
Heuristics for spatial finding using
iterative mobile crowdsourcing
Seng W. Loke*

Background
Crowdsourcing, or crowd computing, is an important powerful approach to problem-
solving and critical information gathering, harnessing the power of the crowd, and crea-
tively combining machine and human computations [1–3]. Crowdsourcing can be used
to do tasks that either no machine alone can do or where involving humans is better
(e.g., CrowdDB [4]). Mobile crowdsourcing, i.e. crowdsourcing to mobile users, presents
significant new opportunities and challenges, with enormous possibilities for human
computations and tasks with spatial and temporal properties [5–12].

One important class of crowdsourcing applications is where information and tasks to
be crowdsourced have spatiotemporal properties and are advantageously done by mobile
device users (e.g., crowdsourcing for carpark spaces, locations of crowds, maps of areas,
transport demand, emergency needs, photos/video at different locations of a parade,
location of flora and fauna), different from general tasks that can be crowdsourced such
as language translation or copy-editing. Such crowdsourcing may be done over extended
periods of time and data centralised for analytics, or can be done in an ad-hoc real-time
on-demand manner (e.g., issuing crowdsourced queries to assess a situation in the vicin-
ity within the next few minutes). Real-time crowdsourcing of queries can be useful, even

Abstract 

Crowdsourcing has become a popular method for involving humans in socially-aware
computational processes. This paper proposes and investigates algorithms for find-
ing regions of interest using mobile crowdsourcing. The algorithms are iterative, using
cycles of crowd-querying and feedback till specified targets are found, each time
adjusting the query according to the feedback using heuristics. We describe three
(computationally simple) heuristics, incorporated into crowdsourcing algorithms, to
reducing the costs (the number of questions required) and increasing the efficiency
(or reducing the number of rounds required) in using such crowdsourcing: (i) using
additional questions in each round in the expectation of failures, (ii) using neighbour-
hood associations in the case where regions of interest are clustered, and (iii) model-
ling regions of interest via spatial point processes. We demonstrate the improved
performance of using these heuristics using a range of stylised scenarios. Our research
suggests that finding in the city is not as difficult as it can be, especially for phenomena
that exhibit some degree of clustering.

Keywords:  Mobile crowdsourcing, Spatial finding, Heuristics

Open Access

© 2016 Loke et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4
DOI 10.1186/s13673-016-0061-6

*Correspondence:
s.loke@latrobe.edu.au
Department of Computer
Science and Information
Technology, La Trobe
University, Kingsbury Drive,
Melbourne, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-016-0061-6&domain=pdf

Page 2 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

with prior information available (e.g., there is a database of historical traffic or car park-
ing availability for a given area) obtained from some source (e.g., either from stationary
sensors or previous crowdsourcing efforts or other means) in order to obtain up-to-date
information that can complement or update prior information, especially in the case
where information can easily deviate from history (e.g., car parking), or historical data
are too coarse-grained (e.g., the database only has average car park availability for a large
area over days), or without any prior information, where the queries are to obtain new
information about regions in the area, in a just-in-time on-demand manner. Real-time
responsiveness in crowdsourcing is a challenge but methods have been explored mak-
ing it a real possibility. For example, Bernstein has done interesting work in preparing
crowds via additional incentives in order to achieve real-time performance [13].

Crowdsourcing involves incentives, and hence, costs, such as monetary costs for pay-
ments for answers as well as efficiency costs, e.g., in terms of time taken to achieve an
adequate response. Algorithms where humans are viewed as data processors have been
explored for finding the maximum [14], filtering [15] and for finding a subset of items
with a given property among a given unstructured collection [16], taking into considera-
tion the need to optimise cost and efficiency at the same time.

In this paper, we propose and investigate iterative crowdsourcing processes, based on
work from [17], to find regions of particular interest (e.g., regions satisfying particular
properties) from among a collection of regions, with all such regions within a given fixed
size area, as typically seen in the context of mobile crowdsourcing, where the human con-
tributors (or workers) for crowdsourced tasks/queries are people within the area with
mobile devices, so that queries or jobs posed to them (and their answers) have spatial
properties. We also have in mind real-time crowdsourcing where results are intended
for the here-and-now, rather than obtained over a long period of time, but our work
does not deal specifically with strict real-time constraints.

In particular, we consider cases where association between regions can be exploited
to reduce the costs and increase efficiency in crowdsourcing. Often, information about
a region provides clues about information of its neighbouring regions: a region that is
crowded might be adjacent to another crowded region or a polluted region might be
adjacent to another polluted region, even if this is not always the case. We argue that this
is the case for a number of real-world phenomena including car parking, 3G/4G band-
width, crowded areas, and noise pollution. So, for example, if one wants to use crowd-
sourced queries to find regions where there are car parks available, regions where there
is currently high 3G/4G bandwidth, regions which are crowded, and regions with noise
pollution above some threshold, then neighbourhood or proximity associations can be
exploited.

In the rest of this paper, we first outline the spatial finding problem in "The spatial
finding problem" section, and discuss possible solutions in "A crowdsourcing solution"
section. Then, we introduce three heuristics for spatial finding in crowdsourcing and
describe experimentation to demonstrate the effectiveness of the heuristics, a heuris-
tic using more queries than the minimal in "A heuristic that embraces failure: redun-
dant questioning" section and a heuristic using immediate neighbourhood associations
in "A heuristic for spatial finding: neighbourhood associations" section, and a heuristic

Page 3 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

using spatial point processes in "Experiments" section. We then review related work in
"Related work" section and conclude in "Conclusion" section.

The spatial finding problem
The spatial finding problem is a simple variation of the problem first proposed in [17].
The basic version of the original problem is as follows: given a (large) set of items, a
predicate, and a number k, use humans to find k items from the given set that satisfy a
given predicate. An example of an instance of this problem is given as follows: “Consider
a data set I of images, from which we want to find 10 images that satisfy a predicate or
flter f, e.g., whether it is a photo of a cat. We consider each image, and ask humans the
question, e.g., ‘does this image show a cat?’ Suppose on average that 20 % of the photos
are of cats. For the purposes of this example, we assume that humans do not make mis-
takes while answering questions.” A solution to the above problem might be sequential
(to ask about one image at a time) and stop whenever 10 images are found; this algo-
rithm is cost-optimal asking only as many questions as needed, but could take a long
time (requiring many rounds of questioning)—the cost and latency depends on which
images are picked. Another solution is to consider asking about all images in parallel;
this is fast (requiring only one round of questioning), but is costly since one needs to
pay for all the questions asked. A third possible solution which is between the first and
second solution in terms of the cost-latency tradeoff is to ask (10− x) questions at the
current round of questioning, if we already found x cat images so far.

This original version does not deal with spatial properties of items as we do in this
paper. We define below a spatial version of the above problem and while we explore the
above solution ideas, we consider spatial heuristics for picking items to ask about. The
general notion of cost-latency tradeoffs, however, also applies here.

Our Problem Assume a a large area R partitioned into n regions {r1, . . . rn}. The problem
is to find a set S ⊆ R of at least k ≤ n regions, each of which evaluates to true for a given
predicate F representing some criteria, i.e. F(r) = TRUE, for each r ∈ S. We also want
to solve this problem with the lowest cost (assuming we need to pay to get a question
about a region answered) and in a most efficient way (the number of rounds of questions
required).

For example, we want to find at least k regions with available car parking spaces, and
can divide a large area into a set of regions, about which we can then ask the crowd
about, but each time we ask the crowd about a region, we assume that we incur a cost.
Another example is to find a not-so-crowded cafe and can issue a query to find at least
k regions with a not-so-crowded cafe, answers being given by people near or within the
region. A third example is to find a high bandwidth (WiFi, 4G or otherwise) region.

There are two factors to deal with in any solution to the problem. One is the cost,
where we assume that each time a query is issued to find out about a region, a cost φ is
incurred (which includes the cost of issuing the query as well as incentives paid for an
answer to the query) so that if we ask about k regions, we incur a total cost of k . · φ. The
other is efficiency which we define to be the number of rounds of querying required,
where in each round, a set of queries is issued in parallel to find out about a particular
chosen set of regions (assuming one query per region).

Page 4 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

While we do not prescribe the mechanism used by users to issue queries to other
users, we assume that some cost is incurred per query issued (or per answer about a
region obtained). We assume, for simplicity, here that each query issued is always
answered, and answered accurately and truthfully. The cost could be measured in differ-
ent forms, e.g., to the query issuer, the cost could be a monetary incentive to a user pro-
viding an answer about a query (about a region). This means that a general mechanism
to ask everyone could incur a high cost if everyone actually answers, as we discuss below.

A crowdsourcing solution
An initial solution to the above problem is to simply adapt the solutions from [16], which
was initially developed to find particular items from a database of items: assuming that
each region is an item requiring a binary answer YES or NO (TRUE or FALSE), we have
the algorithm below which is to find particular regions from a collection of regions. Note
that YES/NO questions are very easy for users to respond to (but of course, tend to pro-
vide less information than more general responses).

Given a set of regions R and α which denotes the fraction of regions (we call posi-
tive regions) of R where F evaluates to TRUE (and the rest of the regions, F evaluates to
FALSE, and we assume that α > 0), and assuming that we are finding k positive regions
from R, where there are at least k regions that can satisfy F, i.e., k ≤ |R| · α, we have
Algorithm 1.

While we have not found enough regions and while there are still regions from R that
are not yet observed, we iteratively choose a subset of regions to observe, and this sub-
set is according to choose Candidates (k ,D,R\O), a version of which is shown in Algo-
rithm 2. In Algorithm 1, ask Crowd About(C) issues |C| queries in parallel to ask about
regions in C, and in practice, would have a maximum wait time. Algorithm 1 terminates
either when k regions satisfying F are found and/or when all regions in R have been
observed.

Page 5 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

Depending on how we choose the candidates, three solutions are possible:

1	 It has been shown from [16] that a way to minimise total cost is to ask about one
region at a time (say, in any order) and stopping whenever k regions are found sat-
isfying the criteria, so that we never ask more questions than required or get more
than k positive answers; only in the worst case, this scheme can lead to |R| rounds.

2	 A more expensive solution but very efficient (requiring one round) is to ask |R| ques-
tions about all the regions in parallel. This could be done, for example, by posting a
query like ‘where can I find a parking spot?’ on a wide-audience medium, such as a
(mobile accessible) Website say, and anyone or everyone in any region can answer the
question; in effect, we are asking about all regions at the same time. Since we assume
that a query about any region is always answered, the cost is then |R| · φ. Now, suppose
we want a solution that can achieve a cost less than |R| · φ. To find k positive regions,
note that a method to do this might be to issue |R| queries and then wait for a certain
fixed period of time for k positive responses and paying for all the first K ≥ k answers
obtained on a first-come first-serve basis1—however, this has already incurred costs in
issuing the |R| queries and also paying for what may be largely K−k negative answers;
to avoid such costs, we want to select regions to ask about (reducing the cost of issuing
queries) and focus search queries to where there is a higher likelihood of getting a posi-
tive response. For each query issued on a region, the first answer obtained could be
used and paid for, or it could be obtained via taking a majority vote of the first z answers
(where z is the number of answers that can be paid for from the budget φ).

3	 A third solution which aims to minimise cost and maximise efficiency at the same
time is as follows, which will be the main focus in the rest of this paper. In each
round, we ask no more questions than that required if all the answers were positive.
More precisely, in round i, if ki < k regions have already been found where F evalu-
ates to TRUE, in parallel, we ask questions about a further k − ki regions which we
have not asked the crowd about previously. It can be seen that this solution never
asks more questions than required in this case, and hence, minimises cost, but at the
same time, would provide a means to finish in fewer rounds than solution (1). More
precisely, chooseCandidates(k ,D,R\O) is as in Algorithm 2.

	 This algorithm is essentially that in [16] but tailored to spatial finding, where it was
shown that the total number of questions it requires is comparable to solution (1),
when both are operating on the same input.

1 
K−k if we have that only positive responses need reply. Sometimes, no reply could be taken as a negative response.

Page 6 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

	 A key feature of the algorithm is how chooseCandidates(·) actually selects the regions
to ask about. In contrast to Algorithm 2 which, in each round, randomly selects a
region to ask about (which we call the random spatial crowdsourcing), the algorithm
we propose later will use a neighbourhood association heuristic to select regions to
ask about which will be called associative spatial crowdsourcing. We first discuss the
performance of two versions of random spatial crowdsourcing below, one without a
heuristic as above and another with a heuristic that embraces failure.

Analysis of spatial crowdsourcing via solution (3) In the worst case, the total cost is |R| · φ
with the largest number of rounds |R|. The best case total cost is k · φ with the least
number of rounds being 1.

Let us consider the average case. We describe the typical case of the algorithm via a
success factor 0 < σ ≤ 1, where we assume that in each round, the fraction of queries
answered positively with F evaluating to TRUE is σ. In random spatial crowdsourcing,
we would have σ = α, where α, as given earlier, is the proportion of regions in R where
F evaluates to TRUE, since our choice of regions to ask about in each round is random.

The algorithm uses k queries in round 1, k−⌈k · σ⌉ queries in round 2, given
an expected ⌈k · σ⌉ successes from round 1, (k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉
queries in round 3, given ⌈(k−⌈k · σ⌉) · σ⌉ successes from round 2,
(k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉−⌈((k−⌈k · σ⌉)−⌈(k−⌈k · σ⌉) · σ⌉) · σ⌉ queries in
round 4 and so on. In general, let Q(k) denote the total number of queries used to find k
positive regions using the algorithm. Then, Q is given by:

The reason for this is that with a success rate of σ, to find n positive regions, we first
use n queries to find ⌈n · σ⌉ successes, and then to find the remaining n−⌈n · σ⌉ positive
regions, we use Q(n−⌈n · σ⌉) questions.

Thus, to look for k positive regions, the total cost of the algorithm is Cost(k) = φ · Q(k) .
The number of rounds taken by the algorithm is T(k), where the function T is as given

by the following:

We will use the following lemma later. (The Appendix contains proofs of all lemmas and
theorems.)

Lemma 1  The function T is monotonically increasing, i.e. for any m, T (n) ≥ T (m) for
all n ≥ m.

Intuitively, a larger σ can improve performance both of the cost and number of rounds
of the algorithm. But α is assumed fixed, and so, we introduce heuristics to increase the
success rate of queries in each round.

Q(0) = 0

Q(n) = n+ Q(n−⌈n · σ⌉)

T (0) = 0

T (n) = T (n−⌈n · σ⌉)+ 1

Page 7 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

A heuristic that embraces failure: redundant questioning
We set σ = α which means that we use the proportion of regions in R where F evalu-
ates to TRUE as an estimate of the success factor. Now, since each query only has an α
chance of success, we can improve performance by having more queries in each round
as also noted in 17]: we will have γ times more, where 1 ≤ γ ≤ 1/α. Note that if γ = 1
means zero redundancy as in the solution above in "A crowdsourcing solution" section.
That is, we can obtain k regions faster by having γ · (k−ki) queries in the next round
i + 1, where ki is the number of regions found to be TRUE so far, up to and includ-
ing round i. In round i + 1, by asking more queries, the number of successes is then
⌈(number of queries) · α⌉ = ⌈(γ · (k−ki)) · α⌉.

This slight variation to solution (3) above is given by the definition of
chooseCandidates(·) in Algorithm 3.

We call this random spatial crowdsourcing with redundancy (RSC-R), when γ > 1, and
random spatial crowdsourcing with no redundancy (RSC-NR) when γ = 1 (the algorithm
given earlier). In general, let Q′

γ (k) denote the total number of queries used to find k
positive regions using this algorithm. Then, Q′

γ is given by:

To find n positive regions, RSC-R starts with ⌈γ · n⌉ queries, finding ⌈⌈γ · n⌉ · σ⌉
positive regions, and then to find the remaining (n−⌈⌈γ · n⌉ · σ⌉) regions, it uses
Q′
γ (n−⌈⌈γ · n⌉ · σ⌉) queries.

Lemma 2  Given γ, the function Q′
γ is monotonically increasing, i.e. for any m,

Q′
γ (n) ≥ Q′

γ (m) for all n ≥ m.
Thus, to look for k positive regions, the total cost of the algorithm RSC-R is

Cost ′γ (k) = φ · Q′
γ (k).

For a given γ ≥ 1, and a given requirement k, the number of rounds is T ′
γ (k), where T ′

γ is
given by the function:

We also have the following relationship between the number of rounds taken by
RSC-R (denoted by T ′) and the number of rounds taken by RSC-NR (denoted T).

Q′
γ (0) = 0

Q′
γ (n) = ⌈γ · n⌉ + Q′

γ (n−⌈⌈γ · n⌉ · σ⌉)

T ′
γ (0) = 0

T ′
γ (n) = T ′

γ (n−⌈⌈γ · n⌉ · σ⌉)+ 1

Page 8 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

Theorem 1  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have

T ′
γ (n) ≤ T (n).
And the following relationship between the cost of RSC-R (denoted by Cost ′) and the cost

taken by RSC-NR (denoted Cost).

Theorem 2  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have

Q′
γ (n) ≤ ⌈γ ⌉ · Q(n), i.e. Cost ′γ (n) ≤ ⌈γ ⌉ · Cost(n).
Theorem 1 means that RSC-R can result in fewer rounds than RSC-NR, but according to

Theorem 2, it is no worse than a factor of ⌈γ ⌉ in terms of costs.
We conducted experiments with this technique of posing more queries (with the expec-

tation of σ = α proportion of successes) in each round to see how it helps the performance
and how much extra costs it incurs.

Experiments

Typical run

In comparing RSC-NR and RSC-R, we use the area illustrated in Fig. 1a, where the ‘1’s
represent regions where F evaluates to TRUE and the ‘0’s represent regions where F
evaluates to FALSE, with σ = α = 0.2075. In a run with k = 20, and the total number
of regions is 1600 (40 × 40 grid), Fig. 1b shows the observed regions as a result of run-
ning RSC-NR which completed in nine rounds with 73 questions (73 regions observed).
The execution proceeded as follows in this run, showing the number of questions asked
in each round, and the number of ‘1’ regions found from asking those questions in that
round:

1010001001000000000001001000001000000110
0000000100100100000000001111001000000000
0010000000000000000000010000000000100001
0011000000000000110001000100000000000000
0010000101100000001011100010110010000010
0000000000000000100100000001100000000010
0000001000010000000000000010100000011010
0101000110100011000100001001001000000100
0001000001100000100100000001010000000100
1010001011000000000001000100101100000100
0100110000000011011001101000000110110001
0000000000000101000000000000000100000100
0010100001001000000001000100000100010000
0000000000000000010000001000000001010000
0100000101100000100000011000001100100100
0000100001000101100010000010100100000000
0000000000000010010000010000000000000000
0000001000100001010000100000001000110101
0000001000000000000000000010000010000100
0100000010100001010101000000010100000010
0000100001100000000001001011100100000010
1000000000000000000000000101001001000001
0100000001000010000001000000000010000000
0100000100011000000000001001010010100000
1100001000000000001100100001000001100000
1000000010000010000000001100000110000000
0110010010000100100001000001000000001001
1101010000000001000001100001010100000000
0000100111000100100100000000000000000000
1010010000010100000000011000100000110000
0000100000000110000110000100001000010010
0100100110000001101010010010001000000101
0001000100000100000100000000000101000000
0000001100000000000000100001000100010100
0001000000000000100000000100000011000001
1000000100011000000101001001000001001000
0000000001100000000010000000010111000000
0001100110010001101000001101000000010100
0010000001001010001000010000100001001000
1010000000100010001010000000000100000001

a 0
0

0 1 0 0 01
0 0 0 10 0

1
0 0 0

1
1

0
1 0 1 1

1 00
0

0 0 1

000
0 0

0 1 00

0
0 1 0

0
0 1

00
1

00
00

1
1 0 0 0

0
0 0

0 0
11

0 10 00
0

b

Fig. 1  A test scenario with RSC-NR, and the observed regions after finding k = 20 positive regions. a Test
Scenario: 1600 regions, the number of ‘0’s is 1268 (79.25 %); the number of ‘1’s is 332 (20.75 %). b Observed
regions from RSC-NR; after 73 questions, nine rounds

Page 9 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

20 qns in round 0, found:6
14 qns in round 1, found:4
10 qns in round 2, found:3
7 qns in round 3, found:0
7 qns in round 4, found:1
6 qns in round 5, found:1
5 qns in round 6, found:2
3 qns in round 7, found:2
1 qns in round 8, found:1

In a run from RSC-R with γ = 2.41, we get:

49 qns in round 0, found:9
27 qns in round 1, found:6
13 qns in round 2, found:1
10 qns in round 3, found:1
8 qns in round 4, found:3

 It can be seen that asking more (redundant) questions each round results in a larger
number of ‘1’s found resulting in a faster convergence, in five rounds, instead of nine
rounds as in RSC-NR. But the total number of questions asked is 107 questions instead
of 73. In an extreme case, in a run from RSC-R with γ = 4.82, only one round is enough
but with 97 questions asked.

Comparing RSC‑NR and RSC‑R

We compare the performance of RSC-NR and RSC-R using different values of k = 20
and different kinds of distributions of positive regions, but with the total number of
regions being 1600 (40 × 40 grid). Below, we give the average number of rounds and
average number of question asked over 1000 runs. Note that RSC-NR is the case of
RSC-R with γ = 1.

With σ = α = 0.315625 (i.e., 31.5625 % of positive regions represented as ‘1’s), we gen-
erated a scenario similar to that in Fig. 1a but with more 1s. Setting k = 20, and averag-
ing over 1000 runs, the results for 31.5625 % are shown in Fig. 2b, where the horizontal
axis is labelled with different values of γ. Similar experiments were carried out with dif-
ferent values of α on 40 × 40 scenarios with randomly distributed positive regions, but
with varying percentages of positive regions, with results shown in Fig. 2a, c–f. We make
the following observations:

• • It can be seen that even for all values of α tested, using additional questions in each
round can substantially reduce the number of rounds even to 1, without substantially
increasing the number of questions asked, since convergence is quick. For example,
averaging over 1000 runs, with α = 0.40125 in Fig. 2a, with γ = 1.246, we use a total
of four rounds on average with 50 questions on average, compared to using seven
rounds on average and 49 questions on average with γ = 1 (or no redundant ques-
tions), and with γ = 2.492, only 1 round is used on average, with 53 questions used
on average.

• • When α is smaller, the cases where ‘1’s are sparse and harder to find, we see that
more questions are asked with RSC-R but resulting in much greater reduction in the
number of rounds. For example, with α = 0.110625, 0.050625, 0.034375 in Fig. 2d–
f, increasing γ results in a substantial drop in the number of rounds (e.g., 31 to 11,

Page 10 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

69–12, and 100–12), with only a small increase in the number of questions asked on
average.

• • In all cases of α tested, for a large enough γ, on average, asking 11 % more questions
in total can lead to a reduction to only 1 round required.

In summary, the above results show that additional questions in each round lead to
faster convergence towards the required number of positive regions (i.e., taking fewer
rounds), though asking more questions in earlier rounds. And the faster convergence
offsets the larger number of questions asked in earlier rounds so that, overall, only a

Fig. 2  Comparing RSC-R and RSC-NR: the number of rounds and number of questions averaged over 1000
runs (vertical axis) for varying γ (horizontal axis) for different values of α. a Results with α = 0.315625. b Results
with α = 0.315625. c Results with α = 0.193125. d Results with α = 0.110625. e Results with α = 0.050625

. f Results with α = 0.034375.

Page 11 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

small percentage increase in the total number of questions is required, i.e. there is only a
relatively small price to pay for faster results.

Discussion

The results show that if we ask 1 < γ ≤ 1
α

 more questions (the additional questions are
so-called redundant questions) than the minimum required in each round, we can sig-
nificantly reduce the number of rounds, and because we reduce the number of rounds,
we end up asking only a small number of additional questions than we needed to in
total, compared to no redundancy. We see that this result holds for a large range of
scenarios. However, it must be noted that the gains are greater only when α is small
and large enough γ, and the value of γ relies on some prior knowledge (or estimate) of
α, which might be difficult to obtain in practice; using too small a γ does not result in
much improvements in efficiency but using too large a γ wastes questions. The result
of average 1 round in Fig. 2a–f are all obtained with γ having the value approximately
1
α

, as each of the k · 1
α

 questions randomly chooses a region with 1
α

 chance of being
positive.

RSC-R above fails to take into account the clustering of positive regions. For example,
Fig. 3a, b have similar results, as shown in Table 1. We examine a heuristic that takes
advantage of such clustering in the next section.

0010000010000001000000000000001000000000
0000000000100100010000100100000000000001
0011000000001010000100110000001000000000
1000000000000000000101110000000000100010
0010010000000001111000001000010011110110
1000111000011010111001000000000101111110
1001111000111100011000000100000011111110
0101111001111100000000001100101001111111
0001111000111100010000000000000001111111
0000001001111100001101000000000010111110
0010000000111100000000000000000000111110
0000000000111100000100100000000100111110
1000010001111000010001000100000000111111
1100100001110000100000000000000000111111
1110000001100011001100000000100000011111
0110000010000011000000000000000010101110
0111100010000011000010100101000111011111
0001110100111111100000000110001110001110
0000111100111111100000100010010000001000
0000011100110011100000000011100001100000
1000000000000000000000000111110000000001
1111000000000100000000000111111000101000
1110001100100110000000001111111111111100
0000001100000110000010011111111111111110
0000100110000111000111111111111111111110
0000001111000001100011111111111111111110
1000011111110000000001111111111111111110
0000001111110000011000111111111111111110
0000000111111001000100011111111111111110
0110000011111110000000001111111111111110
1100000111111110000100000111111111111110
0000001111111111000000000000111111111110
0000011111111111000000010000011111111110
0000001111100000001000000110001111111110
0001001110000000100010000000011111111110
0000000100000011000100000000011111111110
0110110000010011000000100001000001111111
0000000001110000100110000010000000111110
0000001011110000000000000000001001011110
0000000000000010000000101000000000011010

a
1101010101011010100001111001110010111100
0100010110011000011011000001101000100011
1100110100110000011001010100100000000000
0001001001000000110110001000000011100110
0010000001010000001100111001001000010011
0101000110100100101010001010010010010110
0111101010000001101010001010110000100101
1100100011011010001000101100010001101100
1010110001000010001100000001011100010100
1010010100010110100110100100111111000100
0010101101000100100101110011101111100001
1000010100001111100001000000000110000000
1110110000100101011111100000100001001010
0010101111010100010011000000011000000010
0000000001100101110111010011000001000010
1110001101111110000111001100000011001100
0100100010101101000111101000100000000100
1010110011001001010110111011001000101010
0000101001100000010010011110011010011111
1000001000011010011011111000100011111110
1010101100010000001000100000001000011101
0001110110100000111000010100000000011110
1110100111001011100000100010110000011111
1101000000111100001111101000000101010000
0101111100000010001101100110100101110001
1100000000110110000010010010101111111101
0000100000011100110011110101000011101010
0110100010001100001001100100101001100010
0111100000000000010000010000111100011001
1100111100010000001011001010110000000000
0101011011010000001010000111101100101100
1111111000011110010010011010100100010010
0111101001010100011100010000100001011000
1101001100100101011000011000001100101100
0100001010110000011101111110100100000010
0110000101101011000000010111010011100000
1110101010010110000101101111010010100101
1110001100011010111111000101000100001010
1110010000000111000011110100010101110010
0110001110010110010101010110000011010000

b

Fig. 3  Two regions with roughly 40 % of positive regions but different in the amount of clustering. a Region
with α = 0.40125 but more clustering. b Region with α = 0.418125 but less clustering

Table 1  Results for α = 0.418125 (α = 0.40125) with less clustering (more clustering),
averaged over 1000 runs

γ 1 (1) 1.196 (1.246) 2.392 (2.492)

Avg. no. of questions 47 (49) 48 (50) 52 (53)

Avg. no. of rounds 6 (7) 4 (4) 1 (1)

Page 12 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

A heuristic for spatial finding: neighbourhood associations
In the case where we know nothing about the unobserved regions, any selection is
as good as any other. The solutions have not so far considered the case where know-
ing something about a region tells us something about another region. For example, we
assume initially no information, i.e. F(r) = TRUE with probability α (and F(r) = FALSE
with probability 1−α). The value of α may be estimated from some initial density meas-
ure if there is some a priori information, but here, we take α to be the true proportion of
regions in R that satisfy F. Hence, the success factor σ has been approximated via α in the
experiments above.

It can be seen from the definitions of Q, Q′, T and T ′ above and their monotonically
increasing properties that if σ was to increase, we can reduce the number of questions
and the number of rounds. In this section and the next section, we consider heuristics
that can improve the success factor in each round of querying.

Given direct observation of a region, then F(r) must evaluate to true or false, but with-
out direct observation of a region, we can only compute the probability of F(r) being true
or false in some way. Note that we say we observe a region whenever we ask the crowd a
question about it.

To estimate Pr(F(r) = TRUE) given that r has not been observed, we introduce the
neighbourhood association factor δ (>0) which represents the informational relationship
between neighbouring regions, where knowing something certain about a region q tells
us something about its neighbouring region, i.e., if r and p are two neighbouring regions,
then if we observed that F(q) = TRUE, but have not observed r, then, we set:

where δ is chosen so that 0 ≤ α · (1+ δ) ≤ 1, and also, if we directly observed that
F(q) = FALSE, using Baye’s rule:

For example, if α is 0.5 and δ is 0.1, then Pr(F(r) = TRUE | F(q) = TRUE) = 0.55 > 0.5 .
In other words, as we observe more regions, given the association among regions, we
might be able to do better than randomly selecting a set of regions to ask about in each
round; we can select regions with a higher probability of evaluating F to TRUE based on
such association information. Also, if a region should be false with probability 1−α, on
observing that its neighbour is TRUE, its probability of being FALSE is reduced.

More precisely, let N be a function that returns the immediate neighbours of a region,
i.e. N (r) ⊆ R is the set of regions sharing a boundary with r defined in some way. N(r)
would have eight members at most if R is divided into a grid of rectangular regions
(including diagonally adjacent regions).

Pr(F(r) = TRUE | F(q) = TRUE) = α · (1+ δ)

Pr(F(r) = FALSE | F(q) = TRUE) = 1−α · (1+ δ)

Pr(F(r) = TRUE | F(q) = FALSE)

= Pr(F(r) = TRUE) ·
Pr(F(q) = FALSE | F(r) = TRUE)

Pr(F(q) = FALSE)

= α ·
1−α · (1+ δ)

1−α

Pr(F(r) = FALSE | F(q) = FALSE) = 1−α ·
1−α · (1+ δ)

1−α

Page 13 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

From the point of view of the unobserved region r, it is possible that multiple neigh-
bouring regions have been observed, and so, we need to combine the influence from
multiple observed neighbours.

For example, for a given region, if one of its neighbours q1 is found that F(q1) = FALSE
and another two neighbours q2 and q3 are such that F(q2) = F(q3) = TRUE, then by
Bayes’ rule (where H = α · (1−α · (1+ δ)) · (α · (1+ δ)) · (α · (1+ δ)):

Given a region r, and that we observed some subset of the neighbours of r, say
(A ∪ B) ⊆ N (r), where A are neighbours where F evaluated to FALSE and B are neigh-
bours where F evaluated to TRUE, then using obs(N(r)) to denote the observed neigh-
bours of r, by a Bayesian approach of combining information, we have what we call the
neighbourhood formula, where H ′ = α · (1−α · (1+ δ))|A| · (α · (1+ δ))|B|:

Note that the above is merely a heuristic for estimating the probability of a region sat-
isfying F; our guess could turn out completely wrong upon observation, i.e. given cur-
rent observations obs, we estimate that Pr(F(r) = TRUE | obs) > 0.5 but we later may
observe that F(r) = FALSE. Also, for simplicity, we have taken a Markov-inspired
assumption in that we compute the probability based only on observed regions in the
neighbourhood of r, and do not consider any influence from regions beyond the neigh-
bourhood, i.e., using obs (R) to denote observed regions in the entire area R:

Pr(F(r) = TRUE | obs(N (r))) = Pr(F(r) = TRUE | obs(R)).

If we are using solution (3), in each round i, for simplicity, we compute probabilities
only for regions not yet observed, with the aim of choosing the k−ki regions most likely
to evaluate F to TRUE, and we use only observed information. For example, an unob-
served region r that has no observed neighbours will have Pr(F(r) = TRUE) = α even if
all its unobserved neighbours q have estimated Pr(F(q) = TRUE | obs) > α given some
observations obs.

In the previous random spatial crowdsourcing algorithm, in SpatialCrowdsourcing (k,
F, R) given above, chooseCandidates(c,R\O) chooses c candidates from R\O in a random
way, and in the associative spatial crowdsourcing algorithm, chooseCandidates(c,R\O )
chooses c candidates from R\O by selecting the c regions with the highest probability
of F evaluating to TRUE, i.e., for each region r ∈ R\O, we compute the probability of
F(r) = TRUE using the neighbourhood formula above and select c regions with the

Pr(F(r) = TRUE | (F(q1) = FALSE ∧ F(q2) = TRUE ∧ F(q3) = TRUE))

=
H

H + (1− α) ·
(

1− α · 1−α·(1+δ)
1−α

)

·
(

α · 1−α·(1+δ)
1−α

)

·
(

α · 1−α·(1+δ)
1−α

)

Pr

(

F(r) = TRUE |
∧

p∈A
(F(p) = FALSE) ∧

∧

q∈B
(F(q) = TRUE) ∧ (A ∪ B) = obs(N(r))

)

=
H

′

H ′ + (1− α) · (1− α · 1−α·(1+δ)
1−α

)|A| · (α · 1−α·(1+δ)
1−α

)|B|

Page 14 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

highest probabilities according to the formula, randomly selecting among equal prob-
ability regions.

This slight variation to solution (3) above using neighbourhood association is given by
this definition of chooseCandidates(·) in Algorithm 4.

Experiments with randomly generated area maps

We study the effect that the extent of clustering has with the use of this heuristic as k
varies and as δ is varied. In the first set of experiments, we generate area maps with α set
to values within the range [0.15, 0.20] and clustering introduced so that where whenever
there are three ‘1’s surrounding a region, the region will be a ‘1’ (otherwise the region is
either ‘1’ or ‘0’ with equal probability).

Figure 4 shows the results of associative spatial crowdsourcing compared with ran-
dom spatial crowdsourcing (RSC-NR) as k is varied for a range of δ values—the number
of questions used and the number of rounds used are averages over 1000 runs with the
same region map. It can be seen that with even small δ(=0.1), associative spatial crowd-
sourcing yields, on average, both a significant reduction in both the number of questions
used (up to 30–40 %) and the number of rounds required to find the k positive regions
(as low as a third or half of the number of rounds required with RSC-NR). The reduc-
tions are proportionately larger with larger k. Larger values of δ(>0.1) do not seem to
yield much improvement.

Note, however, that with little clustering, associative spatial crowdsourcing provides
little to nor advantage, and can even do slightly worse in case it assumed clustering when
there wasn’t any. However, as we show in the following examples, contiguous and clus-
tered regions (fortunately) occur in a range of real-world scenarios. Below, we use maps
sourced from real-world applications as a starting point representing the current state of
the world from which we want to find regions of interest.

Experiments on finding parking

We consider using spatial crowdsourcing to look for regions with parking spaces. For
our experiments, we use a parking map abstracted from a San Francisco parking cen-
sus data, dividing an area into 26 × 20 regions, as illustrated in Fig. 5, which shows the
location of parking lots. The problem we address here is then: given the parking map,
which we assume here captures the current state of the world with regard to parking in
that area, we want to find k = 5 or k = 40 regions where there is parking available, using
crowdsourcing. (Note that, in reality, there could be fewer regions with available parking
since some of the parking spaces would have been taken up.) Hence, a query will ask if

Page 15 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

Fig. 4  The number of rounds and number of questions averaged over 1000 runs (vertical axis) for varying
δ (horizontal axis) for different values of k while maintaining a similar α. a Average, median and std. dev. for
number of questions with k = 5 and α = 0.175 as δ varies. b Average, median and std. dev. for number of
rounds with k = 5 and α = 0.175 as δ varies. c Average, median and std. dev. for number of questions with
k = 20 and α = 0.179375 as δ varies. d Average, median and std. dev. for number of rounds with k = 20
and α = 0.179375 as δ varies. e Average, median and std. dev. for number of questions with k = 40 and
α = 0.189375 as δ varies. f Average, median and std. dev. for number of rounds with k = 40 and α = 0.189375
as δ varies. g Average, median and std. dev. for number of questions with k = 100 and α = 0.195625 as δ var-
ies. h Average, median and std. dev. for number of rounds with k = 100 and α = 0.195625 as δ varies

Page 16 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

there are parking spaces in a region of size 37 by 37 m, and for simplicity, answers are
binary, YES or NO, and we assume truthfulness in answers given.

Figure 6 shows the average over 1000 runs of results (number of questions and num-
ber of rounds) with two values of k (5 and 40). The median and standard deviation
are included to indicate there is a fair amount of variability between runs. With k = 5
in Fig. 6a, b, we see that with large enough δ (e.g., 1.7), i.e., using a strong association
between neighbouring positive regions), the algorithm can effectively zoom in on posi-
tive regions faster than a random approach (RSC-NR, i.e., δ = 0), resulting, on average,
with both 40 % reduction in the number of rounds and 25 % reduction in the number
of questions used at the same time, i.e., it is not a trading off rounds with questions but
reduction in both. However, with the standard deviation of sometimes over 40 % of the
average rounds and questions, there is substantial variability among runs so that gains
can be small. A similar result is observed for k = 40, 100 in Fig. 6c–h with proportion-
ate reductions in the number of rounds and questions, on average. The type of clustering
observed in the parking map made it susceptible to gains using our neighbourhood asso-
ciation heuristic. As before, gains can be obtained just with δ = 0.1, with little improve-
ments for δ > 0.1.

Experiments on finding crowds

In this experiment, we are simulating the use of crowdsourcing to find where the crowds
are in a city or urban setting. We use a crowd map obtained from the MIT Citysense
project,2 abstracted into 126 × 148 regions, each region corresponding to roughly
28.5 × 28.5m in size. Figure 7 illustrates the map we use that, we assume here, repre-
sents the current real state of the urban area, and the problem is then, given this state of
the world, to find k = 5, 40, 100 or 3000 regions where there are crowds, using

2  http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html.

a

00000000111101100001000000
00000000000000000001000000
00001000000100110000000100
10000001001011010000000110
10000011011000000000000000
10000000001000000000010000
00000001000101001000111000
00000001101101100000000010
01101100101100000000001010
01000100111110000000000000
11000000110010000000000000
10000000100000000001000100
11000001000000000000001100
11000000000000011010001100
00000001010100111111000000
00000000010101100010000000
00000101100000110000000010
00000000100000110000000010
00000000001011010000000000
00000000000000000000000000

b

Fig. 5  Parking map and its abstract version. a Parking map from http://sfpark.org/resources/parking-
census-data-context-and-map-april-2014/, of size roughly 1 by 0.7 km; pink regions have parking spaces. b
Abstracted discretized view of parking map with α = 0.2076923076923077 with 26 × 20 regions, each region
corresponding to roughly 37 by 37 m; ‘1’s representing regions with parking spaces.

http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html
http://sfpark.org/resources/parking-census-data-context-and-map-april-2014/
http://sfpark.org/resources/parking-census-data-context-and-map-april-2014/

Page 17 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

crowdsourcing. Again, for simplicity, we assume binary answers to a query on each
region: is there a crowd here or not?

Figure 8 shows our results when finding k = 5, 20, 40, 100 and 3000 crowded regions.
Similar to the previous case study, our results show a considerable reduction (up to
70 %) in the number of rounds required and up to 60 % reduction in the number of
questions required, on average, with k = 5, 100 and 3000. This is due to the clustering in
the crowd map, which is to a higher degree than in the parking map. These results show

Fig. 6  Results averaged over 1000 runs (vertical axis) for varying δ (horizontal axis) for four different values
of k for the parking map scenario. a Average, median and standard deviation for number of questions with
k = 5 as δ varies. b Average, median and standard deviation for number of rounds with k = 5 as δ varies. (c)
Average, median and standard deviation for number of questions with k = 20 as δ varies. d Average, median
and standard deviation for number of rounds with k = 20 as δ varies. (e)Average, median and standard devia-
tion for number of questions with k = 40 as δ varies. f Average, median and standard deviation for number
of rounds with k = 40 as δ varies. g Average, median and standard deviation for number of questions with
k = 100 as δ varies. h Average, median and standard deviation for number of rounds with k = 100 as δ varies.

Page 18 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

that neighbourhood association can be extremely useful in knowing which regions to
ask about when looking for crowded regions—neighbouring regions tend to be crowded.

Experiments on finding coverage/bandwidth

In this experiment, we simulate finding regions where there is coverage (or adequate
bandwidth) for 3G/4G networking. The assumed current coverage/bandwidth map is
taken from OpenSignal as illustrated in Fig. 9. We want to find k = 5, 20, 40, 100 or 1000
regions where there is coverage, using crowdsourcing. We have 103 × 77 regions, each

a

001111111000000000000011110001111111111111011100000000001111000111111111111111110000000111000111111111111111110001111111111111110011111111111110000000111111111100111111111111100000000101111111001100110111111111100000001101111111001001111000111111111101000001110010001000001001110000011111111111100011110000011000001001110100010111111111110001110001111111011001111111111110011000000000000000000001111111111110011111000000000000000000000111111111111001000000000000000011111111111111111001000000000000000011111111111111111001000000000000000011111111111111111000100111111111100011111111111000111100110000000000111000111111111110011111111000100000000011100111111111111111000111000000000000111110001111111111111111111111110000000000000010000000000000000000000000000000000000101111111111000000000000000000000000000000000000001111111111111111111111110000000000000010000000000000000000000000000000000001111111111111000000000000000000000000000000000000001111111111111111111111110000000000000001000000000000000000000000000000000001111111111111000000000000000000000000000000000000001111111111111111111111110011111111111110000000000000000000000000000000000011111111111111111111111100111111111111110000000000000000000000000000000000111111111111111111111111001111111000011100000000000000000000000000000000001111111111111111111111100110111111000001111110000000000000000000000000000000111111111111111111111110000000000000001110000000000000000000000001110000000110111111011101111111000000000000000000000000000000111111111111111111111111000000000000001110000000000000000000000000010000000111111111011101111110000000000000000000000000000000011111111111111111111100000000000000000110000000000000000000000000000000000000111111011101111110110000000000000000000000000000000000011111111111111000000000000010111110001000000111000000000001000000000000111111000001111111111000000000000000000000000000000000011111111111111000000000000011111110001011110111000000000000000000000000011111111111111111111000000000000000000000000000000000001111111111111000000000000011111110001011001111100000000001000000000000111111111111111111111000000000000000000000000000000000000011111110010000000000000000000111110000010011010000000000000000000111001101000001111111111111000000000000000000000000000000000000001110000000000000000000000011110001111011000000000000000000000111100100100001111111111111000000000000000000000000000000000000001110000000000000000000000011110001111111000000000000000000000111010100000011111111111111000100110000001100010100000000000000000000001000000000011111111111110011100111111111111111111000110011100000000001110000000000000000000000000000000000011111111111111111111111001110000000000110000000000000001000000000000000000001111111111111111111111100110000000000000001101100000111000000000000000000000000111100001001011111110000000000000000000000000000000000001100000000000000110000000000000001111110000111000000000000000000000000111100001001001111110000000000000010000000000000000000011100000000000000110000000000000000101110000111000000000000000000000000111100001100001111110000000000000010000000000000000000000000000000000000110000000000000001100000000111111000000001101100000000000000000000000001110000000000000010000000000000000000000010000000000000010000000000011111110000000111111111011111111110000000000000000000000001110000000000000010000000000000000000000011100000000000010000000000010000110000001111111111111111111110000000000000000000000001110001000000000001111111000000011111111111111111111100011111111110111111111111111111111111111111000010011100011100011100011000111111111111111111111111110000111111111111111000100011111111111111111110000111001111111111111111001110111111111111111111100000110111111111111111111100000000000000000000000000000110010011111111111111011111111110000000011111111111111111111000000000000000000000000000001110011111111110001111111111111000000011111111111111111111100101111011111111111111111110000000111111000001111111111001111111000000000000000000000000000011111111000011111111111111111111011101111110001111001111000000000000000000000000000111111111110011111111111111111111011101111110001111000111111100000000000000000000000000011100000111101111111111111111111101110111111000111100011000000111101111111111111111111100000111111111111100011001110111101111111111111111111111111111111111111100100000000000000000000000000000011001110110011001110111111111111111000001111111111111111111111101000111000001111111111111110111011111111111111111111111011111111100000000000000100000000000000000000000100000011100000000000000001111111111111111111111110111011111111111111111111111111111111100000000000000000000000000000000000000100000011100000000000000000111111111111111111111110111011000001111111111111111111111111100000000000000000010000000000000000000111111111111100000000000001111111111111111111111110000011011101111111111111111111111111100000000000000000000000000000000000000111111111111100000000000001111111111111011111111111111111011101111111111111111111111111100000000000000000000000000000000000000111111100011100000000000110111111111111011111111111111111011101111111111111111111111111100000000000000000000000000000000000000111111100000000000000000011111111111111001111111111111111000001111111111111111110111111100000000000000000000000000000000000000111100000000000000000000000111111111100000001111111000111000011111111111111110000001111100000000000000000000000000000000000000111101000100000000000000000111111111100000001111111001111111111111111111111100000000111100000000000000000000000000000000000000111111001000000000000000000111111111000000001111111000011111111111111111111000011100011000000000000000000000000000000000000111011010000000000000000000111111111100000000000000000000000011111111111111110001110110111000000000000000000001111111000000000000000000000000111111111111111100011101100000000000000000000000000111110000000000000000000000001111111111111111000111100000000000000000000000000111111000000000000000000000000001110001111001111000000000000000000000000000111111110000000000000000000010011100001100011110000000000000000000000000001111111100000000000000000000000111100011100000000000000000000000000000000111000000000000000000001100011010001110000000000000000000000000000111011100000000000000000000111001001010000000000000000000000000100111011100000000000000100000111010001110000000000000000000000000000000011100000000000000110001011000110110000001111110010001000000000000000011111100110110000001111111110001111000000000000001111110001101100000011111111100001100000000000100011111001100000000011111111111111100000000000000011110001100000000000000010011100000001111111111111111000000000000001111101111001111111111111111111111111110000000000000111101111100110000011111111111111111111000000000000011110111001111110000000000000000000000000000011111011101111111111111111111100000000000000000111000111111000000000000000000000000000011111101110111111111111111111110000000000000000011100011111100000000000000000000000000001111110111011111111111111111111000000000000000000100111111111000000000000000000000000000111111000001111111110000011001111111111000000000000000000000100000111111111111111111111000000010011111111110000000000000000000000010001111111111111111111100000001110001111111111000000000000000000000000000111111111100000000000000000011100111111111100000000000000000110000000001111110000000000000000000001110011111111110000000000000000011100000000111111000000000000000000000111011000111111111100000000000000000011000000001111110000000000000000000001111110001111111001111111100000000000000000010001111110000000000000000010001110001100000000000000000011100110011000100111100010011110001000110001100000000000111000111000000000011111001110000000010111100100010010000000010111111100011100000000000101111111000111100000000001011111110001110000000000010011110100111000000000000000000000000000000011100011100000000000000000000000000000001110001110000000000000000000000000000000011001000011111111000111111111111111001100000000000111111111111111100111111111111111100111111111111110011111111111111000111111111111111001111111111111111001111111111111111000111111111111111001111111110001111111100111111111001111111100000000000000000000010011100000000000000000000000000001110000100000000000000000000001111000111000000000000000000000000000011100001000000000000000000000011111001110000000000000000000000000000011000011000000000000000000000111110001100100010000000000000000000000000

b

Fig. 7  Crowd map and its abstract version. a Crowd map from Citysense project (http://www.sensysmag.
com/spatialsustain/citysense-app-aims-to-connect-tribes.html) of size roughly 3.6 by 4.2 km; red regions are
where the crowds are. b Abstracted discretized view of crowd map with α = 0.1968039468039468, with
126 × 148 regions, each region corresponding to roughly 28.5 × 28.5m; ‘1’s (or lighter regions) representing
regions with crowds

http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html
http://www.sensysmag.com/spatialsustain/citysense-app-aims-to-connect-tribes.html

Page 19 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

region corresponding to roughly 100 by 100 m in size. Each query will determine if each
such region has 3G/4G coverage or adequate bandwidth.

Similar to the previous two experiments, from Fig. 10, a significant reduction (up to
60 %) in the number of rounds required can be achieved and 40–50 % reductions in the
number of questions required are observed, with all values of k used.

Fig. 8  Results averaged over 1000 runs for varying δ for different values of k for the crowd map scenario. a
Average, median and standard deviation for number of questions with k = 5 as δ varies. b Average, median
and standard deviation for number of rounds with k = 5 as δ varies. c Average, median and standard devia-
tion for number of questions with k = 20 as δ varies. d Average, median and standard deviation for number
of rounds with k = 20 as δ varies. e Average, median and standard deviation for number of questions with
k = 40 as δ varies. f Average, median and standard deviation for number of rounds with k = 40 as δ varies. g
Average, median and standard deviation for number of questions with k = 100 as δ varies. h Average, median
and standard deviation for number of rounds with k = 100 as δ varies. i Average, median and standard devia-
tion for number of questions with k = 3000 as δ varies. j Average, median and standard deviation for number
of rounds with k = 3000 as δ varies

Page 20 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

A heuristic based on spatial point processes
To go beyond simple immediate neighbourhood influences, we explore an alternative
heuristic for choosing potential regions to query about, i.e. to guess the location of posi-
tive regions (labelled ‘1’s) within an area, based on modelling the distribution of positive
regions using spatial point processes [18].

Suppose that an area R has been divided into I disjoint subareas R1,R2, . . .RI, i.e. each
Ri has a set of regions. At time t, for a subarea Ri, positive regions are assumed to be
distributed according to a Poisson process with intensity �i(t) (where intensity here is
defined to be the average number of positive regions per unit area, or the potential of
an event to appear at any location). The expected number of positive regions in area Ri
is given by �i(t) · |Ri|, where |Ri| denotes the size of (or the number of regions in) Ri, and
the positive regions in Ri are assumed distributed uniformly within Ri.

Now, for p > 1, suppose that after round (p− 1), we have observed Np regions
r1, . . . , rNp (some of which are observed to be positive and some negative). We would

a

0001000011110001000000000000000000000000000000110110111100000000000000010000000000000000110000000000000010110000011110000000000000000000000000000000110011000110000000110000001000000000000000011000000000000010001110001111100000000000000000000000000000100011000011000000010000001000100000000000000000000000000001000011100011110000000000000000000000000001100011000001100000010000000100000000001100000000000000000001100000011011100100000000000000000000000001100001100000110000010000000100011111001110000000000000000000011000000110000001100000100000011000111011001110000000000000000011000000011000000011000000000000100000000000000000010000000000001000000000011000110011100000000000000100000000011000000001100000000000000000000000000000011000000000000000000000011100001101111000000000000000000000001100000000100000000000010000000000000000001100000000000000000000011111000011111110000000010000000000001100000000110000000000001000000000000000000100000000000000000100011000000000111111000000000000000000001100000000010000000000000000000000000000000110000000000000000010011000000000001111110000000000000000000100000000010000000000000000000000000000000010000000000000000001011000000000000000011110000000000000000110001100000000000000000110100000000000000000001110000000000000011001000000000000000001110000000000000000110000111000000000000110000000000000000000000000000000001000000000100000000000000001110000000000000000111110001111000000000111000100000000000000001100000000000000001101111001111000000000110011000000000000000000000001101111000000101100000000000000000000001000000000000000000000000000000000000001100000000000000000000000011111111001101110000000000000000000000110000000000000000000000000000000000001100000000000000000000000000111100110100110000000000000000000000001100000000000000000000000000000000000100001000000000000000000000001100001101110000000000000000000001100001100000000000000000000000000000000110001100000000000000000000000000000011111000000000000000000000110000011000000000000001000000000000000011000010000000000000000000000000000001111000000000001000000000001000000000000000000001100000000000000001000000000000000000000000000000000111111000000000000000000000000100000000000000000001100000000000000001101000000000000000000000000000000001111110000000000000000000000000000000001000000001100000000000000001110110010000000000000000000000000000010111000000000000000000000000000010000000000000110000000000000000111000001000000000000000000000000000010001100000000000001100000000000000000000001101110000000000000000011110000100000000000000000000000000011110111000000000000100000000000000000000001101110000000000000000001010111100000000000000000000000000011111001100000000000000000000000000000000001101100000000000000000001100001110000000000000000000000000111111000010100000000000000000000100000000000101100000000000000000001100001110000000000000000000000000001111100001100000000000000000000010000000000110000000000000000000000110001100000000000000000000000000000111110000110001100001100010000000000010000000000011111111000110000000000000000000000000000000000100000000000000000001100110110001000000000000000000000001110001111011000000010000000000100000000000000000000000000000000000110011111001000000000000011110000000110000001111110000010011001101111000000000000000011110000001100000000111110000100000000000000000000000111000000000000000000001100100011110000000000000000001100001110000000001111100010000000011000000000000010000000000000000000001100010010011100000000000000000001100110000000000000011111000000001000000000000001000000000000000000000100010000001001000000000000000000010011000000000000000111100000111000000000000001100000000000000000000110011010111100100000000000000000000011000000000000001111011101111000000000000000110000000000000000000110011011111111110000000000000000000001100000000000000011000011110000000000000000011000000000000000000011001100111110010000000000000000000001100000000000000000000000111100000000000000011100000000000000000011001100001111110100000000000000000000100100000000000000000000010011000000000000000000000000000000000001100100000111111110000000000000000000110011000000000000000000011000111000000000000000000000000000000001100110001111101111000000000000000000111001100000000000000000011100001111000001100000000000000000000000110011111111110100100000000000000001111000010000000000000000011100000111111100100000000000000000000000011011111111111110000000000000000001111000001100000000000000011000000011101111010000000000000000000000001111011111111110000000000000000000011100000110000000000000011000000000110111111000100000000000000000001101101111111111000000000000000000011100000001100000000000011000000000110000111100100000000000000000001111100111111111110000000000000000011100000000010000000000001000000000011000001111110000000000000000000110100001111111101111000000000000011110000000001000000000000100000000001000000111111100000000000000000111110011111111111111100000000000111110000000000000000000000010000000001100000111110001100000000000110011011000011111111111110000000000111100000000000000000000000001000000000110000011111000011100000000001111011011001111111111111000000001111000000000000000000000000000100000000010000011111000000011100000000011101001111111111111111100000001110000000000000000001000100000010000000011000001111000000000011100000111101100101111111111111110001011110000000000000000000100110000011000000001000001100000000000000011000011101110110111111111111111000111100000000000000000000011110000011000000001000000100000000000000000011000011111111111111111111111100111000000000000000000000000110000001000000001100000000000000000000000000111011111111111111111111110000100000000000000000000000000001000001100000000110000010000000000000000000000011111111111111111111111101010000010000000000000000000001100000110000000010000001000000000000000000000010011111111111111111111111100000000000000000000000000001100000110000000011000000100000000000000000000011001111111111111111111011110000000010000000000000000001100000011000000001000000010000000000000000000001001111111111111111111110111000000000001000000000000000100000011000000000000000011000000000000000000000111101111111111111111111111100000000000000000000000000000000001100000000000000001000000000000000000000000000111011111111111111111110000000000000000000000000000000000100000000110000011100000000000000000000000000111001111111111111111111000100000000000000000000000000000000000011111111111111111111111000

b

Fig. 9  Coverage map and its abstract version. a 3G/4G coverage map from http://opensignal.com/ of a part
of New York city, of size roughly 10 by 8 km; orange regions have 3G/4G coverage. b Abstracted discretized
view of coverage map with α = 0.1784138191905182 with103 × 77 regions, each region corresponding to
roughly 100 by 100 m; 1s representing regions with coverage

http://opensignal.com/

Page 21 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

like to obtain the intensity at any region r ∈ R, as an estimate of the probability of the
region r being positive. To obtain an estimate of the intensity at any r ∈ R, taking into
consideration contributions of both observed positive and negative regions, we use the
Nadaraya-Watson kernel weighted average, with bandwidth h:

�̂h(r) =

∑Np

i=1(Kh(r, ri) · F(ri))
∑Np

i=1 Kh(r, ri)

Fig. 10  Results averaged over 1000 runs for varying δ for different values of k for the coverage map scenario.
a Average, median and standard deviation for number of questions with k = 5 as δ varies. b Average, median
and standard deviation for number of rounds with k = 5 as δ varies. c Average, median and standard devia-
tion for number of questions with k = 20 as δ varies. d Average, median and standard deviation for number
of rounds with k = 20 as δ varies. e Average, median and standard deviation for number of questions with
k = 40 as δ varies. f Average, median and standard deviation for number of rounds with k = 40 as δ varies. g
Average, median and standard deviation for number of questions with k = 100 as δ varies. h Average, median
and standard deviation for number of rounds with k = 100 as δ varies. i Average, median and standard devia-
tion for number of questions with k = 1000 as δ varies. j Average, median and standard deviation for number
of rounds with k = 1000 as δ varies

Page 22 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

with a Gaussian kernel:

where |r− ri| denotes the Euclidean distance between regions r and ri (computed using
their coordinates), and h is the standard deviation.

Note that we recompute the intensity after each round since we observe more regions
after each round and so can improve the model after each round. The method for
chooseCandidates(·) in the spatial crowdsourcing algorithm then chooses the c regions
with the highest �h(·).

Below, for short, the associative spatial crowdsourcing algorithm using the immedi-
ate neighbourhood heuristic given in the previous section is termed ASC-IN, and the
associative spatial crowdsourcing algorithm using the spatial point process modelling is
termed ASC-SPP.

Experiments with a randomly generated map

Here, we generated a random scenario with around 25 % of positive regions (or ‘1’s),
where there is some clustering but immediate neighbourhoods with contiguous regions
of ‘1’s are purposely reduced. We conducted a larger number of runs to compare RSC-
NR, ASC-IN (with δ = 0.1) and ASC-SPP, taking average values for questions and
rounds. Figure 11 shows examples of observed regions for ASC-CPP and ASC-IN. With
k = 40, a run of ASC-SPP is shown in Fig. 11a. This can be compared to the run of ASC-
IN (with δ = 0.1 only, since larger values do not improve performance as can be seen
from the previous section) shown in Fig. 11b. It can be seen that ASC-SPP is able to
focus on areas with higher density of ‘1’s without necessary getting ‘stuck’ at exploring
immediate neighbourhoods as in ASC-IN, and as we expect, this has resulted in better
performance for this scenario.

Figure 12 shows the results (questions and rounds) for k = 5 and 40. It can be seen
that ASC-SPP performs better in such a scenario where immediate neighbourhoods of
positive regions are mostly not positive. ASC-SPP performs better than ASC-IN, as we
would expect, since ASC-IN ends up searching negative neighbourhoods, but ASC-SPP
also performs better than the random RSC-NR by directing search via the spatial point
process heuristic above (especially for k = 40).

Experiments on finding noisy areas

In this experimentation, we consider noise maps, such as in Fig. 13a abstracted as
Fig. 13b. In the abstracted map, it can be seen that immediate neighbourhoods of ‘1’s
need not be ‘1’s themselves, and we have a case where ASC-SPP might perform better
for this type of scenario. Figure 14a and b shows that this is indeed the case, for k = 40,
with substantial gains over ASC-IN.

But for k = 5, as in Fig. 14c and d, there is considerable variation (high standard
deviation) and in fact, ASC-SPP has, on average, poorer performance than both ASC-
IN and RSC-NR; with k = 5, ASC-SPP performs extremely well in some cases but does
extremely poorly in particular cases, which raised the average substantially. The reason
is as follows: it was found that ASC-SPP can end up exploring large sparse areas. For

Kh(r, ri) =
1

2π
· e

− 1
2

(

|r−ri |

h

)2

Page 23 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

example, dividing the area in Fig. 13b into four subareas: top-left, top-right, bottom-left
and bottom-right, (i.e., TL|TRBL|BR), ASC-SPP could sometimes have a good start (for all ASC-
IN, ASC-SPP and RSC-NR, in the first round, the initial regions to query are random)
finding the first few ‘1’s in the top-left subarea quickly but end up exploring almost the
entire sparse subarea in the top-left or bottom-left to find the final ‘1’. But with higher
k (e.g., with k = 40), as the search continues, ASC-SPP starts to find areas of higher

1 0 0

1

0

0
0 0

0

11

0

0

0
0 10 0

1 11
10 0000001010110010000001000010101 0 0000000110 00010101000011 00

0 00000 0101100001

0100101101

000010100010 00001
0 1

a

0 0
00000 110000

00
0

01

00 0000010 0 0

00001000

0
00

0

0 010000
0000 000 00000100110000 100 0 0100000

0 0

00001100001000100010

0

0
00001001001000

010 0000010 11000 00000
00010010 000

b

Fig. 11  An ASC-SPP result observing a set of contiguous regions, compared to an ASC-IN result focusing on
regions immediately surrounding found ‘1’s (many of which turn out to be ‘0’s in this scenario). a Observed
regions with ASC-SPP in another run (total qns: 140; total rounds: 15). b Observed regions with ASC-IN in one
run (total qns: 226; total rounds: 27)

Page 24 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

density better than ASC-IN and RSC-NR and then, on average, outperforms ASC-IN
and RSC-NR.

To deal with this, for cases of low k, one can employ history to focus the initial search,
i.e., assuming historical information tells us that it would be better to start querying
regions (randomly selected) from the bottom-right subarea than randomly selecting
regions from anywhere to query in the first round, the results are substantially different;
in Fig. 14e and f, the advantage of using history at the start of ASC-SPP, called ASC-SPP-
His, in exploring regions of higher density (even if not contiguous) is demonstrated.

Fig. 12  Results averaged over 1000 runs for two different values of k for the randomly generated scenario,
comparing RSC-NR, ASC-IN (δ = 0.1) and ASC-SPP. a Average, median and standard deviation for number of
questions with k = 5. b Average, median and standard deviation for number of rounds with k = 5. c Average,
median and standard deviation for number of questions with k = 40. d Average, median and standard devia-
tion for number of rounds with k = 40.

Page 25 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

a

000
000
000000000010000000000000000000000000100000000000000000000000000000000
000000000010000000000000000000000000100000000000000000000000000000000
000
000
000000000000000000000000000000001100000000000000000000000000000000000
000
000
000
00000000000000000000000001000
000
000
000
000
000
000001000000000000000000000000000000010000000000000000000000000000000
000001000000000000000000000000000000010000000000000000000000000000000
000
0010000000000000000
000000000000000000000000100
001000000000000000000
001100000000000000000
000
0000000000000000100
0000000000000000100
000
00000000000000000000000000100
000000000000011000000000000000000000000000000000000001000010000000000
001000000000000000000
000
00010000000000000000000
000000000000000000000000000100000000110000000000000000000000000000000
00011000000
00100000000000000000100000000
00010100010000000000100000000
000000000000000000000000000000001000000000000000000000000000000000000
000000000000000000000000110000000000000011000000000000000000000000000
000000000000000000000000000000000001000011111000000000000000000000000
000000000000000000000000000000111000000001111100000000000000000000000
000000000110000000000000000000110000000000000000000001000000000000000
000000000010000000000000000000010110000000000000011001000000000000000
000000000000000000000001000000000000000000001000111000000000000000000
000000000000000000011000000000000000000000000000011011000000000000000
000000000000000000000000001000000000000001000000000000000000010000000
00010001000000000000000
000000000000000000000000000001111000001100000000010000000000010000000
000000000000000000000000000000011000000110000011010000000110000000000
000000000000000000000000000000110000000000000000011001000000000000000
000000000000000000000000000000100000000000000000000001000000000000000
0011000100000000000000000000000
000

b

Fig. 13  Noise map and its abstract version. a Noise map from http://urbanobservatory.org/compare/index.
html (NoiseWatch) around London, red and orange triangles indicate high noise levels. b Abstracted discre-
tized view of noise map with α = 0.030657748 with 69 × 52 regions;1s representing high noise regions

Related work
Algorithms for crowdsourcing has been a relatively new endeavour but currently a very
active area of work.3 The past half decade has seen much development in the area, e.g.,
the work in [17] in crowdsourcing algorithms, the work in [19] on crowdsourcing for
discovery, the work in [20, 13, 21] on achieving real-time results in crowdsourcing, and

3  For example, see http://crowdwisdom.cc/nips2013/ and http://www.humancomputation.com/2014/.

http://urbanobservatory.org/compare/index.html
http://urbanobservatory.org/compare/index.html
http://crowdwisdom.cc/nips2013/
http://www.humancomputation.com/2014/

Page 26 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

Fig. 14  Results averaged over 1000 runs comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP (and ASC-SPP-
His) for different values of k for the noise scenario. a Average, median and standard deviation for number of
questions with k = 40 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP. b Average, median and standard
deviation for number of rounds with k = 40 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP. c Average,
median and standard deviation for number of questions with k = 5 comparing RSC-NR, ASC-IN (δ = 0.1), and
ASC-SPP. d Average, median and standard deviation for number of rounds with k = 5 comparing RSC-NR,
ASC-IN (δ = 0.1), and ASC-SPP. e Average, median and standard deviation for number of questions with k = 5
comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP-His. f Average, median and standard deviation for number
of rounds with k = 5 comparing RSC-NR, ASC-IN (δ = 0.1), and ASC-SPP-His

Page 27 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

the work in [22] on crowd-selection for microtasks. There is already a range of commer-
cial frameworks such as Amazon Mechanical Turk,4 CrowdFlower,5 and CrowdCloud.6
Focus has been myriad, from user interaction aspects to algorithmic and framework
aspects.

There is also the emerging trend of geo-crowdsourcing, where ever-expanding groups
of users collaboratively and often voluntarily (or paid to) contribute different types of
spatial or geographic information [9, 23, 24]. Also, emerging are work on location/con-
text-based crowdsourcing where location is key in distributing jobs to workers [5, 25, 11,
26] with applications in transportation and so on, and work in [27] where different strat-
egies are explored to answer location-based crowdsourcing of queries. However, we
believe our work is original in approaching the spatial finding problem. Microsoft
Research has an interesting set of spatial crowdsourcing projects, focusing on mecha-
nisms to encourage ordinary people to perform tasks at specific locations.7 The gMission
system [28] is a platform to support spatial crowdsourcing and provides a range of fea-
tures including matching potential workers with tasks, but our work focuses on which
areas to query rather than workers.

As mentioned earlier, this work is partly motivated by increasing work on mobile
crowdsourcing mentioned earlier and mobile crowdsensing [29–32], where mobile con-
text provides valuable situational knowledge that can be crowdsourced. We did not deal
with incentives in this paper but assumed that we will get response about a region when-
ever a query is asked but how to use incentives to get appropriate responses is also an
active area of research.

In [25], a Gaussian process model was used to predict future traffic saturation at
junctions with sensors with generalisation to junctions without sensors. A Gaussian
approach might be used in modelling the distribution of positive regions, but with too
small a k and too small a proportion of observed regions, it is uncertain if meaningful
predictions can be made with this approach but it could be investigated. Spatial sam-
pling techniques such as spatial simulated annealing using prior information [33] can be
employed in place of our random sampling approach and compared to our heuristics.

The work in [34] reviews mobile crowdsourcing pointing out further challenges such
as incentive mechanisms, reputation management, and task allocation.

Conclusion
This paper proposed and investigated finding regions of interest from a set of regions of
an area using iterative crowdsourcing processes controlled by the principle of a query-
feedback loop interleaved with query adjustment based on responses and heuristics.
We have described three simple, though effective, heuristics for reducing the costs (the
number of questions required) and increasing the efficiency (or reducing the number of
rounds required) in using crowdsourcing for finding regions of interests:

• • using a proportionate number of redundant questions in each round in the expecta-
tion of failure, as already pointed out in earlier work by [17],

4  http://aws.amazon.com/mturk/.
5  http://www.crowdflower.com/.
6  http://www.crowdcloud.com/.
7  http://research.microsoft.com/en-us/projects/spatialcrowdsourcing/,

http://aws.amazon.com/mturk/
http://www.crowdflower.com/
http://www.crowdcloud.com/
http://research.microsoft.com/en-us/projects/spatialcrowdsourcing/

Page 28 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

• • immediate neighbourhood associations in the case where regions of interest are clus-
tered contiguously, and

• • spatial point processes for approximating distribution of positive regions, working
even without contiguous positive regions, with approximations improved on each
round, with the use of historical information to guide starting queries in cases of low
k.

We demonstrated, via a range of maps (synthetic and real-world based), that our heu-
ristics lead to improved performance over randomly choosing regions to ask about.
While we use stylised maps based on real-world distributions of parking, crowd, band-
width coverage, and noise, our research suggests that finding in the city is not as difficult
as it can be for phenomena that exhibit some degree of clustering. While our focus has
been on spatial problems, we also note that the heuristics are generalisable to non-spa-
tial problems as long as meaningful associations can be defined among items.

Future work involves exploring a combination of the heuristics in real deploy-
ments as well as other application-specific spatial and geographically based heu-
ristics, and heuristics that exploit historical information—so, for example, we can
include historical information in computing probabilities, i.e. for a region r, we calcu-
late Pr(F(r) = TRUE | obs(N (r)) ∧ history(r)). There are also many applications to
explore, from finding vacant/quiet coffee-shops to finding strategic points of interest in
emergency situations. Dealing with uncertainties and unresponsive crowds are further
issues to consider, e.g., taking into account regions with low density of people. We did
not deal with the problem of incentives and strategic sampling will need to be consid-
ered in the future.

Appendix
Proof of Lemmas and Theorems

Lemma 1  The function T is monotonically increasing, i.e. for any m, T (n) ≥ T (m) for all
n ≥ m.

Proof  Let S(n) denote the statement: T (n) ≥ T (m) for all 0 ≤ m ≤ n. Suppose n = 1,
then, T (1) ≥ T (0), i.e., S(1) is true. For a given p, assume that S(2), . . . , S(p) are all true
and we will prove S(p+ 1). With S(p) being true, for any m ≤ p, T (p) ≥ T (m). So, we
just need to show that T (p+ 1) ≥ T (p).

Note that p ≥ 2. Then, since ((p+ 1)−⌈(p+ 1) · σ⌉) ≤ p , and
so, S((p+ 1)−⌈(p+ 1) · σ⌉) is also true, as assumed, and we have
T ((p+ 1)−⌈(p+ 1) · σ⌉) ≥ T (m), for any m ≤ ((p+ 1)−⌈(p+ 1) · σ⌉). Now,

� �

T (p+ 1) = T ((p+ 1)−⌈(p+ 1) · σ⌉)+ 1

≥ T (p−⌈p · σ⌉)+ 1

(by induction as (p−⌈p · σ⌉) ≤ ((p+ 1)−⌈(p+ 1) · σ⌉))

= T (p)(by definition of T)

Page 29 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

Lemma 2  Given γ, the function Q′
γ is monotonically increasing, i.e. for any m,

Q′
γ (n) ≥ Q′

γ (m) for all n ≥ m.

Proof  Let S′(n) denote the statement: Q′
γ (n) ≥ Q′

γ (m) for all 0 ≤ m ≤ n. Suppose n = 1 ,
then, Q′

γ (1) ≥ Q′
γ (0), i.e., S′(1) is true. For a given p, assume that S′(2), . . . , S′(p) are all

true and we will prove S′(p+ 1). With S′(p) being true, for any m ≤ p, Q′
γ (p) ≥ Q′

γ (m).
So, we just need to show that Q′

γ (p+ 1) ≥ Q′
γ (p).

� �

Theorem 1  For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have

T ′
γ (n) ≤ T (n) .

Proof  Firstly, T ′
γ (0) = T (0). Now, for all integers 1 ≤ m ≤ p, we assume that

T ′
γ (m) ≤ T (m), and will prove that T ′

γ (p+ 1) ≤ T (p+ 1). We have:

� �

Theorem 2   For any 1
σ
≥ γ ≥ 1 and a given non-negative integer n, we have

Q′
γ (n) ≤ ⌈γ ⌉ · Q(n), i.e. Cost ′γ (n) ≤ ⌈γ ⌉ · Cost(n).

Proof  Firstly, Q′
γ (0) ≤ ⌈γ ⌉ · Q(0). Now, assume that for any m ≤ p, we have

Q′
γ (m) ≤ ⌈γ ⌉ · Q(m). We will show that Q′

γ (p+ 1) ≤ ⌈γ ⌉ · Q(p+ 1).

Q′
γ (p+ 1) = ⌈γ · (p+ 1)⌉ + Q′

γ ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉)

≥ ⌈γ · (p+ 1)⌉ + Q′
γ (p− ⌈⌈γ · p⌉ · σ⌉)

(by induction as ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉) ≥ (p− ⌈⌈γ · p⌉ · σ⌉)

and p ≥ ((p+ 1)− ⌈⌈γ · (p+ 1)⌉ · σ⌉))

≥ ⌈γ · p⌉ + Q′
γ (p− ⌈⌈γ · p⌉ · σ⌉)

= Q′
γ (p)

(by definition of Q′
γ)

T ′
γ (p+ 1) = T ′

γ ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉)+ 1

≤ T ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉)+ 1

(by induction since ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉) ≤ p)

≤ T ((p+ 1)−⌈(p+ 1) · σ⌉)+ 1

(by Lemma 1 since

((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉) ≤ ((p+ 1)−⌈(p+ 1) · σ⌉))

= T (p+ 1)

(by definition of T)

Page 30 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

� �

Received: 20 July 2015 Accepted: 24 November 2015

References
	1.	 Brabham DC (2013) Crowdsourcing. The MIT Press, Cambridge
	2.	 Law E, Ahn LV (2011) Human computation. Synthesis lectures on artificial intelligence and machine learning. Mor-

gan & Claypool Publishers, San Rafael
	3.	 Michelucci P (2013) Handbook of Human Computation. Springer Publishing Company, Incorporated, New York
	4.	 Franklin MJ, Kossmann D, Kraska T, Ramesh S, Xin R (2011) CrowdDB: answering queries with crowdsourcing. In:

Proc. of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD ’11, ACM, New York, pp
61–72

	5.	 Alt F, Shirazi AS, Schmidt A, Kramer U, Nawaz Z (2010) Location-based crowdsourcing: extending crowdsourcing to
the real world. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: extending bounda-
ries, NordiCHI ’10, New York, ACM, pp 13–22

	6.	 Georgios G, Konstantinidis A, Christos L, Zeinalipour-Yazti D (2012) Crowdsourcing with smartphones. IEEE Internet
Computing 16(5):36–44

	7.	 Gupta A, Thies W, Cutrell E, Balakrishnan R (2012) mClerk: enabling mobile crowdsourcing in developing regions.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, ACM, New York, pp
1843–1852

	8.	 Charoy F, Benouare K, Valliyur-Ramalingam R (2013) Answering complex location-based queries with crowdsourc-
ing. In: Proc. of the 9th IEEE Int. Conf. on Collaborative Computing: Netw., App. and Worksharing, IEEE Computer
Society

	9.	 Kazemi L, Shahabi C (2012) Geocrowd: enabling query answering with spatial crowdsourcing. In: Proceedings of the
20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL ’12, ACM, New York, pp
189–198

	10.	 Della Mea V, Maddalena E, Mizzaro S (2013) Crowdsourcing to mobile users: a study of the role of platforms and
tasks. In DBCrowd, pp 14–19

	11.	 Tamilin A, Carreras L, Ssebaggala E, Opira A, Conci N (2012) Context-aware mobile crowdsourcing. In: Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, ACM, New York, pp 717–720

	12.	 Yan T, Marzilli M, Holmes R, Ganesan D, Corner M (2009) mCrowd: a Platform for Mobile Crowdsourcing. In Proc. of
the 7th ACM Conference on Embedded Networked Sensor Systems, SenSys ’09, ACM, New York, pp 347–348

	13.	 Bernstein MS, Brandt J, Miller RC, Karger DR (2011) Crowds in two seconds: enabling realtime crowd-powered inter-
faces. In UIST, pp 33–42

	14.	 Guo S, Parameswaran A, Garcia-Molina H (2012) So who won?: dynamic max discovery with the crowd. In: SIGMOD
Conference, pp 385–396

	15.	 Parameswaran AG, Garcia-Molina H, Park H, Polyzotis N, Ramesh A, Widom J (2012) Crowdscreen: algorithms for
filtering data with humans. In SIGMOD Conference, pp 361–372

	16.	 Das Sarma A, Parameswaran A, Garcia-Molina H, Halevy A (2014) Crowd-powered find algorithms. In: Data engineer-
ing (ICDE), 2014 IEEE 30th International Conference on, pp 964–975

	17.	 Parameswaran AG (2013) Human-powered data management. PhD thesis, Department of Computer Science,
Stanford University, Stanford

	18.	 Cressie N, Wikle CK (2011) Statistics for Spatio-Temporal Data., Wiley Series in Probability and StatisticsWiley,
Hoboken

	19.	 Faridani S (2012) Models and Algorithms for crowdsourcing discovery. PhD thesis, Berkeley, University of California
	20.	 Bernstein MS (2013) Crowd-powered systems. KI 27(1):69–73

Q′
γ (p+ 1) = ⌈γ · (p+ 1)⌉ + Q′

γ ((p+ 1)−⌈⌈γ · (p+ 1)⌉ · σ⌉)

≤ ⌈γ · (p+ 1)⌉ + Q′
γ ((p+ 1)−⌈(p+ 1) · σ⌉)

(by Lemma 2)

= ⌈γ · (p+ 1)+ Q′
γ ((p+ 1)−⌈(p+ 1) · σ⌉)⌉

≤ ⌈γ · (p+ 1)+ ⌈γ ⌉ · Q((p+ 1)−⌈(p+ 1) · σ⌉)⌉

(by induction since ((p+ 1)−⌈(p+ 1) · σ⌉) ≤ p)

≤ ⌈⌈γ ⌉ · (p+ 1)+ ⌈γ ⌉ · Q((p+ 1)−⌈(p+ 1) · σ⌉)⌉

= ⌈⌈γ ⌉ · ((p+ 1)+ Q((p+ 1)−⌈(p+ 1) · σ⌉))⌉

= ⌈⌈γ ⌉ · Q(p+ 1)⌉(by definition of Q)

= ⌈γ ⌉ · Q(p+ 1)

Page 31 of 31Loke ﻿Hum. Cent. Comput. Inf. Sci. (2016) 6:4

	21.	 Bigham JP, Jayant C, Ji H, Little G, Miller A, Miller RC, Miller R, Tatarowicz A, White B, White S, Yeh T (2010) Vizwiz:
nearly real-time answers to visual questions. In Proceedings of the 23nd Annual ACM Symposium on User Interface
Software and Technology, UIST ’10, pp 333–342, New York, ACM

	22.	 Abraham I, Alonso O, Kandylas V, Slivkins A (2013). Adaptive crowdsourcing algorithms for the bandit survey prob-
lem. CoRR, abs/1302.3268

	23.	 Shahabi C (2013) Towards a generic framework for trustworthy spatial crowdsourcing. In: Proceedings of the 12th
International ACM Workshop on Data Engineering for Wireless and Mobile Acess, MobiDE ’13, ACM, New York,
pp 1–4

	24.	 Sui D, Elwood S, Goodchild M (2013) Crowdsourcing geographic knowledge: volunteered geographic information
(VGI) in theory and practice, Springer

	25.	 Schnitzler F, Liebig T, Mannor S, Morik K (2014) Combining a gauss-markov model and gaussian process for traffic
prediction in dublin city center. In EDBT/ICDT Workshops, pp 373–374

	26.	 Wu D, Zhang Y, Bao L, Regan AC (2013) Location-based crowdsourcing for vehicular communication in hybrid
networks. IEEE Trans Intell Transp Sys 14(2):837–846

	27.	 Benouaret K, Valliyur-Ramalingam R, Charoy F (2013) Answering complex location-based queries with crowdsourc-
ing. In CollaborateCom, pp 438–447

	28.	 Chen Z, Fu R, Zhao Z, Liu Z, Xia L, Chen L, Cheng P, Cao CC, Tong Y, Zhang CJ (2014) gmission: a general spatial
crowdsourcing platform. PVLDB 7(13):1629–1632

	29.	 Ganti RK, Ye F, Lei H (2011) Mobile crowdsensing: current state and future challenges. IEEE Commun Mag
49(11):32–39

	30.	 Hu X, Chu T, Chan H, Leung V (2013) Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans Emerg
Top Comput 1(1):148–165

	31.	 Lane ND, Chon Y, Zhou L, Zhang Y, Li F, Kim D, Ding G, Zhao F, Cha H. Piggyback crowdsensing (pcs): energy efficient
crowdsourcing of mobile sensor data by exploiting smartphone app opportunities. In: Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, ACM, New York, pp 1–7

	32.	 Sherchan W, Jayaraman PP, Krishnaswamy S, Zaslavsky A, Loke S, Sinha A (2012) Using on-the-move mining for
mobile crowdsensing. In: Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management
(mdm 2012), MDM ’12, IEEE Computer Society, Washington, pp 115–124

	33.	 Van Groenigen JW (1997) Spatial simulated annealing for optimizing sampling. In: Soares AO, Gmez-Hernandez J,
Froidevaux R (eds) geoENV I - Geostatistics for Environmental Applications, vol 9., Quantitative Geology and Geosta-
tisticsSpringer, Netherlands, pp 351–361

	34.	 Ren J, Zhang Y, Zhang K, Shen X (2015) Exploiting mobile crowdsourcing for pervasive cloud services: challenges
and solutions. Commun Mag IEEE 53(3):98–105

	Heuristics for spatial finding using iterative mobile crowdsourcing
	Abstract
	Background
	The spatial finding problem
	A crowdsourcing solution
	A heuristic that embraces failure: redundant questioning
	Experiments
	Typical run
	Comparing RSC-NR and RSC-R

	Discussion

	A heuristic for spatial finding: neighbourhood associations
	Experiments with randomly generated area maps
	Experiments on finding parking
	Experiments on finding crowds
	Experiments on finding coveragebandwidth

	A heuristic based on spatial point processes
	Experiments with a randomly generated map
	Experiments on finding noisy areas

	Related work
	Conclusion
	References

