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Background
The use of satellite links ensures connectivity where no terrestrial networks are available 
and can offer an efficient and cost effective means of transferring data. Satellite systems 
offer wide coverage, flexibility and reliability, as they rely on permanent terrestrial infra-
structures just for the gateway [1].

Although GEO satellites have been a subject of substantial focus by the telecommuni-
cations industry, they still pose significant network design problems, such as long propa-
gation delays, the limited bandwidth to be shared among many users, and limitation in 
power. Hence, efficient scheduling at the medium access control (MAC) protocol level is 
needed to properly allocate network resources, especially when coping with bursty mul-
timedia users. The MAC protocol needs to be combined with an equally well-designed 
call admission control (CAC) scheme, which will not only serve the traditional role of 
CAC mechanisms (i.e., to prevent traffic overload) but also to maximize the satellite pro-
vider’s profit without jeopardizing the Quality of Service (QoS) offered to multimedia 
users and leading to user dissatisfaction.

The design of MAC and CAC mechanisms for GEO satellites that will be able to han-
dle bursty video traffic is becoming even more important as GEO satellites are expected 
to play a major role in 5G networks. More specifically, satellites will be used to off-load 
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traffic from the terrestrial networks, especially video traffic which is the largest contribu-
tor to the spectrum demands. This can be achieved by traffic classification and intelli-
gent routing to reduce the demands on the terrestrial spectrum [2]. Still, as explained in 
[3], due to the problem of large propagation delays, a significantly larger focus has been 
given to the scheduling problem, at the MAC layer, in GEO satellite networks, than to 
call admission control. Most of the existing work in the field has not considered bursty 
video traffic, which calls for a very efficient CAC in order to guarantee high network 
throughput and the user Quality of Service and Quality of Experience (QoE).

Towards this goal, we have proposed FPRRA [3], a MAC and CAC framework for a 
digital video broadcasting return channel satellite (DVB-RCS) system, which makes 
decisions after taking into account the provider revenue. The work in [3] considered an 
on-board processing (OBP) system [4], where the Network Control Center (NCC) is 
located onboard the satellite so that it takes the requesting earth station only one round-
trip time (RTT) plus the processor/queuing processing time to receive the reply for its 
reservation request. The reason that in most current broadband satellite access systems 
the scheduler is on the ground has to do with the computational requirements being less 
restrictive [5], but in [3] it was shown that the proposed framework added low compu-
tational complexity, therefore the “ideal” choice of having the scheduler on-board can be 
implemented.

The work in [3] used the Discrete Autoregressive Model of order one that was shown 
in [6] to be highly accurate. However, this accurate prediction is not possible for all types 
of video sequences, and even when it is, it often involves a higher degree of complexity 
which would incur additional computational requirements for an OBP system. For this 
reason, in [7] we studied the efficiency of our scheme in the absence of accurate multi-
media traffic prediction, by implementing our DAR(1) modeling approach on video (not 
videoconference) traces, and studying the effect that the lack of high modeling accuracy 
had on our framework, in terms of bandwidth utilization and provider revenue. The 
notion of user satisfaction was also introduced in [7]. It was formulated as user irritation, 
similarly to the work in [8] for cellular networks. Two different definitions than the ones 
in [8] were proposed in [7] for the short-term user irritation factor (SUIF) in GEO satel-
lite networks. The respective results were compared and their relation to the proposed 
resource pricing approach was discussed. The results in [7] showed that, in spite of the 
much lower traffic modeling accuracy for video sources in comparison to videoconfer-
ence sources, the proposed scheme was still able to outperform other schemes from the 
literature.

This paper is organized as follows. In “Related work”, related work on video traffic 
modeling and on modeling oriented to scene detection in particular is presented. The 
section also briefly presents recent work of ours [9] on a new hybrid video traffic model 
for MPEG-4 video traces, which significantly improves for video sources the accuracy of 
the DAR(1) model originally used in FPRRA. A vast number of traces has been used and 
modeled in [9], most of them different and burstier than the ones used in [7], therefore 
leading to more strenuous traffic scenarios for the system to handle. For the traces stud-
ied, the DAR(1) model does not provide satisfactory results, and hence a new modeling 
approach of low complexity is needed.
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“The proposed scheme” presents and discusses the main contribution of this work, 
which is the introduction of the notion of long-term user satisfaction (Irritation) into the 
decisions of the call admission control scheme of FPRRA. The basic idea of the proposed 
scheme is that the decision of whether to accept or not a new user in the network must 
rely on a combination of factors, including the available bandwidth, the network users’ 
long-term Quality of Experience and the revenue that the provider may gain. We take 
advantage of the new model’s ability to distinguish between high and low activity scenes, 
in order to change the definition of the Sigmoid function used in [7, 8] for representing 
user satisfaction.

In “Simulation results and discussion” the results of the proposed scheme are com-
pared against a number of schemes from the literature ([10–12]) and against the work in 
[7], both in terms of results and conceptually. The new scheme is shown to provide sig-
nificantly better QoS and QoE to video users over GEO satellite networks. “Conclusions” 
presents our conclusions and goals for future work.

Related work
The problem of video traffic modeling has been extensively studied in the literature, with 
tens of models focusing on each video-encoding standard. The first autoregressive (AR) 
model was introduced in [13] and it was followed by other variations such as [14, 15]. 
A Discrete Autoregressive Model for MPEG-4 videoconference traffic was presented in 
[6]. In [16] the authors classify video shots in different classes based on their texture 
and motion complexity, and then each shot class is described with a different autore-
gressive model. In [17] an MRP transform-expand-sample (TES) is evaluated, which is 
characterized by higher computational complexity. In [18] a finite-state Markov chain 
is used to model one- and two-layer scalable video traffic based on the assumption that 
I frames follow a Gaussian distribution, and an AR model of order 1 is used to model 
the P-frames. In [19], a Gamma–beta-auto-regressive (GBAR) model is introduced for 
H.261 videoconference traffic, where each video sequence has Gamma marginal distri-
bution and geometric autocorrelation. In [20], a variation of the GBAR model is pro-
posed that takes into account the group-of-pictures (GoP) cyclicity. In [21], wavelet 
modeling is used to model the distribution of I frames and a time-domain model for P/B 
frame sizes, for MPEG-4 and H.264 videos. In [22], a neural network approach is utilized 
for modeling the I, P, and B frames of MPEG-1 and MPEG-4 video separately.

The problem of video scene detection has also attracted significant attention from the 
research community for two reasons: (a) it can be used for pure video segmentation [23, 
24] which has applications in storing, processing or analyzing the semantics of videos, 
and (b) it can be used in video traffic modeling in order to improve the model’s efficiency 
[25, 26]. The interested reader can refer to [27] for a more complete treatment of the 
scene detection literature.

In [9] we proposed a scene change detection-based Discrete Autoregressive Model, 
which was tested on more than sixty different long sequences of MPEG-4 encoded vid-
eos, from a publicly available library [28]. Indicative results for some of the 10 traces 
which we will proceed to use in our satellite CAC/MAC framework study are presented 
below. The first three columns of Table 1 present the statistics for each trace. The acro-
nyms {HQ, LQ} stand for high quality and low quality, respectively.
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Initially, we attempted to model the traces with the use of the DAR(1) model, simi-
larly to [3, 7]. DAR(1) provides an easy and practical model based only on four physically 
meaningful parameters (mean, peak, variance and the lag-1 autocorrelation coefficient), 
therefore it uses parameters which are either known at call set-up time or can be meas-
ured without introducing much complexity in the network. We built a separate model 
for each video frame type (I, P, B); then, these models were used to generate I, P and B 
frame sizes according to the GoP pattern of each original trace, hence creating a syn-
thetic model for a single trace, and a number of the generated traces were superposed in 
order to assess the modeling results. We used Q–Q plots [29] for assessing the results, 
and plotted the 0.01-, 0.02-, 0.03-,… quantiles of the actual video frames’ sizes versus the 
respective quantiles of the respective DAR(1) model, for a superposition of traces. Indic-
ative results are presented in Figs. 1, 2. The modeling accuracy varied from bad (Fig. 1) 
to good (Fig. 2), with the vast majority of the studied cases leading to mediocre results, 
i.e., the points of the Q–Q plot failed to fall along the 45° reference line.

Because of the largely unsatisfactory results of the DAR(1) model, we were led to the 
creation of a hybrid model combining the DAR(1) model with a scene-based Markov 
chain model, similar to the one presented in [25] (which was chosen due to its simplicity, 
since it operates at the frame-size level only, similarly to the DAR(1) model, without ana-
lyzing the blocks, color histograms, or other information of the video frames). The main 
concept of that work is the idea of dividing each video trace into scenes, and then clas-
sifying the detected scenes into low or high-activity ones. For each movie used in this 
study, a 2-state (high, low scene activity) Markov chain model was implemented in order 
to determine the number of low and high scenes of the modeled source. For every scene 
in both categories, the number of I, P and B frames in it was determined and finally the 
DAR(1) model was ran, for every case. Details on the steps followed can be found in [9].

The next step, after scene identification, is scene classification. If a scene has an average 
bit rate that is greater than the average bit rate of the whole movie, then it is classified 
as a high-activity scene, else it is classified as a low-activity scene. The average bit rate of 
every scene was calculated as the number of bits transmitted during the scene divided 
by the scene duration. Each low and high activity trace was divided into their respec-
tive I, P and B frames; hence, every movie was “split” into six subtraces: the low- and 

Table 1  Trace statistics

For high quality (HQ) traces, the quantization is 04-04-04, while for low quality (LQ) traces, the quantization is 10-14-16

Movie Mean bit rate 
(Mbps)

Peak bit rate 
(Mbps)

Standard 
deviation 
(Mbps)

Initial revenue 
weights and (q) 
value

Die Hard One (HQ) 0.665 3.109 0.287 2.73 (q = 5%)

Citizen Kane (HQ) 0.457 3.992 0.321 2.52 (q = 10%)

Aladdin (LQ) 0.210 2.243 0.213 1.83 (q = 50%)

Aladdin (HQ) 1.316 5.414 0.441 3.15 (q = 1%)

Tokyo Olympics (HQ) 0.399 3.387 0.317 2.18 (q = 25%)

Tonight Show with Commercials (LQ) 0.267 2.467 0.428 1.96 (q = 40%)

Oprah without Commercials (LQ) 0.183 1.826 0.201 1.47 (q = 80%)

Die Hard One (LQ) 0.122 1.655 0.135 1.65 (q = 65%)

Silence of the Lambs (LQ) 0.080 2.028 0.111 1.23 (q = 95%)

O Brother DVD (LQ) 0.076 1.250 0.110 1.00
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high-activity I frames, the low- and high-activity P frames and the low- and high-activity 
B frames.

After calculating the mean and variance of the frame sizes of each of the 10 × 6 = 60 
subtraces under study and determining all the distribution parameters, we ran Kull-
back–Leibler [30] and Kolmogorov–Smirnov [29] tests and generated Q–Q plots, in 
order to determine the best fit for all cases and use it to separately model each subtrace 
via DAR(1). Then, the separate models were used to create new synthetic traces. Again, 
more details can be found in [9].

An indicative result of the hybrid model is shown in Fig. 3, where it is clear that the 
modeling accuracy improves very significantly with our approach, when compared with 
Fig. 1.

Fig. 1  Q–Q plot of the DAR(1) model versus the actual video for the “Citizen Kane” trace, for five superposed 
sources

Fig. 2  Q–Q plot of the DAR(1) model versus the actual video for the “Oprah without Commercials” trace, for 
ten superposed sources



Page 6 of 18Koutsakis et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:15 

Based on these results, we proceeded to use the model in order to precompute various 
traffic scenarios. The precomputation, along with the online simulation, is made based 
on the traffic parameters declared by the video sources at call setup. These parameters 
are used for the “identification” of the source as a user adopting a specific “mode”, i.e., 
a set of traffic parameters. Hence, the sets of traffic parameters presented in Table 1 are 
denoted as “modes” for the satellite video users, therefore ten “modes” are used. Each 
“mode” represents a specific Quality of Service that a user wishes to get. Users choose 
one of the ten “modes” with equal probability (10%). Also, the “modes” are divided in 
three groups (of 3, 4 and 3 “modes”, respectively) as shown in Table 1. In each group the 
order of the “modes” represents their quality within the group, which is a result of their 
trace statistics. The placing of each “mode” in a specific group is necessary for our CAC 
mechanism, discussed in “CAC based on long term user irritation”.

In the context of CAC, it should be noted that the decision of admitting or rejecting a 
new call in the network should be made by the provider not only based on the capacity 
needed to accommodate the call, but also on both: (a) the satisfaction/irritation that the 
admission/rejection of the new call will cause to the user, and (b) the revenue that the 
admission of the new call will provide. For this reason, the idea of dedicating bandwidth 
to higher-paying users who may often not need it in its entirety, can easily lead the net-
work to bandwidth starvation and cause irritation to lower-paying users, hence leading 
to customer attrition.

In [8], the authors presented a two-level resource management scheme for cellular 
networks, which had both a CAC and a MAC component. Both components used the 
user irritation factor (UIF) in order to make decisions on the resource allocation in the 
network, however pricing was not considered in that work. Two irritation factors, the 
short term user irritation factor (SUIF) and the long term user irritation factor (LUIF), 
were defined. SUIF measures the delay that the user is ready to suffer prior to which the 
user decides to cancel a particular request, and LUIF determines the grade of irritation 
of the user resulting from repeated violation of SUIF thresholds. The work in [8] uses a 

Fig. 3  Q–Q plot of the hybrid model versus the actual video for the “Citizen Kane” trace, for five superposed 
sources
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Sigmoid function which it correlates with the SUIF and LUIF metrics. For a random var-
iable x representing a service parameter like delay, the corresponding satisfaction, U(x) 
decreases with increasing x and can be modeled as:

In their definition of LUIF, the authors explain that the QoS received in the distant 
past has less significant impact on the users’ overall long time irritation then the QoS 
received recently. They use an exponentially weighted moving average (EWMA) to 
maintain continuous measure of the SUIFs for each user. By letting the stored LUIF be 
U(κn − 1), the LUIF to be computed be U(κn), and the current SUIF U(xi) be computed 
proportionally to the time hysteresis outage probability, they used

where ρ is the weight assigned to the cumulative SUIF and κn denotes the random vari-
able used to measure the LUIF at the nth request using Eq. (1). We use Eq. (2) in our own 
work, and we define the variable x in “The proposed MAC scheme”.

The related work in regards to resource allocation in satellite networks will be dis-
cussed in “Simulation results and discussion”, in relation to the proposed scheme’s 
results.

The proposed scheme
CAC based on long term user irritation

As mentioned above, the authors use both SUIF and LUIF in [8]. We argue that CAC 
decisions should not be based on SUIF, especially when taking pricing into account 
(which [8] does not). As it will be explained in the rest of this section in more detail, 
our view is that unnecessary degradation of users should not be implemented if there 
is no revenue gain; however, the provider cannot ignore a profitable policy to avoid an 
increase in the user’s SUIF. This argument is supported by the well-known fact that in 
wireless networks call dropping creates significantly larger user annoyance than call 
blocking, i.e., users are more irritated when their ongoing call ends or has a very poor 
quality than they are when they do not manage to initiate a call. For this reason, and 
especially in the case that call blocking can lead to a revenue increase, a provider should 
not take SUIF into account for call admission control decisions, whereas SUIF should be 
taken into account for medium access control decisions (associated with call dropping). 
We incorporate SUIF in our MAC scheme presented in “The proposed MAC scheme”.

On the other hand, LUIF is of significantly larger importance; a large LUIF could lead a 
user to drop its contract with a provider. Therefore, LUIF needs to be incorporated into 
the CAC decisions. This, however, cannot be done for GEO satellites in the manner uti-
lized in [8] for cellular networks, i.e., to use LUIF to make preemption decisions, because 
this is practically impossible due to propagation delays that would significantly delay the 
notifications to all users involved in the preemption.

After explaining how our CAC scheme takes provider profit into account, our new 
proposal on how LUIF can be incorporated into the scheme will be discussed.

(1)U(x) = 1−
1

1+ e−α(x−β)
.

(2)κn = ρ ∗ κn−1 + (1− ρ) ∗ U(xi)
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Regarding the revenue consideration: in the case that the admission of a new call (and 
the subsequent increase in bandwidth utilization) can only be made with the degra-
dation of a higher-paying customer who enjoys higher QoS, the CAC module should 
compute whether this is a profitable decision. The term “degradation” refers to a “mode” 
being downgraded to the immediate next “mode” within one of the three groups noted 
in “Related work” and Table 1. The specific division in groups is only used as an example; 
any division which takes into account the trace statistics can be used without any quali-
tative change in our results, as it was shown from our simulations.

For the computation of the profit of a possible degradation, “revenue weights” are 
computed and assigned for each one of the ten “modes”, thereby differentiating them 
into different service classes. To define what the revenue weights should be, based on 
network congestion and the type of users present in the network at any given time, we 
use dynamic pricing. Based on the formula for the demand function from [31], which is 
implemented for different priority users and fits our system’s assumptions with HQ and 
LQ users, we derive:

where po is the price for a low quality user, ph is the price charged to high quality users 
and q is the percentage of high quality users who accept dynamic pricing (i.e., they do 
not accept degradation and are willing to pay more for their calls during network con-
gestion periods). Without loss of generality, the revenue weight has been set equal to 1 
for the mode with the lowest bandwidth requirements. With these po values, the values 
of ph for all the other modes, using Eq. (3), are dynamically calculated. The dynamic cal-
culation is based on the value of q in every time interval of T = 0.5 s, equal to the frame 
duration. The initial revenue weights, shown in Table 1, are calculated based on the q 
values for each mode; these values have been selected indicatively, based on the rationale 
that the modes with the highest bandwidth requirements will be the ones with the least 
“loyal” users (users who are willing to pay more in order to keep transmitting at a high 
rate). Hence, for example, Table 1 shows that of the 10% of MPEG-4 users who initially 
choose, on average, the “mode” Tonight Show with Commercials LQ, 40% are willing to 
pay more in case of network congestion, in order to keep transmitting at this “mode’s” 
rate. Users who accept degradation are degraded once. Still, q varies at any given time, 
depending on the traffic mix of the moment. This creates the need of the dynamic calcu-
lation of ph with Eq. (3). Simulations have also been conducted for other values of q and 
other percentages of “mode” selection (i.e., not 10% for each “mode”). The change in the 
values had no qualitative influence on our results.

Our CAC scheme uses the traffic model presented in “Related work” to precompute 
or compute online (if a non-precomputed scenario occurs) a number of traffic scenarios. 
To the best of our knowledge, video traffic prediction for guaranteeing user QoE has not 
been proposed in the satellite literature.

The current revenue R is computed as:

(3)p = po + po ∗

√

−4 ln (q)

2
, ph ≥ po

(4)R =

∑

i

Ni ∗Wi
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where Ni is the total number of video users of “mode” i, and Wi is the revenue from each 
user of “mode” i.

The logic of the CAC algorithm is that, when a new video user arrives, the system first 
checks, with the use of our hybrid video traffic model, whether it can be accommodated 
in terms of the total bandwidth which will be needed when the user is multiplexed with 
the existing users in the system.

If this is not possible, the algorithm retrieves the new user’s LUIF, which has already 
been computed from the user’s last session in the network (on the contrary, in such a 
case in [7] the algorithm attempted immediately to degrade the user, without consider-
ing user satisfaction). If the LUIF of the new user is larger than the mean LUIF of all users 
currently in the system, the CAC algorithm will degrade as many users as needed, from 
those users with LUIF smaller than the mean, in order to ensure that there is enough 
bandwidth for the new user to be accepted. Of course, only users who accept degrada-
tion, based on their contracts with the provider, can be degraded (i.e., users belonging 
in the 1-q percentage of their “mode”). The new user is rejected only if the CAC com-
putes that, even if all possible users are degraded, there will not be enough bandwidth to 
accommodate the new user.

If, however, the LUIF of the new user is smaller than (or equal to) the mean LUIF of all 
users currently in the system, then the CAC algorithm attempts to degrade the new user. 
The rationale behind this decision is that the arrival of a non-irritated new user should 
cause the minimum possible number of degradations to users who are already in the sys-
tem, therefore it is preferable that the new user is accepted with degradation.

If after the degradation of the new user the acceptance of the call is still not possible, 
the CAC scheme will not degrade a higher priority user, but it will check all possibilities 
of degrading users of the same or lesser priority of the new call in order to accommodate 
it. However, the new call will be accommodated only if its acceptance will lead to higher 
revenue; otherwise, even if the total bandwidth that will be used with the acceptance of 
the new call is larger than the bandwidth previous used, there is no reason to degrade a 
significant number of users and cause their irritation if the provider will receive no extra 
revenue. In the case that the new call does not accept any degradation, the attempt to 
degrade lesser or equal priority users who are already in the system is still made, and the 
new call is again accepted only if it leads to higher revenue.

Additionally to the incorporation of LUIF into our scheme, we make one more change 
to our work in [7], regarding Eq. (1). It needs to be pointed out that β determines when 
the utility decreases, while α determines the user’s sensitivity to the increase/decrease 
of its irritation. In this study, common QoS requirements for all video users are consid-
ered: the two QoS metrics set in this work are that the video packet dropping probability 
should not surpass the 0.1% upper bound and that the mean video packet delay should 
not surpass the 0.6 s upper bound. A packet is dropped by the terminal if it is not trans-
mitted within 0.6 s.

The upper bound on the mean video packet delay has been selected to be especially 
strict considering that, for each possible failure of our prediction due to underassign-
ment, the respective packets which would have to wait for a new assignment will have a 
minimum video packet delay of 0.54 s. The upper bound on the video packet dropping 
has been selected not only to be strict (in [32] the upper bound is defined as 1%) but 
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also to account for the fact that if a video packet loss corresponds to an I frame, then 
the “glitch” in the video will propagate to the rest of the video frames in the GoP. There-
fore, we chose a much lower upper bound to ensure that the achieved QoS will definitely 
translate to acceptable video quality.

Given that the QoS requirements are common for all video users, we allow β to be 
equal to zero, as in [7, 8]. However, contrary to [7, 8] where α is considered to be a con-
stant, in this work we exploit our video traffic model’s ability to distinguish between high 
and low activity scenes. More specifically, different values of a are used for high activ-
ity scenes (smaller α, i.e., larger irritation) than for lower activity scenes. Also, an even 
smaller value of a is used for the scenes that immediately follow a change in activity (i.e., 
the first high activity scene after a low→high transition, and the first low activity scene 
after a high→low transition); the reason is that after such a transition, the change in 
video content is the largest, therefore video packet losses are the most costly in terms of 
user irritation.

The mean value of α is set to {0.1, 0.3 and 0.9} for the groups which have three “modes” 
and {0.1, 0.3, 0.6, 0.9} for the group which has four “modes”. For each mean value of α, 
aHAS for high activity scenes is set to be 20% smaller than the mean, aLAS for low activity 
scenes to be 20% larger than the mean and aSC for the first scene after a change in activ-
ity to be half the mean value. Our results have shown that the use of other values of α did 
not alter the nature of our conclusions.

The proposed MAC scheme

The proposed MAC scheme is identical to that of [7]. It is presented here in order to 
facilitate the readers’ understanding of the proposed framework. Both SUIF and LUIF 
are used in the decisions of the MAC protocol.

As in [33] our proposed satellite MAC scheme is based on a multi-frequency time 
division multiple access (MF-TDMA) approach, according to which a carrier is divided 
in timeslots (grouped in frames and superframes). MF-TDMA was chosen since it is an 
attractive framing scheme for satellite uplinks with low power terminals and MF-TDMA 
schemes are capable of providing efficient bandwidth utilization [10, 33].

The NCC allocates to each active terminal a set of timeslots, each characterized by a 
frequency, bandwidth, start time and duration time. Using the highly accurate modeling 
of multiplexed video traffic, the NCC must run a real-time simulation, to predict the 
traffic volume from video sources. Hence, based on the “mode” declared by the termi-
nals at call establishment, the NCC does not need to wait for a request from the ter-
minals every channel frame (which would arrive with a delay of more than ten channel 
frames, due to the propagation delay). Instead, it can start allocating resources to the 
video terminals, and subtracting the estimated used slots from the total number of slots 
in the system to find the number of free slots. Free slots are allocated based on the user 
irritation factor, in a manner that will be explained below. The free capacity distribution 
performed by the protocol brings the end-to-end delay performance at low loads close 
to that obtained with random access protocols, while the demand-based bandwidth allo-
cation at the beginning of each frame guarantees the protocol’s stability, robustness and 
efficient utilization of transmission bandwidth at high loads.
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Active terminals send a “corrective” request every superframe (defined in our work as 
equal to 11 channel frames, to account for the propagation delay) to correct any mistakes 
(due to either overassignment or underassignment of slots) of the models produced at 
the NCC via online simulation. Terminals send their capacity requests embedded in the 
header of their packets.

The cross-layer cooperation between the MAC and CAC module is envisaged similarly 
to [34]; the admission control is performed for a new connection and it may either result 
on the creation of a new MAC connection, or to the modification of an existent one (call 
degradation).

Two definitions of SUIF are used in our scheme:
First SUIF definition Video packet transmission delay leads to packet dropping, which 

in turn leads to user irritation. For this reason, if x1,J denotes the random variable repre-
senting the SUIF, normalized with the best possible value being 0 (representing zero delay 
and jitter) and the worst being 1, then

where Pdrop is the mean packet dropping probability and τ < 1 is the quantitative factor 
associated with irritation suffered due to a new or handoff call.

Second SUIF definition Typical video encoders use a fixed group-of-pictures (GOP) 
pattern when compressing a video sequence. The decoding of an I frame in a typical 
MPEG-4 trace is independent of other video frames. The decoding of P frames depends 
on the successful decoding of the I frame. The decoding of B frames depends on the suc-
cessful decoding of I and P frames. Therefore, the successful transmission of an I frame 
is of paramount importance, while the transmission of P and B frames is important but 
not as crucial as that of the I frame. Hence, we set

where

The above definition denotes that, if the video packet dropping for the I frame within a 
GOP exceeds the 0.1% threshold, the transmission of P and B frames is of minor impor-
tance, since the basic information from the I frame is missing. If, on the other hand, the 
basic information from the I frame has been transmitted, then we need to quantify the 
additional information that manages to be transmitted and without which GOP distor-
tion and user irritation will increase. This is implemented via the calculation, in Eq. (6), 
of the ratio of the transmitted versus the total generated packets of P and B frames 
within a GOP.

The rest of the bandwidth is distributed by comparing the high quality users of each 
group in terms of their LUIF, and then continuing with a comparison among the medium 
and low quality “modes”, respectively. The remaining bandwidth is, each time, allocated 
to the user with the highest LUIF, in each quality. The bandwidth distribution continues 
to the remaining users until no more bandwidth is available.

(5)x1,J = τ ∗ Pdrop

(6)x1,J = τ ∗ PTHRU_P,B,GOP

PTHRU_P,B,GOP =

{

PTRANS_P.B
PGEN P,B

, if PdropI_FRAME
≤ 0.1%

1, if PdropI_FRAME
0.1%
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In order to quantify the above description of our protocol, we denote by N the num-
ber of information slots in the system, L the number of active video stations, Di(s) the 
amount of bandwidth that the NCC estimates as needed by the ith active terminal at 
the start of frame s, and Ai(s) the amount of bandwidth that the NCC assigns to the ith 
active terminal at the start of frame s. If N−

∑L
i Di(s) < 0, i.e., if the NCC estimates that 

there will be no amount of bandwidth left after all video terminals are granted band-
width equal to their predicted demands, then the use of the following equation ensures 
the fair sharing of the available bandwidth resources to all active video terminals:

It should be noted here that, although generally Di(s) refers to the estimation made 
by the NCC of each video terminal’s upcoming bandwidth requirements, it also refers, 
every 11 frames, to the “corrective” request sent by the video terminals every super-
frame. With the use of Eq.  (7) for bandwidth allocation, our protocol also guarantees 
that, in the case of traffic overload, all users experience equal video packet dropping 
probability.

If N−
∑L

i Di(s) > 0, i.e., if the NCC estimates that there will be an amount of band-
width left after all video terminals are granted bandwidth equal to their predicted 
demands, then the allocation based on user irritation takes place. The major reason 
behind this policy is fairness: we want to alleviate any mistakes caused by underassign-
ment to a terminal due to a mistaken estimation of its actual larger bandwidth demands. 
This policy also serves in the case where the NCC has made slight overestimations for all 
users, as it helps to maximize the number of satisfied users.

Simulation results and discussion
We use computer simulations (the code is written in C) to study the performance of 
FPRRA with the use of both SUIF definitions. Each simulation point is the result of an 
average of 100 independent runs (Monte-Carlo simulation), each simulating three hours 
of network operation. All our results have been derived for 95% t-confidence intervals 
(constructed in the usual way [29]). Connection lifetimes are exponentially distributed 
with mean value equal to 180 s. This value has been chosen based on the video market-
ing survey and business trend report presented in [35], according to which videos under 
one minute enjoy 80% viewer retention up to the 30-s mark, videos 2–3 min in length 
enjoy about 65% retention until their 50% mark and 5–10 min videos enjoy close to 50% 
viewer retention until their 50% mark. By averaging (length ×  retention)/2, we get an 
average video viewing time of about 180 s.

The system parameters are taken from [33]: frame duration equal to 26.5 ms, 4 carri-
ers, 128 slots/frame/carrier, 53 bytes/slot, 8 Mbps system global rate. These parameters 
comply with the relevant ITU-R recommendation [36] and ETSI standard [37, 38].

In EWMA mechanisms, values of ρ between 0.7 and 0.8 are generally chosen [39] (the 
value λ, defined there as being between 0.2 and 0.3 is equal to 1 − ρ for our scheme) 
although these values are arbitrary and depend on the problem that is being ana-
lyzed and, respectively, on the weight that needs to be placed upon current values in 

(7)Ai(s) = N ∗ Di(s)/

L
∑

i

Di(s).
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comparison to older ones. We have used both the 0.7 and 0.8 values, as well as small 
values (0.3, 0.4) for ρ and found no qualitative difference in the results. The results pre-
sented below have been derived with a value of ρ equal to 0.8. Also, we have experi-
mented with values of τ ranging from 0.3 to 0.8, again without qualitative difference in 
our results. The results presented below have been derived with τ equal to 0.5.

We compare FPRRA with four other efficient schemes, from [10–12] and from an 
“ideal” framework, in which the NCC would “magically” know, without any information 
exchange exactly what the video terminals’ bandwidth demands for the next video frame 
would be. Therefore, no contention is necessary among video terminals. These schemes 
do not take into account either pricing or user irritation, therefore they have the advan-
tage over FPRRA that their only goal is the maximization of resource utilization. Still, 
as it will be shown from our results, FPRRA outperforms all schemes except the “ideal” 
framework.

Figure 4 presents our simulation results for the average video packet dropping met-
ric versus the system utilization. Utilization indicates the traffic load normalized to the 
uplink capacity, e.g., a traffic load equal to 20% represents 20% of the 8  Mbps uplink 
capacity, i.e., 1.6 Mbps system throughput. As shown in the Figure, FPRRA clearly out-
performs the other three protocols from the literature, and is outperformed only by the 
“ideal” framework. FPRRA can handle up to 59% system load (for the 1st SUIF defini-
tion) while at the same time satisfying the strict QoS requirement of maximum video 
packet dropping equal to 0.1%; the respective maximum system load which the “ideal” 
framework can handle is 73%, while SRMA-DF [12] achieves only a 23% maximum 

Fig. 4  Average video packet dropping vs. system utilization
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throughput, [10] achieves a 32% maximum throughput and PRDAMA [11] a 42% maxi-
mum throughput for the same QoS requirement.

The reason for the significantly better performance of FPRRA is the use of the new 
accurate video traffic model for both CAC and MAC purposes, as explained in “CAC 
based on long term user irritation” and “The proposed MAC scheme”. The individual 
weaknesses of the other three protocols in comparison to a protocol using accurate 
video traffic prediction have been outlined in [3]. What needs to be emphasized, how-
ever, is that the results of FPRRA in this work are worse than the respective ones in [3]. 
There are two reasons for this.

The first reason that FPRRA cannot achieve a higher throughput is the very high 
burstiness of video traffic (much higher than the burstiness of videoconference traffic, 
used in our prior work).

The second reason for FPRRA’s inability to achieve a higher throughput is the use of 
LUIF, both in its CAC component and in its MAC scheme. The use of LUIF in the CAC 
scheme can lead to the degradation of more than one user with low LUIF, in order to 
accommodate the new video call. If LUIF wasn’t considered, it is possible that the new 
call would have had to be the only one to be degraded or it would have been rejected, if 
it could not lead to an increase in provider profit. Both of these outcomes (degradation/
rejection of the new call) would in most cases lead the system to achieve higher through-
put than the case when the new user is accepted but more than one existing users are 
degraded. Also, the use of LUIF in the MAC scheme can lead to prioritizing for trans-
mission users which have a higher LUIF but their transmission deadline is not approach-
ing, whereas other users with lower LUIF and imminent deadlines will have to wait. This 
leads to suboptimal channel utilization in order to preserve fairness in terms of user sat-
isfaction. Hence, despite its importance, the use of LUIF comes with a “user satisfaction 
vs. throughput” tradeoff.

In [7] it was found that the use of the 2nd SUIF definition leads to a fluctuation, in 
comparison to the results with the use of the 1st SUIF definition; in other cases the 
results were marginally lower with the 1st definition, and in other cases they were lower 
when the 2nd is used. In the present study the results with the use of the 2nd SUIF defi-
nition are constantly worse. The reason is that the 2nd SUIF definition increases user 
“sensitivity” (i.e., irritation) in the cases where the loss of information is concentrated 
in specific GoPs, whereas the 1st SUIF definition “triggers” user irritation when packet 
dropping occurs anywhere in the video frames’ transmission. Due to the use of much 
smaller α values in high activity scenes and in scene activity changes, the different behav-
ior of the system with the use of the 2nd SUIF is accentuated.

The results achieved with FPRRA for the 1st SUIF (handling up to 59% system load) 
also clearly excel against the contention-based protocol CRDSA [40] which achieves a 
peak throughput of 52%. Still, a full comparison cannot be made, since CRDSA only con-
tains a MAC component. Also, in comparison with the efficient CAC scheme presented 
in [41], FPRRA achieves much better results (lower packet loss percentage for much 
burstier sources than the ones used in that paper), and additionally takes into account 
user satisfaction and provider revenue, whereas the scheme in [41] only bases its deci-
sions on the capacity needed to accommodate the call. Also, [41] assumes that each 



Page 15 of 18Koutsakis et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:15 

video source’s rate is divided into a fixed number of discrete bandwidth levels, which 
for multiple sources, possibly generating context on-the-fly, is impractical. The work 
in [42] supported the use of active measurements to allow bandwidth adaptation and 
consequent tracking of the chosen performance metrics. However, in the case of bursty 
multimedia traffic, this approach is inefficient due to the significant fluctuations in the 
sources’ rate. In the case of such fluctuations, the use of active measurements can lead 
to considerable bandwidth overallocation or underallocation before the next round of 
measurements gives the system the opportunity to react.

Figure 5 presents our simulation results for the average video packet delay versus the 
system utilization. The results are generally similar in nature with those of Fig. 4, includ-
ing those concerning the comparison of the two SUIF definitions. Also, in Fig.  5, the 
confidence intervals for FPRRA for both SUIF definitions are presented. The graphs con-
necting all the low confidence interval (LCI) and high confidence interval (HCI) values, 
respectively, show that the qualitative differences between all the compared schemes 
remain unaltered even for the lowest and highest values of LCI and HCI. In this Figure, 
FPRRA1 stands for FPRRA-1st SUIF.

In the results presented in Fig.  6 we use Jain’s fairness index [43] in order to evalu-
ate the system behavior under each of the two SUIF definitions. Fairness is studied in 
terms of the video packet dropping encountered by individual video streams when using 
each SUIF definition. From the results it is clear once again that the 2nd SUIF definition 
leads to a larger LUIF and hence to decreased fairness; on the other hand, the 2nd SUIF 
definition is of higher practical value, because it takes into account the interdependence 
among video frames.

Finally, we compared FPRRA against our prior work in [7] in terms of LUIF. The incor-
poration of LUIF into FPRRA’s CAC decisions, combined with our new model’s accu-
racy, was shown to decrease the average Long Term User Irritation by 27%, over all of 
our experiments.
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Conclusions
In this paper we have proposed, for the first time in the relevant literature to the best of 
our knowledge, the use of video scene identification and classification to improve user 
QoE over GEO satellite links.

We introduced the notion of long-term user satisfaction into the call admission con-
trol scheme, and mapped our model’s ability to distinguish between high and low activity 
scenes into QoE. This led our scheme, which makes decisions based on available band-
width, user satisfaction and the possible revenue for the provider, to be able to handle 
the very bursty video traffic and to outperform other schemes from the literature in all of 
the QoS and QoE metrics used in our study.

The proposed scheme, additionally to its superior results, has the advantages of: (a) 
using a relatively simple video model towards video scene identification and classifica-
tion, (b) adhering to the general directions set in the ETSI standard [44], according to 
which the streaming class needs to be supported for video admission control and the 
scheduling process needs to be driven primarily by the connection Quality of Service 
parameters.

In future work we intend to study the possible extension/combination of our scheme 
with recent proposals to exploit successive interference cancellation schemes, in order 
to solve packet collision issues [45]. We also intend, in line with our view towards cross-
layer extensions of our work, to study how our scheme can be combined with the DVB-
S2X extension of the DVB-S2 specification that provides additional technologies and 
features for the core applications of DVB-S2. As noted in [46], the DVB-S2X has been 
introduced at the same time as the new high efficiency video coding (HEVC) scheme 
and it is expected that new satellite DTH receivers will combine these two technolo-
gies to make the delivery of ultra high definition services more efficient. For this reason 
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we also intend to evaluate our scheme with HEVC/H.265 video traces, as HEVC is fast 
becoming widely adopted. We believe that the combination of our scheme with DVB-
S2X will be a significant step towards enabling its practical implementation.

Authors’ contributions
PK proposed the use of video scene identification and classification for traffic modeling at the scene level and the utiliza-
tion of its relation to user satisfaction in order to improve system utilization and user QoE in GEO satellite networks. PK 
proposed and implemented the CAC algorithm using Long Term User Irritation to make acceptance/rejection decisions. 
IS and AL implemented the video traffic modeling module, analyzed the results of the proposed scheme and helped to 
draft the manuscript, together with PK. All authors read and approved the final manuscript.

Author details
1 School of Engineering and Information Technology, Murdoch University, Science and Computing Building 245, SC1.012, 
90 South Street, Murdoch, WA 6150, Australia. 2 Global Virtual Engineering, Cisco Systems, Marousi, Greece. 3 Department 
of Electrical Engineering, University of Southern California, Los Angeles, USA. 

Competing interests
The authors declare that they have no competing interests.

Received: 14 December 2016   Accepted: 28 March 2017

References
	1.	 Gotta A, Luglio M, Roseti C (2014) A TCP/IP satellite infrastructure for sensing operations in emergency contexts. 

Comput Netw 60:147–159
	2.	 NetWorld2020–SatCom Working Group (2014) The role of satellites in 5G. https://www.networld2020.eu/wp-con-

tent/uploads/2014/02/SatCom-in-5G_v5.pdf. Accessed 21 Mar 2017
	3.	 Koutsakis P (2011) Using traffic prediction and estimation of provider revenue for a joint GEO satellite MAC/CAC 

scheme. Wirel Netw 17:797–815
	4.	 Wittig M (2000) Satellite onboard processing for multimedia applications. IEEE Commun Mag 38:134–140
	5.	 Le-Ngoc T et al (2003) Interactive multimedia satellite access communications. IEEE Commun Mag 41:78–85
	6.	 Lazaris A, Koutsakis P, Paterakis M (2008) A new model for video traffic originating from multiplexed MPEG-4 vide-

oconference streams. Perform Eval 65:51–70
	7.	 Stamos C, Vasileiadou D, Koutsandria G, Spanou I, Vlachaki A, Lazaris A, Koutsakis P (2012) User-satisfaction based 

resource allocation for GEO satellites. In: Paper presented at the IEEE international symposium on a world of wire-
less, mobile and multimedia networks (WoWMoM), San Francisco

	8.	 Pal S, Chatterjee M, Das SK (2005) A two-level resource management scheme in wireless networks based on user-
satisfaction. ACM Mobile Comput Commun Rev 9:4–14

	9.	 Spanou I, Lazaris A, Koutsakis P (2013) Scene change detection-based discrete autoregressive modeling for MPEG-4 
video traffic. In: Paper presented at the IEEE international conference on communications (ICC), Budapest

	10.	 Iuoras A et al (1999) Quality of service-oriented protocols for resource management in packet-switched satellites. 
Int J Satell Commun 17:129–141

	11.	 Jiang Z, Leung VCM (2003) A predictive demand assignment multiple access protocol for internet access over 
broadband satellite networks. Int J Satell Commun Netw 21:451–467

	12.	 Yum TS, Wong EWM (1989) The scheduled-retransmission (SRMA) protocol for packet satellite communications. IEEE 
Trans Inf Theory 35:1319–1324

	13.	 Maglaris B (1988) Performance models of statistical multiplexing in packet video communications. IEEE Trans Com-
mun 36:834–844

	14.	 Liu D, Sara E, Sun W (2001) Nested auto-regressive processes for mpeg-encoded video traffic modeling. IEEE Trans 
Circuits Syst Video Technol 11:169–183

	15.	 Krunz M, Tripathi SK (1997) On the characterization of VBR MPEG streams. ACM Sigmetrics Perform Eval Rev 
25:192–202

	16.	 Dawood AM, Ghanbari M (1999) Content-based MPEG video traffic modeling. IEEE Trans Multimed 1:77–87
	17.	 Melamed B, Pendarakis DE (1998) Modeling full-length VBR video using Markov-renewal modulated TES models. 

IEEE J Sel Areas Commun 16:638–649
	18.	 Chandra K, Reibman AR (1999) Modeling one- and two-layer variable bit rate video. IEEE/ACM Trans Netw 7:398–413
	19.	 Heyman DP (1997) The GBAR source model for VBR videoconferences. IEEE/ACM Trans Netw 5:554–560
	20.	 Frey M, Ngyuyen-Quang S (2000) A gamma-based framework for modeling variable-rate video sources: the GOP 

GBAR model. IEEE/ACM Trans Netw 8:710–719
	21.	 Dai M, Zhang Y, Loguinov D (2009) A unified traffic model for MPEG-4 and H.264 video traces. IEEE Trans Multimed 

11:1010–1023
	22.	 Bhattacharya A (2003) Prediction of MPEG-coded video source traffic using recurrent neural networks. IEEE Trans 

Signal Process 51:2177–2190
	23.	 Huang CL, Liao BY (2001) A robust scene-change detection method for video segmentation. IEEE Trans Circuits Syst 

Video Technol 11:1281–1288

https://www.networld2020.eu/wp-content/uploads/2014/02/SatCom-in-5G_v5.pdf
https://www.networld2020.eu/wp-content/uploads/2014/02/SatCom-in-5G_v5.pdf


Page 18 of 18Koutsakis et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:15 

	24.	 Lelescu D, Schonfeld D (2003) Statistical sequential analysis for real-time video scene change detection on com-
pressed multimedia bitstream. IEEE Trans Multimed 5:106–117

	25.	 Chiruvolu G et al (1998) A scene-based generalized markov chain model for VBR video traffic. In: Paper presented at 
the IEEE international conference on communications (ICC), Atlanta

	26.	 Yoo SJ (2002) Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed net-
works. IEEE Trans Broadcast 48:10–18

	27.	 Radke RJ et al (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307
	28.	 Seeling P, Reisslein M, Kulapala B (2004) Network performance evaluation using frame size and quality traces of 

single-layer and two-layer video: a tutorial. IEEE Commun Surv Tutor 6:58–78
	29.	 Law AM, Kelton WD (1991) Simulation modeling & analysis, 2nd edn. McGraw Hill, New York City
	30.	 Burnham KP, Anderson DR (2002) Model selection and multi-model inference. Springer, New York
	31.	 Yaipairoj S, Harmantzis F (2004) Dynamic pricing with alternatives for mobile networks. In: Paper presented at the 

IEEE wireless communications and networking conference (WCNC), Atlanta
	32.	 Lewis C, Pickavance S (2006) Implementing Quality of Service over CISCO MPLS VPNs. CISCO Press, Indianapolis. 

http://www.ciscopress.com/articles/article.asp?p=471096&seqNum=6. Accessed 14 Dec 2016
	33.	 Chiti F, Fantacci R, Marangoni F (2005) Advanced dynamic resource allocation schemes for satellite systems. In: 

Paper presented at the IEEE international conference on communications (ICC), Seoul
	34.	 Melhus I et al (2008) Cross-layer optimization in the next-generation broadband satellite systems. In: Paper pre-

sented at the international communications satellite systems conference (ICSSC), San Diego
	35.	 Singlegrain.com (2014) Just the stats: the science of video engagement. https://www.singlegrain.com/video-mar-

keting/just-stats-science-video-engagement/. Accessed 21 Mar 2017
	36.	 International Telecommunication Union (2012) Cross-layer QoS provisioning in IP-based hybrid satellite-terrestrial 

networks, Recommendation ITU-R S.1897, January 2012
	37.	 European Telecommunications Standards Institute (2005) Satellite Earth Stations and Systems (SES); Broadband 

Satellite Multimedia; Transparent Satellite Star-A (TSS-A); DVB-S and DVB-RCS for Transparent Satellites; Sub-family 1 
(TSS-A1), May 2005

	38.	 European Telecommunications Standards Institute (2006), Satellite Earth Stations and Systems (SES); Broadband 
Satellite Multimedia (BSM); Regenerative Satellite Mesh-B (RSM-B); DVB-S/DVB-RCS Family for Regenerative Satellites; 
Part 1: System Overview, October 2006

	39.	 Hunter JS (1986) The exponentially weighted moving average. J Qual Technol 18:203–210
	40.	 Casini E, De Gaudenzi R, del Rio Herrero O (2007) Contention resolution diversity slotted ALOHA (CRDSA): an 

enhanced random access scheme for satellite access packet networks. IEEE Trans Wirel Commun 6:1408–1419
	41.	 De Rango F et al (2008) Call admission control for aggregate MPEG-2 traffic over multimedia geo-satellite networks. 

IEEE Trans Broadcast 54:612–622
	42.	 Marchese M, Mongelli M (2006) On-line bandwidth control for quality of service mapping over satellite independ-

ent service access points. Comput Netw 50:2088–2111
	43.	 Jain R (1991) The art of computer systems performance analysis. Wiley, New York
	44.	 European Telecommunications Standards Institute (2015), Satellite Earth Stations and Systems (SES); Family SL Satel-

lite Radio Interface (Release 1); Part 1: General Specifications; Sub-part 3: Satellite Radio Interface Overview, October 
2015

	45.	 De Gaudenzi R et al (in press) Random access schemes for satellite networks, from VSAT to M2M: a survey. Int J Satell 
Commun Netw. doi:10.1002/sat.1204/full

	46.	 Morello A, Migone M (2015) DVB-S2X: the new extensions to the second generation DVB satellite standard DVB-S2. 
Int J Satell Commun Netw 34:323–325

http://www.ciscopress.com/articles/article.asp?p=471096&seqNum=6
https://www.singlegrain.com/video-marketing/just-stats-science-video-engagement/
https://www.singlegrain.com/video-marketing/just-stats-science-video-engagement/
http://dx.doi.org/10.1002/sat.1204/full

	Video scene identification and classification for user-tailored QoE in GEO satellites
	Abstract 
	Background
	Related work
	The proposed scheme
	CAC based on long term user irritation
	The proposed MAC scheme

	Simulation results and discussion
	Conclusions
	Authors’ contributions
	References




