Get the critical number and check the answer
Setting )(' xf equal to 0 yields

024)(' 3 =−= xxxf ,

2
2,

2
2,0 −=x .

0=x yields a relative maximum, whereas both 
2
2=x and

2
2−=x yield a 

minimum distance. So the closest points are 





2
7,

2
2 and 





−

2
7,

2
2 .

How much mental effort did you invest in studying the preceding example or 
solving the preceding problem?(        )
(1 :very, very low mental effort, 9: very, very high mental effort)

How difficult did you feel in studying the preceding example or solving the 
preceding problem?(        )
( 1 :very, very easy, 9: very, very difficult )

Fig. 2  Example training task
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The Difficulty Rating Scale asks learners to make a retrospective judgment concerning 
every example or problem with regard to difficulty. It also uses a 9-point scale ranging 
from 1 (extremely easy) to 9 (extremely difficult). The Difficulty Rating Scale has been 
used somewhat less frequently in multimedia research [27, 28]. The questionnaire for 
the measurement of cognitive load is presented at the bottom of Fig. 2.

Problem: Which points on the graph of 22 −= xy are closest to the point ( )1,0 ?
Step1. Set up the function

Step2. Get the function of one variable

Step3. Find the domain of the function

Step4. Get the critical number and check the answer

How much mental effort did you invest in studying the preceding example or 
solving the preceding problem?(        )
(1 :very, very low mental effort, 9: very, very high mental effort)

How difficult did you feel in studying the preceding example or solving the 
preceding problem?(        )
( 1 :very, very easy, 9: very, very difficult )

Fig. 3  One problem used in the training task
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Procedure

The experiment was conducted in two 45-min sessions at the schools of the partici-
pants. Participants first received general information about the experimental procedure, 

Problem: An open box of maximum volume is to be made from a square piece of 
material, 9 m on a side, by cutting equal squares from the corners and turning 
up the side. What dimensions will produce a box with maximum volume?

How much mental effort did you invest in studying the preceding example or 
solving the preceding problem?(        )
(1 :very, very low mental effort, 9: very, very high mental effort)

How difficult did you feel in studying the preceding example or solving the 
preceding problem?(   )
( 1 :very, very easy, 9: very, very difficult )

Fig. 4  Example of a near-transfer problem

Problem: A rectangular page is to contain 36 square inches of print. The margins 
at the top and bottom of the page are to be 1 inch, and margins on the left and 
right are to be 1 inch too ( see figure below). What should the dimensions of the 
page be so that the least amount of paper is used?

How much mental effort did you invest in studying the preceding example or 
solving the preceding problem?(        )
(1 :very, very low mental effort, 9: very, very high mental effort)

How difficult did you feel in studying the preceding example or solving the 
preceding problem?(        )
( 1 :very, very easy, 9: very, very difficult )

Fig. 5  Example of a far-transfer problem
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including details related to the general sequence and time-keeping procedure. They then 
completed the 15-min prior-knowledge test before beginning work on the training tasks 
under the experiment conditions.

In the example-problem-pairs, participants studied an example for 4 min, whereupon 
the experimenter removed the paper with the example and gave participants a problem 
that was similar to the example they had just examined. Participants were asked to solve 
the problem within 7 min, after which the experimenter collected the papers.

In the simultaneous example and problem situation, the same example and problem 
used in the example-problem-pairs group were simultaneously presented to the partici-
pants. Participants were expected to check the example and solve the problem within 
11 min, after which the experimenter collected the papers.

After two pairs of examples and problems had been completed as outlined above, par-
ticipants were asked to solve two problems as a near-transfer test (7  min each). They 
were then given 7  min to rest and then presented another two pairs of examples and 
problems as well as two near-transfer-test problems to be completed as before. Finally, 
participants were asked to finish two problems (within 7 min each) as a far-transfer test.

Every example, problem, and test was printed on A4 paper, as were the questions used 
to measure mental effort and difficulty. Participants were asked to complete a mental 
effort and difficulty rating sheet after each example or problem.

Data analysis

The maximum score on the prior-knowledge test was six points. The questions con-
tained six items: “set up the function,” “obtain the function of one variable,” “identify the 
concept of the critical numbers,” “apply the critical number,” “obtain the first derivative,” 
and “check the answer.” A correct answer for an item earned 1 point. The maximum 
score on each test problem was four points. The problem contained four items: “set up 
the function,” “obtain the first derivative,” “obtain the critical number,” and “check the 
answer in the domain.” A correct answer to an item earned 1 point. Both exercise and 
test problems were scored by one of the authors of the study who was not aware of the 
experimental group to which the participant belonged.

Results
Six participants had missing values on the test tasks and were therefore excluded from 
analysis. Five of the excluded participants were business majors and one was a math-
ematics major. The mean performance, mental effort, and difficulty rating are shown by 
learning condition in Table 2.

Near‑transfer and far‑transfer performance

One-way analysis of variance on the far-transfer score with the near-transfer score as 
covariate revealed no difference between the two conditions among students with either 
major: F(2,93) =  0.002, MSE =  0.018, P =  0.960  >  0.05. Learning from examples and 
problems simultaneously did not lead to failure in far-transfer tests; therefore, we used 
the total test score as a measure of learning achievement.
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Cognitive‑load measurements

The total scores and the data related to mental effort and difficulty ratings in the learning 
phase and test phase were analyzed using Pearson correlation analysis. The correlation 
coefficient between mental effort in the learning and test phases was 0.904, P < 0.001, 
and the correlation coefficient between difficulty rating in the learning and test phase 
was 0.888, P < 0.001. The cognitive load measured in the learning phase was highly cor-
related with cognitive load in the test phase. Based on prior research, the cognitive load 
measured in the learning phase is considered a reflection of the quality of instruction, 
whereas the cognitive load measured in the test phase is considered a reflection of the 
quality of the schema [29]. Our aim was to investigate the effectiveness of learning meth-
ods; therefore, we considered only cognitive load measured in the learning phase.

A negative correlation was shown to exist between the total score and mental effort 
as well as difficulty. The correlation coefficient between the total score and the difficulty 
rating was higher than that between total score and mental effort (see Table 3). In this 
study, learning materials were kept constant under each study condition, in keeping with 
the CLT perspective; therefore, the intrinsic cognitive load was the same under the two 
conditions. Learners receiving a better score in one of the conditions was viewed as an 
indication that the extraneous cognitive load of that situation was lower than that of the 

Table 2  Means (SD) for prior knowledge, mental effort, difficulty, exercise, and test perfor-
mance per condition

Example-problem pairs Simultaneous example 
and problem

Mathematics Business Mathematics Business

M SD M SD M SD M SD

Prior knowledge (maximum 6) 3.60 1.22 2.25 1.26 3.64 1.36 2.36 0.99

Mental effort in learning phase (maximum 72) 41.87 16.31 53.97 12.39 41.04 17.41 50.36 14.59

Difficulty in learning phase (maximum 72) 34.54 11.46 51.04 13.15 36.6 15.75 44.54 12.57

Mental effort in test tasks (maximum 54) 31.45 13.14 37.95 10.95 27.20 15.22 40.04 10.82

Difficulty in test phase (maximum 54) 24.92 10.77 34.09 9.36 24.32 13.64 37.63 11.63

Exercise score (maximum 16) 12.27 2.65 10.22 4.03 13.38 1.64 12.93 2.15

Near-transfer test score (maximum 16) 12.54 3.20 8.82 3.76 12.36 3.54 10.41 4.03

Far-transfer test score (maximum 8) 7.12 1.31 4.93 2.66 6.94 1.40 5.54 2.27

Total test score (maximum 24) 19.67 4.40 13.75 6.10 19.30 4.40 15.95 3.68

Table 3  Correlation matrix of dependent measures and total score

N = 87

** P < 0.01

*** P < 0.001

Measure 1 2 3 4 5

Mental effort in learning phase 1 0.904*** 0769*** 0.653*** −0.285**

Mental effort in test tasks 1 0.694*** 0.694*** −0.300**

Difficulty in learning phase 1 0.888*** −0.462***

Difficulty in test tasks 1 −0.577***

Total score 1
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other. The measurement that had a highly negative correlation to total score would be 
a better gauge of cognitive load. Therefore, difficulty ratings may be a better index than 
mental effort ratings. This study used difficulty rating scale scores in the learning phase 
to measure cognitive load.

Prior knowledge test

In the mathematics group, multivariate analysis of variance on total score and diffi-
culty rating with prior knowledge as a covariate showed no difference between the two 
conditions: Pillai’s trace =  0.009, F =  0.215, P =  0.807 > 0.05. Results in the business 
group also showed no difference between conditions: Pillai’s trace = 0.080, F = 1.736, 
P = 0.189 > 0.05. These results demonstrate that simultaneous-examples-and-problems 
are only marginally more effective and efficient than example-problem pairs in the case 
of business majors.

Not all of the participants majoring in mathematics were proficient in calculus, and not 
all the participants majoring in business were novices. In order to investigate the effect 
of learning from examples and problems simultaneously for novice as well as proficient 
learners, it was necessary to divide learners into high- and low-level prior-knowledge 
groups. The median score of the prior-knowledge test was 3 (maximum 6); therefore, 
mathematics-majors who scored 3–6 on the prior-knowledge test were assigned to the 
high-level group, whereas business-majors who scored 0–2.5 on the prior-knowledge 
test were assigned to the low-level group. The means for prior knowledge, performance, 
and difficulty rating per condition for the high-level and low-level groups are presented 
in Tables 4 and 5.

Effectiveness of presenting examples and problems simultaneously

In the high-level group, multivariate analysis of variance on mean total score and dif-
ficulty rating with prior-knowledge test scores as a covariate showed no difference 
between conditions: Pillai’s trace = 0.005, F = 0.077, P = 0.926 > 0.5. Among proficient 
learners, learning from examples and problems simultaneously does not appear to be 
significantly more effective than using example-problem pairs.

In the low-level group, a multivariate analysis of variance on mean total score 
and difficulty rating with prior knowledge test scores as a covariate showed a signifi-
cant difference between conditions: Pillai’s trace = 0.210, F = 3.461, P = 0.046 < 0.05. 

Table 4  Means (SD) for prior knowledge, difficulty, exercise, and test performance scores 
in the high-level group

Example-problem pairs Simultaneous example 
and problem

M SD M SD

Prior knowledge (maximum 6) 4.11 0.90 4.21 0.99

Difficulty (maximum 72) 34.28 11.92 32.21 14.41

Exercise (maximum 16) 12.44 2.59 13.68 1.63

Test (maximum 24) 20.11 3.19 20.42 3.72

Number 18 19
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Subsequent univariate analysis presented significant differences in the difficulty rating, 
F(2,30) = 5.955, MSE = 10.6, P = 0.022 < 0.05, but in the total score, F(2,30) = 2.910, 
MSE = 3.12, P = 0.099 > 0.05. In the low-level group, the cognitive load associated with 
learning from examples and problems simultaneously was significantly lower than that 
of using example-problem pairs; however, the learning achievement proved to be only 
marginally better. For students in the low-level group, learning from examples and prob-
lems simultaneously proved more effective and efficient than using example-problem 
pairs.

Exercise and test performance

These results indicate that for novice learners, learning from examples and problems 
simultaneously produces better test performance and lower cognitive load than does 
learning using example-problem pairs. Analysis of exercise scores showed a simi-
lar outcome. One-way analysis of variance on exercise scores with prior knowledge as 
a covariate showed a significant difference between conditions in the low-level group: 
F(2,30)  =  8.762, MSE  =  3.419, P  =  0.006  <  0.05, but not in the high-level group, 
F(2,37) = 3.416, MSE = 1.118, P = 0.073 > 0.05. Pearson correlation analysis of exercise 
scores and test performance scores showed a high correlation: 0.722, P < 0.001.

Discussion

On the basis of previous research results [12, 13, 16, 20], we propose that learning from 
examples and problems simultaneously might be more effective and efficient than learn-
ing from example-problem pairs in the initial learning phase, and note that the strategy 
does not lose its effectiveness for proficient learners. Our results indicate that learning 
from examples and problems simultaneously requires a significantly lower cognitive-
load investment than does learning from example-problem pairs for novice learners. 
One possible explanation for this is the fact that when learning from example-problem 
pairs, novice learners do not necessarily understand the problem-solving schema they 
have just studied. When they solve the problems, they must still use search strategies 
such as mean-ends analysis to deal with the interactive elements they did not fully com-
prehend, which can impose a high cognitive load. However, students possessing prior 
skills may be able to reconstruct the problem-solving schema when they study the exam-
ples. For them, learning from examples and problems simultaneously may appear similar 

Table 5  Means (SD) for  prior knowledge, difficulty, exercise and  test performance scores 
in the low-level group

Example-problem pairs Simultaneous example 
and problem

M SD M SD

Prior knowledge (maximum 6) 1.53 0.72 1.87 0.61

Difficulty (maximum 72) 56.00 8.43 44.07 14.11

Exercise (maximum 16) 9.00 4.15 12.87 1.56

Test (maximum 24) 12.27 6.28 16.53 5.35

Number 15 15
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to learning from example-problem pairs. This explanation does not conflict with previ-
ous studies, and it supports our finding that learners with better exercise scores in prob-
lem solving obtain better test scores.

Our results also indicate that learning from examples and problems simultaneously 
does not lead to failure in far-transfer tests. This challenges the traditional assumption 
that learning from examples and problems simultaneously will lead learners to imitate 
rather than understand. Our results are also consistent with CLT, which proposes that 
learning tasks that impose a lower cognitive load enable learners to obtain better scores 
in near-transfer problems as well as in far-transfer problems.

Our results demonstrate that difficulty ratings may provide a better index than do 
mental effort ratings as a measure of cognitive load. In fact, we found that many learners 
failed to understand the meaning of the mental effort scale, and that they treated it as 
an assessment of attitude. When they learned how to solve a simple problem, they gave 
a high rating for mental effort because they thought they had learned it very well. A dif-
ficulty rating scale is able to avoid this type of error.

To summarize, this study demonstrated that learning from examples and problems 
simultaneously can be effective and efficient for novices as well as proficient learners, 
but that the effect is more pronounced in novice learners.

Conclusion
This study investigated the effectiveness of learning from examples and problems simul-
taneously and example-problem pairs. Furthermore, we examined this problem within 
the context of novices as well as proficient learners. Our results demonstrate that for 
novice learners, learning from examples and problems simultaneously is more effective 
and efficient than learning from example-problem pairs. Using this strategy, learners 
earned better scores and they reported a significantly lower cognitive load. Among pro-
ficient learners, the difference between the strategies was not significant.

Abbreviation
CLT: cognitive-load theory.
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