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Background
Crowdsourcing, or crowd computing, is an important powerful approach to problem-
solving and critical information gathering, harnessing the power of the crowd, and crea-
tively combining machine and human computations [1–3]. Crowdsourcing can be used 
to do tasks that either no machine alone can do or where involving humans is better 
(e.g., CrowdDB [4]). Mobile crowdsourcing, i.e. crowdsourcing to mobile users, presents 
significant new opportunities and challenges, with enormous possibilities for human 
computations and tasks with spatial and temporal properties [5–12].

One important class of crowdsourcing applications is where information and tasks to 
be crowdsourced have spatiotemporal properties and are advantageously done by mobile 
device users (e.g., crowdsourcing for carpark spaces, locations of crowds, maps of areas, 
transport demand, emergency needs, photos/video at different locations of a parade, 
location of flora and fauna), different from general tasks that can be crowdsourced such 
as language translation or copy-editing. Such crowdsourcing may be done over extended 
periods of time and data centralised for analytics, or can be done in an ad-hoc real-time 
on-demand manner (e.g., issuing crowdsourced queries to assess a situation in the vicin-
ity within the next few minutes). Real-time crowdsourcing of queries can be useful, even 

Abstract 

Crowdsourcing has become a popular method for involving humans in socially-aware 
computational processes. This paper proposes and investigates algorithms for find-
ing regions of interest using mobile crowdsourcing. The algorithms are iterative, using 
cycles of crowd-querying and feedback till specified targets are found, each time 
adjusting the query according to the feedback using heuristics. We describe three 
(computationally simple) heuristics, incorporated into crowdsourcing algorithms, to 
reducing the costs (the number of questions required) and increasing the efficiency 
(or reducing the number of rounds required) in using such crowdsourcing: (i) using 
additional questions in each round in the expectation of failures, (ii) using neighbour-
hood associations in the case where regions of interest are clustered, and (iii) model-
ling regions of interest via spatial point processes. We demonstrate the improved 
performance of using these heuristics using a range of stylised scenarios. Our research 
suggests that finding in the city is not as difficult as it can be, especially for phenomena 
that exhibit some degree of clustering.

Keywords:  Mobile crowdsourcing, Spatial finding, Heuristics

Open Access

© 2016 Loke et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

RESEARCH

Loke ﻿Hum. Cent. Comput. Inf. Sci.  (2016) 6:4 
DOI 10.1186/s13673-016-0061-6

*Correspondence:   
s.loke@latrobe.edu.au 
Department of Computer 
Science and Information 
Technology, La Trobe 
University, Kingsbury Drive, 
Melbourne, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-016-0061-6&domain=pdf


Page 2 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci.  (2016) 6:4 

with prior information available (e.g., there is a database of historical traffic or car park-
ing availability for a given area) obtained from some source (e.g., either from stationary 
sensors or previous crowdsourcing efforts or other means) in order to obtain up-to-date 
information that can complement or update prior information, especially in the case 
where information can easily deviate from history (e.g., car parking), or historical data 
are too coarse-grained (e.g., the database only has average car park availability for a large 
area over days), or without any prior information, where the queries are to obtain new 
information about regions in the area, in a just-in-time on-demand manner. Real-time 
responsiveness in crowdsourcing is a challenge but methods have been explored mak-
ing it a real possibility. For example, Bernstein has done interesting work in preparing 
crowds via additional incentives in order to achieve real-time performance [13].

Crowdsourcing involves incentives, and hence, costs, such as monetary costs for pay-
ments for answers as well as efficiency costs, e.g., in terms of time taken to achieve an 
adequate response. Algorithms where humans are viewed as data processors have been 
explored for finding the maximum [14], filtering [15] and for finding a subset of items 
with a given property among a given unstructured collection [16], taking into considera-
tion the need to optimise cost and efficiency at the same time.

In this paper, we propose and investigate iterative crowdsourcing processes, based on 
work from [17], to find regions of particular interest (e.g., regions satisfying particular 
properties) from among a collection of regions, with all such regions within a given fixed 
size area, as typically seen in the context of mobile crowdsourcing, where the human con-
tributors (or workers) for crowdsourced tasks/queries are people within the area with 
mobile devices, so that queries or jobs posed to them (and their answers) have spatial 
properties. We also have in mind real-time crowdsourcing where results are intended 
for the here-and-now, rather than obtained over a long period of time, but our work 
does not deal specifically with strict real-time constraints.

In particular, we consider cases where association between regions can be exploited 
to reduce the costs and increase efficiency in crowdsourcing. Often, information about 
a region provides clues about information of its neighbouring regions: a region that is 
crowded might be adjacent to another crowded region or a polluted region might be 
adjacent to another polluted region, even if this is not always the case. We argue that this 
is the case for a number of real-world phenomena including car parking, 3G/4G band-
width, crowded areas, and noise pollution. So, for example, if one wants to use crowd-
sourced queries to find regions where there are car parks available, regions where there 
is currently high 3G/4G bandwidth, regions which are crowded, and regions with noise 
pollution above some threshold, then neighbourhood or proximity associations can be 
exploited.

In the rest of this paper, we first outline the spatial finding problem in "The spatial 
finding problem" section, and discuss possible solutions in "A crowdsourcing solution" 
section. Then, we introduce three heuristics for spatial finding in crowdsourcing and 
describe experimentation to demonstrate the effectiveness of the heuristics, a heuris-
tic using more queries than the minimal in "A heuristic that embraces failure: redun-
dant questioning" section and a heuristic using immediate neighbourhood associations 
in "A heuristic for spatial finding: neighbourhood associations" section, and a heuristic 
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using spatial point processes in "Experiments" section. We then review related work in 
"Related work" section and conclude in "Conclusion" section.

The spatial finding problem
The spatial finding problem is a simple variation of the problem first proposed in [17]. 
The basic version of the original problem is as follows: given a (large) set of items, a 
predicate, and a number k, use humans to find k items from the given set that satisfy a 
given predicate. An example of an instance of this problem is given as follows: “Consider 
a data set I of images, from which we want to find 10 images that satisfy a predicate or 
flter f, e.g., whether it is a photo of a cat. We consider each image, and ask humans the 
question, e.g., ‘does this image show a cat?’ Suppose on average that 20 % of the photos 
are of cats. For the purposes of this example, we assume that humans do not make mis-
takes while answering questions.” A solution to the above problem might be sequential 
(to ask about one image at a time) and stop whenever 10 images are found; this algo-
rithm is cost-optimal asking only as many questions as needed, but could take a long 
time (requiring many rounds of questioning)—the cost and latency depends on which 
images are picked. Another solution is to consider asking about all images in parallel; 
this is fast (requiring only one round of questioning), but is costly since one needs to 
pay for all the questions asked. A third possible solution which is between the first and 
second solution in terms of the cost-latency tradeoff is to ask (10− x) questions at the 
current round of questioning, if we already found x cat images so far.

This original version does not deal with spatial properties of items as we do in this 
paper. We define below a spatial version of the above problem and while we explore the 
above solution ideas, we consider spatial heuristics for picking items to ask about. The 
general notion of cost-latency tradeoffs, however, also applies here.

Our Problem Assume a a large area R partitioned into n regions {r1, . . . rn}. The problem 
is to find a set S ⊆ R of at least k ≤ n regions, each of which evaluates to true for a given 
predicate F representing some criteria, i.e. F(r) = TRUE, for each r ∈ S. We also want 
to solve this problem with the lowest cost (assuming we need to pay to get a question 
about a region answered) and in a most efficient way (the number of rounds of questions 
required).

For example, we want to find at least k regions with available car parking spaces, and 
can divide a large area into a set of regions, about which we can then ask the crowd 
about, but each time we ask the crowd about a region, we assume that we incur a cost. 
Another example is to find a not-so-crowded cafe and can issue a query to find at least 
k regions with a not-so-crowded cafe, answers being given by people near or within the 
region. A third example is to find a high bandwidth (WiFi, 4G or otherwise) region.

There are two factors to deal with in any solution to the problem. One is the cost, 
where we assume that each time a query is issued to find out about a region, a cost φ is 
incurred (which includes the cost of issuing the query as well as incentives paid for an 
answer to the query) so that if we ask about k regions, we incur a total cost of k . · φ. The 
other is efficiency which we define to be the number of rounds of querying required, 
where in each round, a set of queries is issued in parallel to find out about a particular 
chosen set of regions (assuming one query per region).
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While we do not prescribe the mechanism used by users to issue queries to other 
users, we assume that some cost is incurred per query issued (or per answer about a 
region obtained). We assume, for simplicity, here that each query issued is always 
answered, and answered accurately and truthfully. The cost could be measured in differ-
ent forms, e.g., to the query issuer, the cost could be a monetary incentive to a user pro-
viding an answer about a query (about a region). This means that a general mechanism 
to ask everyone could incur a high cost if everyone actually answers, as we discuss below.

A crowdsourcing solution
An initial solution to the above problem is to simply adapt the solutions from [16], which 
was initially developed to find particular items from a database of items: assuming that 
each region is an item requiring a binary answer YES or NO (TRUE or FALSE), we have 
the algorithm below which is to find particular regions from a collection of regions. Note 
that YES/NO questions are very easy for users to respond to (but of course, tend to pro-
vide less information than more general responses).

Given a set of regions R and α which denotes the fraction of regions (we call posi-
tive regions) of R where F evaluates to TRUE (and the rest of the regions, F evaluates to 
FALSE, and we assume that α > 0), and assuming that we are finding k positive regions 
from R, where there are at least k regions that can satisfy F, i.e., k ≤ |R| · α, we have 
Algorithm 1.

While we have not found enough regions and while there are still regions from R that 
are not yet observed, we iteratively choose a subset of regions to observe, and this sub-
set is according to choose Candidates (k ,D,R\O), a version of which is shown in Algo-
rithm 2. In Algorithm 1, ask Crowd About(C) issues |C| queries in parallel to ask about 
regions in C, and in practice, would have a maximum wait time. Algorithm 1 terminates 
either when k regions satisfying F are found and/or when all regions in R have been 
observed.
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Depending on how we choose the candidates, three solutions are possible:

1	 It has been shown from  [16] that a way to minimise total cost is to ask about one 
region at a time (say, in any order) and stopping whenever k regions are found sat-
isfying the criteria, so that we never ask more questions than required or get more 
than k positive answers; only in the worst case, this scheme can lead to |R| rounds.

2	 A more expensive solution but very efficient (requiring one round) is to ask |R| ques-
tions about all the regions in parallel. This could be done, for example, by posting a 
query like ‘where can I find a parking spot?’ on a wide-audience medium, such as a 
(mobile accessible) Website say, and anyone or everyone in any region can answer the 
question; in effect, we are asking about all regions at the same time. Since we assume 
that a query about any region is always answered, the cost is then |R| · φ. Now, suppose 
we want a solution that can achieve a cost less than |R| · φ. To find k positive regions, 
note that a method to do this might be to issue |R| queries and then wait for a certain 
fixed period of time for k positive responses and paying for all the first K ≥ k answers 
obtained on a first-come first-serve basis1—however, this has already incurred costs in 
issuing the |R| queries and also paying for what may be largely K−k negative answers; 
to avoid such costs, we want to select regions to ask about (reducing the cost of issuing 
queries) and focus search queries to where there is a higher likelihood of getting a posi-
tive response. For each query issued on a region, the first answer obtained could be 
used and paid for, or it could be obtained via taking a majority vote of the first z answers 
(where z is the number of answers that can be paid for from the budget φ).

3	 A third solution which aims to minimise cost and maximise efficiency at the same 
time is as follows, which will be the main focus in the rest of this paper. In each 
round, we ask no more questions than that required if all the answers were positive. 
More precisely, in round i, if ki < k regions have already been found where F evalu-
ates to TRUE, in parallel, we ask questions about a further k − ki regions which we 
have not asked the crowd about previously. It can be seen that this solution never 
asks more questions than required in this case, and hence, minimises cost, but at the 
same time, would provide a means to finish in fewer rounds than solution (1). More 
precisely, chooseCandidates(k ,D,R\O) is as in Algorithm 2.

	 This algorithm is essentially that in  [16] but tailored to spatial finding, where it was 
shown that the total number of questions it requires is comparable to solution (1), 
when both are operating on the same input.

1 
K−k if we have that only positive responses need reply. Sometimes, no reply could be taken as a negative response.
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	 A key feature of the algorithm is how chooseCandidates(·) actually selects the regions 
to ask about. In contrast to Algorithm 2 which, in each round, randomly selects a 
region to ask about (which we call the random spatial crowdsourcing), the algorithm 
we propose later will use a neighbourhood association heuristic to select regions to 
ask about which will be called associative spatial crowdsourcing. We first discuss the 
performance of two versions of random spatial crowdsourcing below, one without a 
heuristic as above and another with a heuristic that embraces failure.

Analysis of spatial crowdsourcing via solution (3) In the worst case, the total cost is |R| · φ 
with the largest number of rounds |R|. The best case total cost is k · φ with the least 
number of rounds being 1.

Let us consider the average case. We describe the typical case of the algorithm via a 
success factor 0 < σ ≤ 1, where we assume that in each round, the fraction of queries 
answered positively with F evaluating to TRUE is σ. In random spatial crowdsourcing, 
we would have σ = α, where α, as given earlier, is the proportion of regions in R where 
F evaluates to TRUE, since our choice of regions to ask about in each round is random.

The algorithm uses k queries in round  1, k−⌈k · σ⌉ queries in round  2, given 
an expected ⌈k · σ⌉ successes from round  1, (k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉ 
queries in round  3, given ⌈(k−⌈k · σ⌉) · σ⌉ successes from round  2, 
(k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉−⌈((k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉) · σ⌉ queries in 
round 4 and so on. In general, let Q(k) denote the total number of queries used to find k 
positive regions using the algorithm. Then, Q is given by:

The reason for this is that with a success rate of σ, to find n positive regions, we first 
use n queries to find ⌈n · σ⌉ successes, and then to find the remaining n−⌈n · σ⌉ positive 
regions, we use Q(n−⌈n · σ⌉) questions.

Thus, to look for k positive regions, the total cost of the algorithm is Cost(k) = φ · Q(k) .
The number of rounds taken by the algorithm is T(k), where the function T is as given 

by the following:

We will use the following lemma later. (The Appendix contains proofs of all lemmas and 
theorems.)

Lemma 1  The function T is monotonically increasing, i.e. for any m, T (n) ≥ T (m) for 
all n ≥ m.

Intuitively, a larger σ can improve performance both of the cost and number of rounds 
of the algorithm. But α is assumed fixed, and so, we introduce heuristics to increase the 
success rate of queries in each round.

Q(0) = 0

Q(n) = n+ Q(n−⌈n · σ⌉)

T (0) = 0

T (n) = T (n−⌈n · σ⌉)+ 1



Page 7 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci.  (2016) 6:4 

A heuristic that embraces failure: redundant questioning
We set σ = α which means that we use the proportion of regions in R where F evalu-
ates to TRUE as an estimate of the success factor. Now, since each query only has an α 
chance of success, we can improve performance by having more queries in each round 
as also noted in 17]: we will have γ times more, where 1 ≤ γ ≤ 1/α. Note that if γ = 1 
means zero redundancy as in the solution above in "A crowdsourcing solution" section. 
That is, we can obtain k regions faster by having γ · (k−ki) queries in the next round 
i + 1, where ki is the number of regions found to be TRUE so far, up to and includ-
ing round i. In round i + 1, by asking more queries, the number of successes is then 
⌈(number of queries) · α⌉ = ⌈(γ · (k−ki)) · α⌉.

This slight variation to solution (3) above is given by the definition of 
chooseCandidates(·) in Algorithm 3.

We call this random spatial crowdsourcing with redundancy (RSC-R), when γ > 1, and 
random spatial crowdsourcing with no redundancy (RSC-NR) when γ = 1 (the algorithm 
given earlier). In general, let Q′

γ (k) denote the total number of queries used to find k 
positive regions using this algorithm. Then, Q′

γ is given by:

To find n positive regions, RSC-R starts with ⌈γ · n⌉ queries, finding ⌈⌈γ · n⌉ · σ⌉ 
positive regions, and then to find the remaining (n−⌈⌈γ · n⌉ · σ⌉) regions, it uses 
Q′
γ (n−⌈⌈γ · n⌉ · σ⌉) queries.

Lemma 2  Given γ, the function Q′
γ is monotonically increasing, i.e. for any m, 

Q′
γ (n) ≥ Q′

γ (m) for all n ≥ m.
Thus, to look for k positive regions, the total cost of the algorithm RSC-R is 

Cost ′γ (k) = φ · Q′
γ (k).

For a given γ ≥ 1, and a given requirement k, the number of rounds is T ′
γ (k), where T ′

γ is 
given by the function:

We also have the following relationship between the number of rounds taken by 
RSC-R (denoted by T ′) and the number of rounds taken by RSC-NR (denoted T).

Q′
γ (0) = 0

Q′
γ (n) = ⌈γ · n⌉ + Q′

γ (n−⌈⌈γ · n⌉ · σ⌉)

T ′
γ (0) = 0

T ′
γ (n) = T ′

γ (n−⌈⌈γ · n⌉ · σ⌉)+ 1
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Theorem  1  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have 

T ′
γ (n) ≤ T (n).
And the following relationship between the cost of RSC-R (denoted by Cost ′) and the cost 

taken by RSC-NR (denoted Cost).

Theorem  2  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have 

Q′
γ (n) ≤ ⌈γ ⌉ · Q(n), i.e. Cost ′γ (n) ≤ ⌈γ ⌉ · Cost(n).
Theorem 1 means that RSC-R can result in fewer rounds than RSC-NR, but according to 

Theorem 2, it is no worse than a factor of  ⌈γ ⌉ in terms of costs.
We conducted experiments with this technique of posing more queries (with the expec-

tation of σ = α proportion of successes) in each round to see how it helps the performance 
and how much extra costs it incurs.

Experiments

Typical run

In comparing RSC-NR and RSC-R, we use the area illustrated in Fig. 1a, where the ‘1’s 
represent regions where F evaluates to TRUE and the ‘0’s represent regions where F 
evaluates to FALSE, with σ = α = 0.2075. In a run with k = 20, and the total number 
of regions is 1600 (40 × 40 grid), Fig. 1b shows the observed regions as a result of run-
ning RSC-NR which completed in nine rounds with 73 questions (73 regions observed). 
The execution proceeded as follows in this run, showing the number of questions asked 
in each round, and the number of ‘1’ regions found from asking those questions in that 
round: 
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Fig. 1  A test scenario with RSC-NR, and the observed regions after finding k = 20 positive regions. a Test 
Scenario: 1600 regions, the number of ‘0’s is 1268 (79.25 %); the number of ‘1’s is 332 (20.75 %). b Observed 
regions from RSC-NR; after 73 questions, nine rounds
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20 qns in round 0, found:6
14 qns in round 1, found:4
10 qns in round 2, found:3
7 qns in round 3, found:0
7 qns in round 4, found:1
6 qns in round 5, found:1
5 qns in round 6, found:2
3 qns in round 7, found:2
1 qns in round 8, found:1

In a run from RSC-R with γ = 2.41, we get: 

49 qns in round 0, found:9
27 qns in round 1, found:6
13 qns in round 2, found:1
10 qns in round 3, found:1
8 qns in round 4, found:3

 It can be seen that asking more (redundant) questions each round results in a larger 
number of ‘1’s found resulting in a faster convergence, in five rounds, instead of nine 
rounds as in RSC-NR. But the total number of questions asked is 107 questions instead 
of 73. In an extreme case, in a run from RSC-R with γ = 4.82, only one round is enough 
but with 97 questions asked.

Comparing RSC‑NR and RSC‑R

We compare the performance of RSC-NR and RSC-R using different values of k = 20 
and different kinds of distributions of positive regions, but with the total number of 
regions being 1600 (40 ×  40 grid). Below, we give the average number of rounds and 
average number of question asked over 1000 runs. Note that RSC-NR is the case of 
RSC-R with γ = 1.

With σ = α = 0.315625 (i.e., 31.5625 % of positive regions represented as ‘1’s), we gen-
erated a scenario similar to that in Fig. 1a but with more 1s. Setting k = 20, and averag-
ing over 1000 runs, the results for 31.5625 % are shown in Fig.  2b, where the horizontal 
axis is labelled with different values of γ. Similar experiments were carried out with dif-
ferent values of α on 40 × 40 scenarios with randomly distributed positive regions, but 
with varying percentages of positive regions, with results shown in Fig. 2a, c–f. We make 
the following observations:

• • It can be seen that even for all values of α tested, using additional questions in each 
round can substantially reduce the number of rounds even to 1, without substantially 
increasing the number of questions asked, since convergence is quick. For example, 
averaging over 1000 runs, with α = 0.40125 in Fig. 2a, with γ = 1.246, we use a total 
of four rounds on average with 50 questions on average, compared to using seven 
rounds on average and 49 questions on average with γ = 1 (or no redundant ques-
tions), and with γ = 2.492, only 1 round is used on average, with 53 questions used 
on average.

• • When α is smaller, the cases where ‘1’s are sparse and harder to find, we see that 
more questions are asked with RSC-R but resulting in much greater reduction in the 
number of rounds. For example, with α = 0.110625, 0.050625, 0.034375 in Fig. 2d–
f, increasing γ results in a substantial drop in the number of rounds (e.g., 31 to 11, 
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69–12, and 100–12), with only a small increase in the number of questions asked on 
average.

• • In all cases of α tested, for a large enough γ, on average, asking 11 % more questions 
in total can lead to a reduction to only 1 round required.

In summary, the above results show that additional questions in each round lead to 
faster convergence towards the required number of positive regions (i.e., taking fewer 
rounds), though asking more questions in earlier rounds. And the faster convergence 
offsets the larger number of questions asked in earlier rounds so that, overall, only a 

Fig. 2  Comparing RSC-R and RSC-NR: the number of rounds and number of questions averaged over 1000 
runs (vertical axis) for varying γ (horizontal axis) for different values of α. a Results with α = 0.315625. b Results 
with α = 0.315625. c Results with α = 0.193125. d Results with α = 0.110625. e Results with α = 0.050625

. f Results with α = 0.034375.
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small percentage increase in the total number of questions is required, i.e. there is only a 
relatively small price to pay for faster results.

Discussion

The results show that if we ask 1 < γ ≤ 1
α

 more questions (the additional questions are 
so-called redundant questions) than the minimum required in each round, we can sig-
nificantly reduce the number of rounds, and because we reduce the number of rounds, 
we end up asking only a small number of additional questions than we needed to in 
total, compared to no redundancy. We see that this result holds for a large range of 
scenarios. However, it must be noted that the gains are greater only when α is small 
and large enough γ, and the value of γ relies on some prior knowledge (or estimate) of 
α, which might be difficult to obtain in practice; using too small a γ does not result in 
much improvements in efficiency but using too large a γ wastes questions. The result 
of average 1 round in Fig. 2a–f are all obtained with γ having the value approximately 
1
α

, as each of the k · 1
α

 questions randomly chooses a region with 1
α

 chance of being 
positive.

RSC-R above fails to take into account the clustering of positive regions. For example, 
Fig. 3a, b have similar results, as shown in Table 1. We examine a heuristic that takes 
advantage of such clustering in the next section.
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Fig. 3  Two regions with roughly 40 % of positive regions but different in the amount of clustering. a Region 
with α = 0.40125 but more clustering. b Region with α = 0.418125 but less clustering

Table 1  Results for  α = 0.418125 (α = 0.40125) with  less clustering (more clustering), 
averaged over 1000 runs

γ 1 (1) 1.196 (1.246) 2.392 (2.492)

Avg. no. of questions 47 (49) 48 (50) 52 (53)

Avg. no. of rounds 6 (7) 4 (4) 1 (1)
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A heuristic for spatial finding: neighbourhood associations
In the case where we know nothing about the unobserved regions, any selection is 
as good as any other. The solutions have not so far considered the case where know-
ing something about a region tells us something about another region. For example, we 
assume initially no information, i.e. F(r) = TRUE with probability α (and F(r) = FALSE 
with probability 1−α). The value of α may be estimated from some initial density meas-
ure if there is some a priori information, but here, we take α to be the true proportion of 
regions in R that satisfy F. Hence, the success factor σ has been approximated via α in the 
experiments above.

It can be seen from the definitions of Q, Q′, T and T ′ above and their monotonically 
increasing properties that if σ was to increase, we can reduce the number of questions 
and the number of rounds. In this section and the next section, we consider heuristics 
that can improve the success factor in each round of querying.

Given direct observation of a region, then F(r) must evaluate to true or false, but with-
out direct observation of a region, we can only compute the probability of F(r) being true 
or false in some way. Note that we say we observe a region whenever we ask the crowd a 
question about it.

To estimate Pr(F(r) = TRUE) given that r has not been observed, we introduce the 
neighbourhood association factor δ (>0) which represents the informational relationship 
between neighbouring regions, where knowing something certain about a region q tells 
us something about its neighbouring region, i.e., if r and p are two neighbouring regions, 
then if we observed that F(q) = TRUE, but have not observed r, then, we set:

where δ is chosen so that 0 ≤ α · (1+ δ) ≤ 1, and also, if we directly observed that 
F(q) = FALSE, using Baye’s rule:

For example, if α is 0.5 and δ is 0.1, then Pr(F(r) = TRUE | F(q) = TRUE) = 0.55 > 0.5 . 
In other words, as we observe more regions, given the association among regions, we 
might be able to do better than randomly selecting a set of regions to ask about in each 
round; we can select regions with a higher probability of evaluating F to TRUE based on 
such association information. Also, if a region should be false with probability 1−α, on 
observing that its neighbour is TRUE, its probability of being FALSE is reduced.

More precisely, let N be a function that returns the immediate neighbours of a region, 
i.e. N (r) ⊆ R is the set of regions sharing a boundary with r defined in some way. N(r) 
would have eight members at most if R is divided into a grid of rectangular regions 
(including diagonally adjacent regions).

Pr(F(r) = TRUE | F(q) = TRUE) = α · (1+ δ)

Pr(F(r) = FALSE | F(q) = TRUE) = 1−α · (1+ δ)

Pr(F(r) = TRUE | F(q) = FALSE)

= Pr(F(r) = TRUE) ·
Pr(F(q) = FALSE | F(r) = TRUE)

Pr(F(q) = FALSE)

= α ·
1−α · (1+ δ)

1−α

Pr(F(r) = FALSE | F(q) = FALSE) = 1−α ·
1−α · (1+ δ)

1−α
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From the point of view of the unobserved region r, it is possible that multiple neigh-
bouring regions have been observed, and so, we need to combine the influence from 
multiple observed neighbours.

For example, for a given region, if one of its neighbours q1 is found that F(q1) = FALSE 
and another two neighbours q2 and q3 are such that F(q2) = F(q3) = TRUE, then by 
Bayes’ rule (where H = α · (1−α · (1+ δ)) · (α · (1+ δ)) · (α · (1+ δ)):

Given a region r, and that we observed some subset of the neighbours of r, say 
(A ∪ B) ⊆ N (r), where A are neighbours where F evaluated to FALSE and B are neigh-
bours where F evaluated to TRUE, then using obs(N(r)) to denote the observed neigh-
bours of r, by a Bayesian approach of combining information, we have what we call the 
neighbourhood formula, where H ′ = α · (1−α · (1+ δ))|A| · (α · (1+ δ))|B|:

Note that the above is merely a heuristic for estimating the probability of a region sat-
isfying F; our guess could turn out completely wrong upon observation, i.e. given cur-
rent observations obs, we estimate that Pr(F(r) = TRUE | obs) > 0.5 but we later may 
observe that F(r) = FALSE. Also, for simplicity, we have taken a Markov-inspired 
assumption in that we compute the probability based only on observed regions in the 
neighbourhood of r, and do not consider any influence from regions beyond the neigh-
bourhood, i.e., using obs (R) to denote observed regions in the entire area R:

Pr(F(r) = TRUE | obs(N (r)) ) = Pr( F(r) = TRUE | obs(R)).

If we are using solution (3), in each round i, for simplicity, we compute probabilities 
only for regions not yet observed, with the aim of choosing the k−ki regions most likely 
to evaluate F to TRUE, and we use only observed information. For example, an unob-
served region r that has no observed neighbours will have Pr(F(r) = TRUE) = α even if 
all its unobserved neighbours q have estimated Pr(F(q) = TRUE | obs) > α given some 
observations obs.

In the previous random spatial crowdsourcing algorithm, in SpatialCrowdsourcing (k, 
F, R) given above, chooseCandidates(c,R\O) chooses c candidates from R\O in a random 
way, and in the associative spatial crowdsourcing algorithm, chooseCandidates(c,R\O ) 
chooses c candidates from R\O by selecting the c regions with the highest probability 
of F evaluating to TRUE, i.e., for each region r ∈ R\O, we compute the probability of 
F(r) = TRUE using the neighbourhood formula above and select c regions with the 

Pr(F(r) = TRUE | (F(q1) = FALSE ∧ F(q2) = TRUE ∧ F(q3) = TRUE))

=
H

H + (1− α) ·
(

1− α · 1−α·(1+δ)
1−α

)

·
(

α · 1−α·(1+δ)
1−α

)

·
(

α · 1−α·(1+δ)
1−α

)

Pr

(

F(r) = TRUE |
∧

p∈A
(F(p) = FALSE) ∧

∧

q∈B
(F(q) = TRUE) ∧ (A ∪ B) = obs(N(r))

)

=
H

′

H ′ + (1− α) · (1− α · 1−α·(1+δ)
1−α

)|A| · (α · 1−α·(1+δ)
1−α

)|B|
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highest probabilities according to the formula, randomly selecting among equal prob-
ability regions.

This slight variation to solution (3) above using neighbourhood association is given by 
this definition of chooseCandidates(·) in Algorithm 4.

Experiments with randomly generated area maps

We study the effect that the extent of clustering has with the use of this heuristic as k 
varies and as δ is varied. In the first set of experiments, we generate area maps with α set 
to values within the range [0.15, 0.20] and clustering introduced so that where whenever 
there are three ‘1’s surrounding a region, the region will be a ‘1’ (otherwise the region is 
either ‘1’ or ‘0’ with equal probability).

Figure  4 shows the results of associative spatial crowdsourcing compared with ran-
dom spatial crowdsourcing (RSC-NR) as k is varied for a range of δ values—the number 
of questions used and the number of rounds used are averages over 1000 runs with the 
same region map. It can be seen that with even small δ(=0.1), associative spatial crowd-
sourcing yields, on average, both a significant reduction in both the number of questions 
used (up to 30–40 %) and the number of rounds required to find the k positive regions 
(as low as a third or half of the number of rounds required with RSC-NR). The reduc-
tions are proportionately larger with larger k. Larger values of δ(>0.1) do not seem to 
yield much improvement.

Note, however, that with little clustering, associative spatial crowdsourcing provides 
little to nor advantage, and can even do slightly worse in case it assumed clustering when 
there wasn’t any. However, as we show in the following examples, contiguous and clus-
tered regions (fortunately) occur in a range of real-world scenarios. Below, we use maps 
sourced from real-world applications as a starting point representing the current state of 
the world from which we want to find regions of interest.

Experiments on finding parking

We consider using spatial crowdsourcing to look for regions with parking spaces. For 
our experiments, we use a parking map abstracted from a San Francisco parking cen-
sus data, dividing an area into 26 × 20 regions, as illustrated in Fig. 5, which shows the 
location of parking lots. The problem we address here is then: given the parking map, 
which we assume here captures the current state of the world with regard to parking in 
that area, we want to find k = 5 or k = 40 regions where there is parking available, using 
crowdsourcing. (Note that, in reality, there could be fewer regions with available parking 
since some of the parking spaces would have been taken up.) Hence, a query will ask if 
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Fig. 4  The number of rounds and number of questions averaged over 1000 runs (vertical axis) for varying 
δ (horizontal axis) for different values of k while maintaining a similar α. a Average, median and std. dev. for 
number of questions with k = 5 and α = 0.175 as δ varies. b Average, median and std. dev. for number of 
rounds with k  =  5 and α = 0.175 as δ varies. c Average, median and std. dev. for number of questions with 
k  =  20 and α = 0.179375 as δ varies. d Average, median and std. dev. for number of rounds with k = 20 
and α = 0.179375 as δ varies. e Average, median and std. dev. for number of questions with k = 40 and 
α = 0.189375 as δ varies. f Average, median and std. dev. for number of rounds with k = 40 and α = 0.189375 
as δ varies. g Average, median and std. dev. for number of questions with k = 100 and α = 0.195625 as δ var-
ies. h Average, median and std. dev. for number of rounds with k = 100 and α = 0.195625 as δ varies
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there are parking spaces in a region of size 37 by 37 m, and for simplicity, answers are 
binary, YES or NO, and we assume truthfulness in answers given.

Figure 6 shows the average over 1000 runs of results (number of questions and num-
ber of rounds) with two values of k (5 and 40). The median and standard deviation 
are included to indicate there is a fair amount of variability between runs. With k =  5 
in Fig.  6a, b, we see that with large enough δ (e.g., 1.7), i.e., using a strong association 
between neighbouring positive regions), the algorithm can effectively zoom in on posi-
tive regions faster than a random approach (RSC-NR, i.e., δ = 0), resulting, on average, 
with both 40 % reduction in the number of rounds and 25 % reduction in the number 
of questions used at the same time, i.e., it is not a trading off rounds with questions but 
reduction in both. However, with the standard deviation of sometimes over 40 % of the 
average rounds and questions, there is substantial variability among runs so that gains 
can be small. A similar result is observed for k = 40, 100 in Fig. 6c–h with proportion-
ate reductions in the number of rounds and questions, on average. The type of clustering 
observed in the parking map made it susceptible to gains using our neighbourhood asso-
ciation heuristic. As before, gains can be obtained just with δ = 0.1, with little improve-
ments for δ > 0.1.

Experiments on finding crowds

In this experiment, we are simulating the use of crowdsourcing to find where the crowds 
are in a city or urban setting. We use a crowd map obtained from the MIT Citysense 
project,2 abstracted into 126  ×  148 regions, each region corresponding to roughly 
28.5 × 28.5m in size. Figure 7 illustrates the map we use that, we assume here, repre-
sents the current real state of the urban area, and the problem is then, given this state of 
the world, to find k  =  5, 40, 100 or 3000 regions where there are crowds, using 

2  http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html.

a

00000000111101100001000000
00000000000000000001000000
00001000000100110000000100
10000001001011010000000110
10000011011000000000000000
10000000001000000000010000
00000001000101001000111000
00000001101101100000000010
01101100101100000000001010
01000100111110000000000000
11000000110010000000000000
10000000100000000001000100
11000001000000000000001100
11000000000000011010001100
00000001010100111111000000
00000000010101100010000000
00000101100000110000000010
00000000100000110000000010
00000000001011010000000000
00000000000000000000000000

b

Fig. 5  Parking map and its abstract version. a Parking map from http://sfpark.org/resources/parking-
census-data-context-and-map-april-2014/, of size roughly 1 by 0.7 km; pink regions have parking spaces.  b 
Abstracted discretized view of parking map with α = 0.2076923076923077 with 26 × 20 regions, each region 
corresponding to roughly 37 by 37 m; ‘1’s representing regions with parking spaces.

http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html
http://sfpark.org/resources/parking-census-data-context-and-map-april-2014/
http://sfpark.org/resources/parking-census-data-context-and-map-april-2014/
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crowdsourcing. Again, for simplicity, we assume binary answers to a query on each 
region: is there a crowd here or not?

Figure 8 shows our results when finding k = 5, 20, 40, 100 and 3000 crowded regions. 
Similar to the previous case study, our results show a considerable reduction (up to 
70  %) in the number of rounds required and up to 60  % reduction in the number of 
questions required, on average, with k = 5, 100 and 3000. This is due to the clustering in 
the crowd map, which is to a higher degree than in the parking map. These results show 

Fig. 6  Results averaged over 1000 runs (vertical axis) for varying δ (horizontal axis) for four different values 
of k for the parking map scenario.  a Average, median and standard deviation for number of questions with 
k = 5 as δ varies. b Average, median and standard deviation for number of rounds with k = 5 as δ varies. (c)
Average, median and standard deviation for number of questions with k = 20 as δ varies. d Average, median 
and standard deviation for number of rounds with k = 20 as δ varies. (e)Average, median and standard devia-
tion for number of questions with k = 40 as δ varies. f Average, median and standard deviation for number 
of rounds with k = 40 as δ varies. g Average, median and standard deviation for number of questions with 
k = 100 as δ varies. h Average, median and standard deviation for number of rounds with k = 100 as δ varies.
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that neighbourhood association can be extremely useful in knowing which regions to 
ask about when looking for crowded regions—neighbouring regions tend to be crowded.

Experiments on finding coverage/bandwidth

In this experiment, we simulate finding regions where there is coverage (or adequate 
bandwidth) for 3G/4G networking. The assumed current coverage/bandwidth map is 
taken from OpenSignal as illustrated in Fig. 9. We want to find k = 5, 20, 40, 100 or 1000 
regions where there is coverage, using crowdsourcing. We have 103 × 77 regions, each 

a



b

Fig. 7  Crowd map and its abstract version. a Crowd map from Citysense project (http://www.sensysmag.
com/spatialsustain/citysense-app-aims-to-connect-tribes.html) of size roughly 3.6 by 4.2 km; red regions are 
where the crowds are.  b Abstracted discretized view of crowd map with α = 0.1968039468039468, with 
126 × 148 regions, each region corresponding to roughly 28.5 × 28.5m; ‘1’s (or lighter regions) representing 
regions with crowds

http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html
http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html
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region corresponding to roughly 100 by 100 m in size. Each query will determine if each 
such region has 3G/4G coverage or adequate bandwidth.

Similar to the previous two experiments, from Fig. 10, a significant reduction (up to 
60 %) in the number of rounds required can be achieved and 40–50 % reductions in the 
number of questions required are observed, with all values of k used.

Fig. 8  Results averaged over 1000 runs for varying δ for different values of k for the crowd map scenario.  a 
Average, median and standard deviation for number of questions with k = 5 as δ varies. b Average, median 
and standard deviation for number of rounds with k = 5 as δ varies. c Average, median and standard devia-
tion for number of questions with k = 20 as δ varies. d Average, median and standard deviation for number 
of rounds with k = 20 as δ varies. e Average, median and standard deviation for number of questions with 
k = 40 as δ varies. f Average, median and standard deviation for number of rounds with k = 40 as δ varies. g 
Average, median and standard deviation for number of questions with k = 100 as δ varies. h Average, median 
and standard deviation for number of rounds with k = 100 as δ varies. i Average, median and standard devia-
tion for number of questions with k = 3000 as δ varies. j Average, median and standard deviation for number 
of rounds with k = 3000 as δ varies
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A heuristic based on spatial point processes
To go beyond simple immediate neighbourhood influences, we explore an alternative 
heuristic for choosing potential regions to query about, i.e. to guess the location of posi-
tive regions (labelled ‘1’s) within an area, based on modelling the distribution of positive 
regions using spatial point processes [18].

Suppose that an area R has been divided into I disjoint subareas R1,R2, . . .RI, i.e. each 
Ri has a set of regions. At time t, for a subarea Ri, positive regions are assumed to be 
distributed according to a Poisson process with intensity �i(t) (where intensity here is 
defined to be the average number of positive regions per unit area, or the potential of 
an event to appear at any location). The expected number of positive regions in area Ri 
is given by �i(t) · |Ri|, where |Ri| denotes the size of (or the number of regions in) Ri, and 
the positive regions in Ri are assumed distributed uniformly within Ri.

Now, for p > 1, suppose that after round (p− 1), we have observed Np regions 
r1, . . . , rNp (some of which are observed to be positive and some negative). We would 

a



b

Fig. 9  Coverage map and its abstract version. a 3G/4G coverage map from http://opensignal.com/ of a part 
of New York city, of size roughly 10 by 8 km; orange regions have 3G/4G coverage. b Abstracted discretized 
view of coverage map with α = 0.1784138191905182 with103 × 77 regions, each region corresponding to 
roughly 100 by 100 m; 1s representing regions with coverage

http://opensignal.com/
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like to obtain the intensity at any region r ∈ R, as an estimate of the probability of the 
region r being positive. To obtain an estimate of the intensity at any r ∈ R, taking into 
consideration contributions of both observed positive and negative regions, we use the 
Nadaraya-Watson kernel weighted average, with bandwidth h:

�̂h(r) =

∑Np

i=1(Kh(r, ri) · F(ri))
∑Np

i=1 Kh(r, ri)

Fig. 10  Results averaged over 1000 runs for varying δ for different values of k for the coverage map scenario. 
a Average, median and standard deviation for number of questions with k = 5 as δ varies. b Average, median 
and standard deviation for number of rounds with k = 5 as δ varies. c Average, median and standard devia-
tion for number of questions with k  =  20 as δ varies. d Average, median and standard deviation for number 
of rounds with k = 20 as δ varies. e Average, median and standard deviation for number of questions with 
k = 40 as δ varies. f Average, median and standard deviation for number of rounds with k = 40 as δ varies. g 
Average, median and standard deviation for number of questions with k = 100 as δ varies. h Average, median 
and standard deviation for number of rounds with k = 100 as δ varies. i Average, median and standard devia-
tion for number of questions with k = 1000 as δ varies. j Average, median and standard deviation for number 
of rounds with k = 1000 as δ varies
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with a Gaussian kernel:

where |r− ri| denotes the Euclidean distance between regions r and ri (computed using 
their coordinates), and h is the standard deviation.

Note that we recompute the intensity after each round since we observe more regions 
after each round and so can improve the model after each round. The method for 
chooseCandidates(·) in the spatial crowdsourcing algorithm then chooses the c regions 
with the highest �h(·).

Below, for short, the associative spatial crowdsourcing algorithm using the immedi-
ate neighbourhood heuristic given in the previous section is termed ASC-IN, and the 
associative spatial crowdsourcing algorithm using the spatial point process modelling is 
termed ASC-SPP.

Experiments with a randomly generated map

Here, we generated a random scenario with around 25  % of positive regions (or ‘1’s), 
where there is some clustering but immediate neighbourhoods with contiguous regions 
of ‘1’s are purposely reduced. We conducted a larger number of runs to compare RSC-
NR, ASC-IN (with δ = 0.1) and ASC-SPP, taking average values for questions and 
rounds. Figure 11 shows examples of observed regions for ASC-CPP and ASC-IN. With 
k = 40, a run of ASC-SPP is shown in Fig. 11a. This can be compared to the run of ASC-
IN (with δ = 0.1 only, since larger values do not improve performance as can be seen 
from the previous section) shown in Fig.  11b. It can be seen that ASC-SPP is able to 
focus on areas with higher density of ‘1’s without necessary getting ‘stuck’ at exploring 
immediate neighbourhoods as in ASC-IN, and as we expect, this has resulted in better 
performance for this scenario.

Figure 12 shows the results (questions and rounds) for k = 5 and 40. It can be seen 
that ASC-SPP performs better in such a scenario where immediate neighbourhoods of 
positive regions are mostly not positive. ASC-SPP performs better than ASC-IN, as we 
would expect, since ASC-IN ends up searching negative neighbourhoods, but ASC-SPP 
also performs better than the random RSC-NR by directing search via the spatial point 
process heuristic above (especially for k = 40).

Experiments on finding noisy areas

In this experimentation, we consider noise maps, such as in Fig.  13a abstracted as 
Fig. 13b. In the abstracted map, it can be seen that immediate neighbourhoods of ‘1’s 
need not be ‘1’s themselves, and we have a case where ASC-SPP might perform better 
for this type of scenario. Figure 14a and b shows that this is indeed the case, for k = 40, 
with substantial gains over ASC-IN.

But for k = 5, as in Fig.  14c and d, there is considerable variation (high standard 
deviation) and in fact, ASC-SPP has, on average, poorer performance than both ASC-
IN and RSC-NR; with k = 5, ASC-SPP performs extremely well in some cases but does 
extremely poorly in particular cases, which raised the average substantially. The reason 
is as follows: it was found that ASC-SPP can end up exploring large sparse areas. For 

Kh(r, ri) =
1

2π
· e

− 1
2

(

|r−ri |

h

)2
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example, dividing the area in Fig. 13b into four subareas: top-left, top-right, bottom-left 
and bottom-right, (i.e., TL|TRBL|BR), ASC-SPP could sometimes have a good start (for all ASC-
IN, ASC-SPP and RSC-NR, in the first round, the initial regions to query are random) 
finding the first few ‘1’s in the top-left subarea quickly but end up exploring almost the 
entire sparse subarea in the top-left or bottom-left to find the final ‘1’. But with higher 
k (e.g., with k = 40), as the search continues, ASC-SPP starts to find areas of higher 
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Fig. 11  An ASC-SPP result observing a set of contiguous regions, compared to an ASC-IN result focusing on 
regions immediately surrounding found ‘1’s (many of which turn out to be ‘0’s in this scenario). a Observed 
regions with ASC-SPP in another run (total qns: 140; total rounds: 15). b Observed regions with ASC-IN in one 
run (total qns: 226; total rounds: 27)
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density better than ASC-IN and RSC-NR and then, on average, outperforms ASC-IN 
and RSC-NR.

To deal with this, for cases of low k, one can employ history to focus the initial search, 
i.e., assuming historical information tells us that it would be better to start querying 
regions (randomly selected) from the bottom-right subarea than randomly selecting 
regions from anywhere to query in the first round, the results are substantially different; 
in Fig. 14e and f, the advantage of using history at the start of ASC-SPP, called ASC-SPP-
His, in exploring regions of higher density (even if not contiguous) is demonstrated.

Fig. 12  Results averaged over 1000 runs for two different values of k for the randomly generated scenario, 
comparing RSC-NR, ASC-IN (δ = 0.1) and ASC-SPP. a Average, median and standard deviation for number of 
questions with k = 5. b Average, median and standard deviation for number of rounds with k = 5. c Average, 
median and standard deviation for number of questions with k = 40. d Average, median and standard devia-
tion for number of rounds with k = 40.
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Fig. 13  Noise map and its abstract version. a Noise map from http://urbanobservatory.org/compare/index.
html (NoiseWatch) around London, red and orange triangles indicate high noise levels. b Abstracted discre-
tized view of noise map with α = 0.030657748 with 69 × 52 regions;1s representing high noise regions

Related work
Algorithms for crowdsourcing has been a relatively new endeavour but currently a very 
active area of work.3 The past half decade has seen much development in the area, e.g., 
the work in  [17] in crowdsourcing algorithms, the work in  [19] on crowdsourcing for 
discovery, the work in [20, 13, 21] on achieving real-time results in crowdsourcing, and 

3  For example, see http://crowdwisdom.cc/nips2013/ and http://www.humancomputation.com/2014/.

http://urbanobservatory.org/compare/index.html
http://urbanobservatory.org/compare/index.html
http://crowdwisdom.cc/nips2013/
http://www.humancomputation.com/2014/
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Fig. 14  Results averaged over 1000 runs comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP (and ASC-SPP-
His) for different values of k for the noise scenario. a Average, median and standard deviation for number of 
questions with k = 40 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP. b Average, median and standard 
deviation for number of rounds with k = 40 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP. c Average, 
median and standard deviation for number of questions with k = 5 comparing RSC-NR, ASC-IN (δ = 0.1), and 
ASC-SPP. d Average, median and standard deviation for number of rounds with k = 5 comparing RSC-NR, 
ASC-IN (δ = 0.1), and ASC-SPP. e Average, median and standard deviation for number of questions with k = 5 
comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP-His. f Average, median and standard deviation for number 
of rounds with k = 5 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP-His
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the work in [22] on crowd-selection for microtasks. There is already a range of commer-
cial frameworks such as Amazon Mechanical Turk,4 CrowdFlower,5 and CrowdCloud.6 
Focus has been myriad, from user interaction aspects to algorithmic and framework 
aspects.

There is also the emerging trend of geo-crowdsourcing, where ever-expanding groups 
of users collaboratively and often voluntarily (or paid to) contribute different types of 
spatial or geographic information [9, 23, 24]. Also, emerging are work on location/con-
text-based crowdsourcing where location is key in distributing jobs to workers [5, 25, 11, 
26] with applications in transportation and so on, and work in [27] where different strat-
egies are explored to answer location-based crowdsourcing of queries. However, we 
believe our work is original in approaching the spatial finding problem. Microsoft 
Research has an interesting set of spatial crowdsourcing projects, focusing on mecha-
nisms to encourage ordinary people to perform tasks at specific locations.7 The gMission 
system [28] is a platform to support spatial crowdsourcing and provides a range of fea-
tures including matching potential workers with tasks, but our work focuses on which 
areas to query rather than workers.

As mentioned earlier, this work is partly motivated by increasing work on mobile 
crowdsourcing mentioned earlier and mobile crowdsensing [29–32], where mobile con-
text provides valuable situational knowledge that can be crowdsourced. We did not deal 
with incentives in this paper but assumed that we will get response about a region when-
ever a query is asked but how to use incentives to get appropriate responses is also an 
active area of research.

In   [25], a Gaussian process model was used to predict future traffic saturation at 
junctions with sensors with generalisation to junctions without sensors. A Gaussian 
approach might be used in modelling the distribution of positive regions, but with too 
small a k and too small a proportion of observed regions, it is uncertain if meaningful 
predictions can be made with this approach but it could be investigated. Spatial sam-
pling techniques such as spatial simulated annealing using prior information [33] can be 
employed in place of our random sampling approach and compared to our heuristics.

The work in [34] reviews mobile crowdsourcing pointing out further challenges such 
as incentive mechanisms, reputation management, and task allocation.

Conclusion
This paper proposed and investigated finding regions of interest from a set of regions of 
an area using iterative crowdsourcing processes controlled by the principle of a query-
feedback loop interleaved with query adjustment based on responses and heuristics. 
We have described three simple, though effective, heuristics for reducing the costs (the 
number of questions required) and increasing the efficiency (or reducing the number of 
rounds required) in using crowdsourcing for finding regions of interests:

• • using a proportionate number of redundant questions in each round in the expecta-
tion of failure, as already pointed out in earlier work by [17],

4  http://aws.amazon.com/mturk/.
5  http://www.crowdflower.com/.
6  http://www.crowdcloud.com/.
7  http://research.microsoft.com/en-us/projects/spatialcrowdsourcing/,

http://aws.amazon.com/mturk/
http://www.crowdflower.com/
http://www.crowdcloud.com/
http://research.microsoft.com/en-us/projects/spatialcrowdsourcing/
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• • immediate neighbourhood associations in the case where regions of interest are clus-
tered contiguously, and

• • spatial point processes for approximating distribution of positive regions, working 
even without contiguous positive regions, with approximations improved on each 
round, with the use of historical information to guide starting queries in cases of low 
k.

We demonstrated, via a range of maps (synthetic and real-world based), that our heu-
ristics lead to improved performance over randomly choosing regions to ask about. 
While we use stylised maps based on real-world distributions of parking, crowd, band-
width coverage, and noise, our research suggests that finding in the city is not as difficult 
as it can be for phenomena that exhibit some degree of clustering. While our focus has 
been on spatial problems, we also note that the heuristics are generalisable to non-spa-
tial problems as long as meaningful associations can be defined among items.

Future work involves exploring a combination of the heuristics in real deploy-
ments as well as other application-specific spatial and geographically based heu-
ristics, and heuristics that exploit historical information—so, for example, we can 
include historical information in computing probabilities, i.e. for a region r, we calcu-
late Pr( F(r) = TRUE | obs(N (r)) ∧ history(r)). There are also many applications to 
explore, from finding vacant/quiet coffee-shops to finding strategic points of interest in 
emergency situations. Dealing with uncertainties and unresponsive crowds are further 
issues to consider, e.g., taking into account regions with low density of people. We did 
not deal with the problem of incentives and strategic sampling will need to be consid-
ered in the future.

Appendix
Proof of Lemmas and Theorems

Lemma 1  The function T is monotonically increasing, i.e. for any m, T (n) ≥ T (m) for all 
n ≥ m.

Proof  Let S(n) denote the statement: T (n) ≥ T (m) for all 0 ≤ m ≤ n. Suppose n = 1, 
then, T (1) ≥ T (0), i.e., S(1) is true. For a given p, assume that S(2), . . . , S(p) are all true 
and we will prove S(p+ 1). With S(p) being true, for any m ≤ p, T (p) ≥ T (m). So, we 
just need to show that T (p+ 1) ≥ T (p).

Note that p ≥ 2. Then, since ((p+ 1)−⌈(p+ 1) · σ⌉) ≤ p , and 
so, S((p+ 1)−⌈(p+ 1) · σ⌉) is also true, as assumed, and we have 
T ((p+ 1)−⌈(p+ 1) · σ⌉) ≥ T (m), for any m ≤ ((p+ 1)−⌈(p+ 1) · σ⌉). Now,

� �

T (p+ 1) = T ((p+ 1)−⌈(p+ 1) · σ⌉)+ 1

≥ T (p−⌈p · σ⌉)+ 1

(by induction as (p−⌈p · σ⌉) ≤ ((p+ 1)−⌈(p+ 1) · σ⌉))

= T (p)( by definition of T )
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Lemma 2  Given γ, the function Q′
γ is monotonically increasing, i.e. for any m, 

Q′
γ (n) ≥ Q′

γ (m) for all n ≥ m.

Proof  Let S′(n) denote the statement: Q′
γ (n) ≥ Q′

γ (m) for all 0 ≤ m ≤ n. Suppose n = 1 , 
then, Q′

γ (1) ≥ Q′
γ (0), i.e., S′(1) is true. For a given p, assume that S′(2), . . . , S′(p) are all 

true and we will prove S′(p+ 1). With S′(p) being true, for any m ≤ p, Q′
γ (p) ≥ Q′

γ (m). 
So, we just need to show that Q′

γ (p+ 1) ≥ Q′
γ (p).

� �

Theorem  1  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have 

T ′
γ (n) ≤ T (n) .

Proof  Firstly, T ′
γ (0) = T (0). Now, for all integers 1 ≤ m ≤ p, we assume that 

T ′
γ (m) ≤ T (m), and will prove that T ′

γ (p+ 1) ≤ T (p+ 1). We have:

� �

Theorem  2   For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have 

Q′
γ (n) ≤ ⌈γ ⌉ · Q(n), i.e. Cost ′γ (n) ≤ ⌈γ ⌉ · Cost(n).

Proof  Firstly, Q′
γ (0) ≤ ⌈γ ⌉ · Q(0). Now, assume that for any m ≤ p, we have 

Q′
γ (m) ≤ ⌈γ ⌉ · Q(m). We will show that Q′

γ (p+ 1) ≤ ⌈γ ⌉ · Q(p+ 1).

Q′
γ (p+ 1) = ⌈γ · (p+ 1)⌉ + Q′

γ ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉)

≥ ⌈γ · (p+ 1)⌉ + Q′
γ (p− ⌈⌈γ · p⌉ · σ⌉)

(by induction as ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉) ≥ (p− ⌈⌈γ · p⌉ · σ⌉)

and p ≥ ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉))

≥ ⌈γ · p⌉ + Q′
γ (p− ⌈⌈γ · p⌉ · σ⌉)

= Q′
γ (p)

(by definition of Q′
γ )

T ′
γ (p+ 1) = T ′

γ ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉)+ 1

≤ T ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉)+ 1

(by induction since ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉) ≤ p)

≤ T ((p+ 1)−⌈(p+ 1) · σ⌉)+ 1

(by Lemma 1 since

((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉) ≤ ((p+ 1)−⌈(p+ 1) · σ⌉))

= T (p+ 1)

(by definition of T )
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