
Parallel implementation of color‑based
particle filter for object tracking in embedded
systems
Mai Thanh Nhat Truong and Sanghoon Kim*

Background
Object tracking has important roles in many vision-based applications such as traffic
monitoring [1], surveillance systems [2], and recently, augmented reality [3]. Generally,
the goal of object tracking algorithms is to locate the moving objects of interest in the
video data retrieved from image acquisition devices and to produce a record of the tra-
jectory of the objects. In practice, object tracking can be more difficult because of object
shapes, light conditions, occlusions, sudden change in object motions, camera motions,
etc. Owing to various difficulties that cannot be solved simultaneously, object tracking
methods are usually designed to track objects with specific properties in certain envi-
ronments [4]. For instance, one object tracker produces good results in various environ-
ments under different lighting conditions, but produces low accuracy results when the
target shape or silhouette is changed because of camera angles. One tracking method
can predict target movement accurately, but it may fail when tracking bouncing objects
as a result of sudden changes in movement direction. Therefore, object tracking is still a
high-complexity and time-consuming task. The complexity is increased when the track-
ing task is performed in environments with complex surroundings, or the requirement is
to track objects with various appearances.

Abstract 

Recently, embedded systems have become popular because of the rising demand
for portable, low-power devices. A common task for these devices is object tracking,
which is an essential part of various applications. Until now, object tracking in video
sequences remains a challenging problem because of the visual properties of objects
and their surrounding environments. Among the common approaches, particle filter
has been proven effective in dealing with difficulties in object tracking. In this research,
we develop a particle filter based object tracking method using color distributions of
video frames as features, and deploy it in an embedded system. Because particle filter
is a high-complexity algorithm, we utilize computing power of embedded systems
by implementing a parallel version of the algorithm. The experimental results show
that parallelization can enhance the performance of particle filter when deployed in
embedded systems.

Keywords:  Object tracking, Particle filter, Parallel computing, Embedded systems

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2
DOI 10.1186/s13673-016-0082-1

*Correspondence:
kimsh@hknu.ac.kr
Department of Electrical,
Electronic, and Control
Engineering, Hankyong
National University, Room
205, Administrative Building,
327 Jungang‑ro, Anseong‑si,
Gyeonggi‑do, South Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-016-0082-1&domain=pdf

Page 2 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Approaches for object tracking can be categorized into three groups: point tracking,
kernel tracking, and silhouette tracking [5]. In point tracking, the target objects are rep-
resented by points that contain information of the object properties. Objects are tracked
using the relation of the points, and their locations and movements are calculated based
on the previous state of these points. However, an external mechanism is required to
locate the objects in every frame. Kernel tracking relies on the object shape and appear-
ance, which are called kernels. For instance, the kernel can be a rectangular region or
an elliptical shape with an associated histogram. Objects are tracked by calculating the
motion of the kernel in consecutive frames. This motion is usually defined as a para-
metric transformation such as translation, rotation, and affine. In silhouette tracking,
the target objects are tracked by their estimated region in each frame. Silhouette track-
ing approaches use the features extracted from the object region, which are also called
models. After having obtained the models, object silhouettes are tracked by using shape
matching or contour evolution. Essentially, both these methods can be considered as
object segmentation applied in the temporal domain using the object state from the pre-
vious frames.

Object tracking is also an important application for embedded systems. Recently,
embedded systems and SoC (systems-on-chip) platforms have become popular because
of the rising demand for portable, low-power devices. One of the most popular manu-
facturers of this type of platform is ARM Holdings, the developer of the ARM (Acorn
RISC Machine) platform, a family of RISC (reduced instruction set computing) archi-
tectures for computer processors. Currently, processors based on the ARM platform
are widely used in smartphones, tablets, smart wearable devices, and are being intro-
duced into many other electronic devices. Therefore, developing efficient algorithms
for such systems has attracted considerable attention. Many vision-based applications
for embedded systems, including object tracking, have been already developed [6–8].
However, embedded systems have limited computing power and memory. This limita-
tion prevents embedded systems from performing complex tasks, such as object track-
ing, within a reasonable execution time. For example, robust tracking algorithms based
on high-complexity computing methods, like principal component analysis or image
features such as SIFT (scale-invariant feature transform) and SURF (speeded-up robust
features), are able to run in real-time only on modern powerful computers [9]. There is
a trade-off between speed and reliability. Fast algorithms are less universal under cer-
tain conditions, and vice versa. For this reason, the development of algorithms which are
both fast and reliable remains an ongoing problem.

In this research, particle filter is selected as the tracking framework among the com-
mon approaches for object tracking. Particle filter, a point tracking method, is used to
perform estimation in state-space models, where the information of the state is acquired
over time. It has been proven to produce high performance when applied to nonlinear
and non-Gaussian estimation problems [10], hence particle filter is a robust solution for
object tracking. This method approximates a posterior probability density of the state. In
this case, it is the positions of the object in image sequence. The approximation is con-
ducted by using point mass representations of probability densities, which are called par-
ticles. Usually contours, color features, or appearance models are used as particles when
applying particle filter to object tracking [10–14]. A significant disadvantage of particle

Page 3 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

filter is computational complexity. The complexity increases as the area of the tracked
region and the number of particles increase. When the dimensionality of the state space
increases, the number of particles required for the sampling increases exponentially. A
powerful computer is required for the purpose of producing results in a reasonable time.
Fortunately, as a result of the rapid development of the semiconductor industry, embed-
ded systems have become more powerful. This research presents a method for utilizing
modern hardware architecture of embedded systems in an object tracking task. Parallel
programming has been applied successfully in computer vision, showing its effective-
ness in reducing the execution time of high-complexity tasks [15]. This is another reason
for particle filter to be chosen, because parallel programming can be applied to increase
computing speed while retaining tracking accuracy. In this paper, we introduce a paral-
lel implementation of particle filter algorithm, for the purpose of enhancing the perfor-
mance of the particle filter based object tracking method when deployed in embedded
systems.

Methods
Particle filter

Tracking, including object tracking in computer vision, can be considered a discrete-
time nonlinear filtering problem [16]. The aim is to estimate the state variables of
a dynamic system by using noisy observations. Let t indicate the time step. Then the
advancement of the state xt of a discrete dynamic system is defined as

where ft is the transition function and wt is system noise which has a known distribu-
tion. At each time step t, an observation zt of the state xt is acquired as

where gt is the measurement function and w̃t is measurement noise which also has a
known distribution. Usually, the distribution of system noise and measurement noise is
Gaussian, but in a nonlinear filtering problem, these distributions are more complex. At
time k, the set of measurements Zk = {zt , t = 1, . . . , k} is available and the initial p.d.f
(probability distribution function) P(x0) is given.

The estimation of state variables consists of two stages: prediction and update. In the
prediction stage, given the p.d.f P(xk−1|Zk−1) at time k − 1, the prediction P(xk |Zk−1) is
calculated as

In the update stage, the prior p.d.f P(xk |Zk−1) at time k is updated using Bayes’ rule

where

(1)xt+1 = ft(xt ,wt),

(2)zt = gt(xt , w̃t),

(3)P(xk |Zk−1) =
∫

P(xk |xk−1)P(xk−1|Zk−1) d xk−1.

(4)P(xk |Zk) =
P(zk |xk)P(xk |Zk−1)

P(zk |Zk−1)
,

(5)P(zk |Zk−1) =
∫

P(zk |xk)P(xk |Zk−1) d xk .

Page 4 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Particle filter is a method of solving this nonlinear estimation problem. In general, parti-
cle filter is an iterative algorithm, where each iteration consists of four stages: prediction,
update, estimation, and resampling. First, the algorithm is initialized by generating a set
of random particles, and the initial p.d.f P(x0) is estimated from this particle set. Let xik
denote the particle i, and wi

k denote its corresponding noise, both at time k. Each particle
has its own transition function and advances independently. The prediction stage pro-
duces an approximation of the a priori p.d.f

where δx denotes Dirac’s measure and N is the number of particles. After prediction, the
weight of each particle is updated using the obtained observations. Let ρi

k be the weight
of particle i at time k that can be calculated as

Particles are weighted based on likelihood, i.e. particles which correspond to the most
probable state will have a higher weight than others. The update function is defined as

In the estimation stage, the estimator x̂k is calculated by a weighted sum of particles as

The final stage of particle filter is resampling, also called particle redistribution. The pur-
pose of this stage is to prevent degeneracy. Without resampling, the whole weight will
be accumulated at a single particle after a few iterations, because each particle advances
independently. Resampling is also the initialization for the next iteration. In this stage,
a new set of particles is generated by redistributing all current particles based on their
current weights, and each new particle is assigned new weight, 1/N, after redistribu-
tion. However, resampling leads to another problem called sampling impoverishment. In
this phenomenon, high-weight particles have a greater chance of being drawn multiple
times during redistribution, whereas low-weight particles have a small chance of being
drawn at all. This decreases the diversity of the particles after a few resampling steps. In
the worst case scenario, all particles might be “merged” into a single particle. Sampling
impoverishment decreases the performance of the tracking process drastically. There-
fore, an appropriate particle redistribution method is required. A review of resampling
methods for particle filter is provided in [17].

(6)P(xk) =
1

N

N
∑

i=0

δxik
(xk),

(7)ρi
k =

P(zk |xik)
∑N

j=1 P(zk |x
j
k)ρ

j
k−1

ρi
k−1

.

(8)P(xk |Zk) =
N
∑

i=1

ρi
kδxik

(xk).

(9)x̂k =
N
∑

i=1

ρi
kx

i
k .

Page 5 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Color model

In tracking framework, the particle filter-based tracker requires a similarity measure-
ment for the purpose of calculating the likelihood between particles and the target
object. Before presenting our measurement, we will provide a brief introduction regard-
ing visual features that are usually used in object tracking. As in [5], common visual fea-
tures are color, edge, optical flow, and texture. For color features, the color of an object
is affected mainly by two physical elements, the spectral power distribution of the illu-
minant and the surface properties of the object. In digital images and videos, colors are
organized into specific sets called color spaces. This is an abstract mathematical model
which simply describes the range of colors as tuples of numbers. There exist several color
spaces for various purposes, and RGB (Red-Green-Blue) is the most commonly used
color space [18]. However, the RGB space is not a perceptually uniform color space, in
other words, small changes in RGB values may lead to large color differences perceived
by the human eye. In contrast, L*u*v* and L*a*b* are perceptually uniform color spaces,
while HSV (Hue-Saturation-Value) is an approximately uniform color space. However,
these color spaces are sensitive to noise, which is a significant disadvantage because it is
impossible to obtain noise-free data from image acquisition devices. Currently, there is
no color space that is suitable for all vision-based applications. The choice of color space
depends heavily on the goal of the application.

Edges are defined as strong changes in intensity values between object boundaries.
Techniques used to identify these changes are called edge detectors. Edges are less sensi-
tive to illumination changes than color features. This is an important property in object
tracking because the algorithms are required to operate in various environments. The
most popular edge detection technique is the Canny edge detector because of its sim-
plicity and accuracy. Optical flow is the motion pattern of objects, surfaces, and edges
in a visual scene caused by the relative motion between an observer (human eye or
camera) and the scene. It is computed using the brightness constraint, which assumes
brightness constancy of corresponding pixels in consecutive frames. Other than object
tracking, optical flow is also used in motion estimation or video compression. For tex-
ture, it is a measure of the intensity variation of a surface which quantifies properties
such as smoothness and regularity. Image texture gives us information about the spa-
tial arrangement of color or intensities in an image or local regions of an image. This
feature requires preprocessing procedures to extract texture information from images
before being applied in desired algorithms. Texture features, like edge features, are also
less sensitive to illumination changes.

Particle filter is a high-complexity algorithm; hence, a simple visual feature descriptor
is required in order to prevent the increase of execution time of the whole tracking algo-
rithm. Color distribution similarity is chosen because of its simplicity in calculation. We
will combine particle filter and color information by integrating color distribution into
particles. Each particle is defined as a rectangular region in the video frame and equal in
size to the target object. Color distributions of particles are represented by three-dimen-
sional RGB histograms. This color space is selected because of its robustness against
noise and occlusion.

The histograms are calculated by h(yl), that assigns one of the M bins to a given color
pixel at location yl. In detail, we produce a histogram of a local region by discretizing

Page 6 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

the color pixels in the region into bins, and then count the number of pixels in each bin.
For the discretization step, first we normalize the color values of pixels by dividing the
value of each component by L. Then, we quantize the normalized values into m bins. L
and m are the number of levels and bins for each component, respectively. These param-
eters must be the same for all three components. Let r, g, and b be the values of the Red,
Green, Blue components, respectively, of the pixel at location yl. Then, the equation h(·)
for assigning the histogram bin is defined as

where i, j, and k are indexes of the chosen bin. For example, with L = 256 (8-bit RGB)
and m = 8, the pixel at location y0 with RGB values (45, 172, 103) will be assigned to
the bin with index (1, 5, 3). The total number of bins is M = 8× 8× 8 = 512. Then, the
number of pixels in each bin is used to construct the final histogram. Figure 1 shows an
illustration for the output three-dimensional histogram from our calculation. The num-
ber of pixels in each bin is represented by size of the spheres.

After obtaining histograms of particles, the distance between the two color histo-
grams is calculated using the Hellinger distance, which is also called Bhattacharyya dis-
tance because this was introduced by Anil Kumar Bhattacharya. Moreover, it is derived
from the Bhattacharya coefficient. The Hellinger distance is chosen because of its
effectiveness in object tracking [19]. First, given two discrete probability distributions
P = (p1, . . . , pU) and Q = (q1, . . . , qU), the Bhattacharya coefficient is calculated as

The Bhattacharyya coefficient is a measurement of the amount of overlap between two
distributions. Higher values of coefficient mean that the two distributions are closer to

(10)h(yl) =
{

i, j, k | i =
⌊ r

L
×m

⌋

, j =
⌊ g

L
×m

⌋

, k =
⌊

b

L
×m

⌋}

,

(11)BC(P,Q) =
U
∑

u=1

√
puqu.

Fig. 1  3D histogram. Sample image region and its 3D histogram

Page 7 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

each other, which leads to shorter distance. Therefore, the Hellinger distance is defined
as

When applied to calculate the distance between two color histogram H1 and H2, the for-
mula for Hellinger distance is rewritten as

where

and I is the index of histogram bins, the term (
√

H̄1H̄2M2)−1 is used for normalization.
The proposed tracker employs the Hellinger distance to update the a priori distribution
calculated by the particle filter.

Tracking framework

The particle filter in this research, which is developed to track movement of objects, is
based on the Condensation algorithm [10]. The state vector Xt = {x0, . . . , xt} describes
the state of the tracked object, and Zt is the vector which stores all the observations of
object movements {z0, . . . , zt} up to time t. The Condensation algorithm estimates the
object state by calculating the conditional probability density P(Xt |Zt) using a nonlin-
ear filter. P(Xt |Zt) represents the possible states of the tracked object based on previous
states and measurements. Usually, the posterior density P(Xt |Zt) and the observation
density P(Zt |Xt) are non-Gaussian, which increases the complexity of the tracking
process.

In this tracking framework, let S = {(sn,πn) | n = 1 . . .N } denote the weighted parti-
cle set, where N is the number of particles. This particle set is used for approximating a
probability distribution, which represents the object movement. For each particle, s is
the location of the image region with its associated histogram, and π is the correspond-
ing weight which obeys

The movement of the tracked objects is described by a statistical model. In the tracking
process, each particle is weighted depending on its likelihood with the observation of
the target object. Then, N particles are drawn using resampling techniques. The tracked
object is localized by the estimation of mean state, which is calculated at each time step
by

(12)HD(P,Q) =
√

1− BC(P,Q).

(13)HD(H1,H2) =
√

1− 1
√

H̄1H̄2M2

∑

I

√

H1(I)×H2(I),

(14)H̄1 =
1

M

∑

I

H1(I), H̄2 =
1

M

∑

I

H2(I),

(15)
N
∑

n=1

πn = 1.

(16)
S̃ =

N
∑

n=1

πnsn.

Page 8 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Because particle filter has the ability to model the uncertainty of object movements, it
can provide a robust tracking framework. It can also consider multiple state hypotheses
simultaneously [20]. On the other hand, particle filters are able to produce high accuracy
predictions from previous observations, hence it can deal with short-time occlusions
and sudden changes in object movement.

Parallel implementation
Parallel computing is a type of computation in which many calculations or the execution
of processes are carried out simultaneously. Large and complex calculations can often be
divided into smaller ones, which can then be solved simultaneously. Parallelization can
utilize the multi-core architecture of modern embedded systems, in which all cores of
the processor take part in the calculation process. Parallel implementation can decrease
the processing time of these steps, which leads to higher performance in object tracking
due to higher processed frames per second. However, parallelization has its own limita-
tion. Generally in parallel computing, a complex task is first split into discrete parts that
can be solved concurrently. Following this, these parts are distributed to several threads,
and are then solved separately in each thread. An overall coordination mechanism is
employed to control the status of the threads. After completing the computation, these
threads will communicate with each other using this mechanism in order to produce
final results. In some cases, the time required for communication is higher than that for
solving the split tasks. The overall execution time of parallel implementation in these
cases may be higher than that for sequential implementation. This phenomenon is called
parallel slowdown.

In the particle filter algorithm, the most complex and time-consuming steps are resa-
mpling of the particles and calculating the likelihood between the particles and the tar-
get object. Another complex step is calculating the weighted mean of the particles,
however implementing this step will lead to parallel slowdown due to data dependency.
Therefore, we will use parallel programming to reduce the execution time of the resam-
pling and likelihood calculation. The detailed algorithms for these steps are listed below.

Algorithm 1. Systematic resampling
Create new array newArr for storing output of resampling process
for i = 1 to (number of particle)

j ← 1
while (probabilities of particle(j)) < (likelihood i with target object)

j ← j + 1
endwhile
newArr(i) ← particle(j)

endfor

Algorithm 2. Likelihood calculation
for i = 1 to (number of particle)

Get image region of particle i

Calculate likelihood between obtained image region and target object
endfor

Since there are no data dependencies between particles in these algorithms, parallel
threads do not need to communicate with each other during processing. For example, in
the resampling step, newArr(1), newArr(2), newArr(3), and newArr(4) can be calculated
simultaneously using four threads, and hence reduce the execution time of the whole
process while avoiding parallel slow down.

Page 9 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Experimental results
In this section, we present the performance of the object tracking method. Both versions
of the particle filter algorithm, sequential and parallel, are implemented in C++ on a
Linux operating system. OpenCV library is used for processing the video frames. For
parallelization, we use the OpenMP library for the implementation of parallel particle
filter. The program is deployed in embedded board Odroid U3, which has a quad-core
processor running at 1.7 GHz and 2 gigabytes of memory. The videos used for testing
are acquired from [21]. All videos has a resolution of 320× 240. In the next sections, we
will show the efficiency of the particle filter object tracker and the comparison of perfor-
mance between sequential and parallel implementation.

Tracking accuracy

The tracking process is shown in Figs. 2 and 3. In both figures, each column shows the
tracked target (top) and the locations of particles (bottom) of the same frame. The color-
based particle filter is configured to be executed with 300 particles, and the histograms
are calculated in the RGB color space using 8 bins for each component. In Fig. 2, the cup
was moved in front of a background with complex color patterns. However, the pro-
posed object tracker can localize the cup with high accuracy. Figure 3 shows that the
object tracker can deal with occlusions, as it did not lose trace of the tracked person
after the occlusion occurred. From the experimental results, the color-based particle fil-
ter has been proved to yield good performance when applied in object tracking.

Computational performance

In this section we will consider the computational performance when processing the
video shown in Fig. 3. Figures 4, 5, and 6 show the comparison between two imple-
mentations during the execution time of shuffling, resampling, and likelihood calcula-
tion steps when processing the first 50 frames of the video. The parallel implementation
is configured to be executed using four threads. As shown in the figures, the parallel

Fig. 2  Object tracking. Tracking moving cup with complex background

Page 10 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

implementation of particle filter is at least two times faster than the non-parallel imple-
mentation in all steps.

Figure 7 shows the execution time of both implementations in processing the whole
video. With 300 particles, parallel implementation took approximately 62 s to process
1017 frames (16 frames per second), while non-parallel implementation took 92 s (11
frames per second). The overall performance is increased by 50% when applying parallel
programming. However, this improvement does not scale with number of threads used.
In other words, using four threads does not mean the performance will be four times
better than using one thread, i.e. sequential programming, because some minor steps
in the algorithm are processed sequentially. Unfortunately, parallelizing these steps will
lead to parallel slowdown.

Fig. 4  Particle shuffling. Execution time comparison in particle shuffling step

Fig. 3  Person tracking. Track walking person with occlusions

Page 11 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Conclusion
Recently, embedded systems have become popular with many applications. Developing
efficient algorithms for such systems has attracted considerable attention. This research
aims to increase the performance of the particle filter-based object tracking method
when the algorithm is deployed in embedded systems by using parallel programming.
A significant limitation of embedded systems is their computing power, hence it is dif-
ficult to use embedded systems for high-complexity computation. After several years of
development, embedded systems have become more powerful. Currently, modern sys-
tems have high memory and multi-core architecture. However, the application must
also utilize this advantage. In this research, we have implemented a parallel particle
filter for object tracking in order to utilize the multi-core architecture. The proposed
object tracker has shown its efficiency in different tests. The program is also deployed in

Fig. 5  Particle resampling. Execution time comparison in resampling step

Fig. 6  Likelihood calculation. Execution time comparison in likelihood calculation step

Page 12 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

Odroid, an embedded board with a four-core processor. With 300 particles, the object
tracker with sequential implementation can process 11 frames per second, whereas
parallel implementation can process 16 frames per second while retaining the tracking
accuracy. The experimental results show that multi-core embedded systems can pro-
duce higher performance if the hardware is used at its maximum potential. However,
the color model is not effective if the illumination of the environment changes. The pro-
posed object tracking method also loses track of the object if there are other objects with
similar color pattern. For future research, we will combine multiple features to increase
the tracking accuracy. On the other hand, the tracking method must be optimized for
the purpose of deploying in embedded systems.

Authors’ contributions
MTNT designed and developed the algorithm and took suggestions as and when necessary from Professor SK. Both
authors read and approved the final manuscript.

Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2015R1D1A1A01057518).

Competing interests
The authors declare that they have no competing interests.

Received: 17 August 2016 Accepted: 8 December 2016

References
	1.	 Kenan M, Fei H, Xiangmo Z (2016) Multiple vehicle detection and tracking in highway traffic surveillance video

based on sift feature matching. J Inf Process Syst 12:183–195
	2.	 Juhyun L, Hanbyul C, Kicheon H (2015) A fainting condition detection system using thermal imaging cameras based

object tracking algorithm. J Converg 6:1–15
	3.	 Bostanci E, Kanwal N, Clark AF (2015) Augmented reality applications for cultural heritage using kinect. Hum Cent

Comput Inf Sci 5:1–18
	4.	 Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental

survey. IEEE Trans Pattern Anal Mach Intell 36:1442–1468
	5.	 Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38:1–45

Fig. 7  Performance comparison. Overall execution time for processing whole video

Page 13 of 13Truong and Kim ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:2

	6.	 Fiack L, Cuperlier N, Miramond B (2015) Embedded and real-time architecture for bio-inspired vision-based robot
navigation. J Real Time Image Process 10:699–722

	7.	 Hammoudi K, Benhabiles H, Kasraoui M, Ajam N, Dornaika F, Radhakrishnan K, Bandi K, Cai Q, Liu S (2015) Develop-
ing vision-based and cooperative vehicular embedded systems for enhancing road monitoring services. Proced
Comp Sci 52:389–395

	8.	 Lu F, Lee S, Kumar Satzoda R, Trivedi M (2016) Embedded computing framework for vision-based real-time surround
threat analysis and driver assistance. In: The IEEE conference on computer vision and pattern recognition (CVPR)
workshops, vol 1, pp 83–91

	9.	 Varfolomieiev A, Lysenko O (2016) An improved algorithm of median flow for visual object tracking and its imple-
mentation on arm platform. J Real Time Image Process 11:527–534

	10.	 Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29:5–28
	11.	 Isard M, Blake A (1998) In: Burkhardt H, Neumann B (eds) Icondensation: unifying low-level and high-level tracking in

a stochastic framework. Springer, Berlin, pp 893–908
	12.	 MacCormick J, Blake A (2000) A probabilistic exclusion principle for tracking multiple objects. Int J Comput Vis

39:57–71
	13.	 Wu Y, Huang TS (2004) Robust visual tracking by integrating multiple cues based on co-inference learning. Int J

Comput Vis 58:55–71
	14.	 Khan Z, Balch T, Dellaert F (2004) A rao-blackwellized particle filter for eigentracking. In: Proceedings of the 2004

IEEE computer society conference on computer vision and pattern recognition, vol 2. CVPR, pp 980–986
	15.	 Moulkheir Naoui SM, Belalem G (2016) Feasibility study of a distributed and parallel environment for implementing

the standard version of AAM model. J Inf Process Syst 12:149–168
	16.	 Stepanov OA, Vasil’ev VA (2016) Cramér-rao lower bound in nonlinear filtering problems under noises and measure-

ment errors dependent on estimated parameters. Autom Remote Control 77:81–105
	17.	 Li T, Bolic M, Djuric PM (2015) Resampling methods for particle filtering: classification, implementation, and strate-

gies. IEEE Signal Process Mag 32:70–86
	18.	 Barthélemy Q, Larue A, Mars JI (2015) Color sparse representations for image processing: review, models, and pros-

pects. IEEE Trans Image Process 24:3978–3989
	19.	 Vojir T, Noskova J, Matas J (2014) Robust scale-adaptive mean-shift for tracking. Pattern Recognit Lett 49:250–258
	20.	 Nummiaro K, Koller-Meier E, Van Gool L (2002) In: Van Gool L (ed) Object tracking with an adaptive color-based

particle filter. Springer, Berlin, pp 353–360
	21.	 Tracking Dataset. http://cmp.felk.cvut.cz/~vojirtom/dataset/

http://cmp.felk.cvut.cz/~vojirtom/dataset/

	Parallel implementation of color-based particle filter for object tracking in embedded systems
	Abstract
	Background
	Methods
	Particle filter
	Color model
	Tracking framework

	Parallel implementation
	Experimental results
	Tracking accuracy
	Computational performance

	Conclusion
	Authors’ contributions
	References

