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Introduction
With information obtained from sensors, computer based system can make more 
intelligent actions by adapting their behavior to the context conditions. These days, 
thanks to the development of multi-sensor networks, related research areas have 
increased rapidly. Among those areas, Human Activity Recognition (HAR) based on 
wearable sensors (accelerometer, gyroscope, magnetometer, etc.) has recently received 
lots of attention due to its large number of promising applications. One of the most 
interesting HAR applications is ubiquitous identification of physical activity. As we 
know, over-weighting is a general human problem as a result of a physical inactivity 
habit. A Lancet publication [1] estimates that physical inactivity causes 9% of all pre-
mature deaths worldwide. By monitoring physical activity, we can help people to learn 
the calories they consumed or gained during the day in a much more precise way and 
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encourage them to keep moving in order to prevent obesity along with the following 
health effects. Another delightful example is Home Care Monitoring, which allows 
disabled and elderly patients a continuous health and well-being supervision while 
they perform Activities of Daily Living (ADL) at home. For instance, when a patient 
falls, the system will alert a nurse, or, if the patient is doing a forbidden activity, the 
security staff [2].

The main contributions of this paper are the followings:

• • We present an automatic HAR system for classifying 33 different physical activities.
• • We analyze several feature extraction strategies to find the one with the best perfor-

mance and robustness.
• • We study the influence of the type of sensor on the system performance.
• • We propose and evaluate several normalization strategies for dealing with the inter-

user variability.
• • We also evaluate and validate the system for Home Care Monitoring using an ADL 

dataset.

The results obtained in this paper significantly improve the accuracy obtained in pre-
vious works on the same dataset.

This paper is organized as follows: Second section describes the background. Third 
section shows the system architecture in detail. Fourth section describes the dataset, the 
evaluation methods used in this work and the experimental results obtained with the 
proposed system. Sixth section summarizes the main conclusions.

Background
Human Activity Recognition systems can be categorized by machine learning algorithm 
and the type of sensor they used. Human activity recognition can be seen as a machine 
learning problem. To deal with this problem, the HAR system must extract features from 
sensor signals, generate a model for each activity, and classify next activities based on 
these models. In the literature, different machine learning solutions have been applied 
to the recognition of activities including Naive Bayes [3], Decision Trees [4], Support 
Vector Machines (SVMs) [5], Deep Neural Networks [6] and Hidden Markov Models 
(HMMs) [7]. In many works, several approaches have been compared using the WEKA 
learning toolkit [8] because it incorporates many machine learning algorithms. For 
example, Yang [9] compares the performance of several machine learning approaches: 
C4.5 Decision Trees, Naive Bayes, k-Nearest Neighbor, and Support Vector Machines. 
Kwapisz [10] compares three learning algorithms: logistic regression, J48, and multilayer 
perceptron. Not only supervised but also, unsupervised algorithms have been studied 
[11]. In many works [12], complex algorithms, like the Random Forest, have demon-
strated a very good performance compared to simple classification algorithms. Because 
of this, the Random Forest has been the algorithm selected in this work.

For HAR, there are two main types of sensors: ambient and on-body sensors. In 
terms of ambient sensors, the most widely used sensors are video cameras [13]. Video 
recording is one of the main strategies for supervising human behavior and activities 
[14]. But, this behavior can also be studied by analyzing acoustic events. The human 
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activity can be characterized by defining the identity of sounds and their position in 
time sequence [15]. The main two disadvantages of ambient sensors are the require-
ment of infrastructure (for example, installation of video cameras in the monitoring 
areas) and also, people do not always stay all their time in the same environment. 
These limitations can be overtaken by on-body sensors [16, 17]. Body-worn sensors 
add new possibilities to the human monitoring system [18]: they allow measuring 
body signals (e.g. physiological, motion, location) and they are portable, allowing user 
supervision at any location without the need of fixed infrastructure. Because of these 
benefits, several works have been developed using motion sensors in different body 
parts (e.g. waist, wrist, chest and thighs) and achieved good classification performance 
[19–22].

This work has been carried out using a public dataset: REALDISP Activity Recogni-
tion dataset. This dataset contains recordings from 17 subjects performing 33 different 
gymnastic activities. This dataset has permitted several HAR works focused on different 
aspects. One interesting aspect has been the degradation suffered on the HAR accuracy 
depending on the sensor placement or the number of displacements (wrong placements) 
[23–25]. Other analyzed aspects have been the window size [24, 26], and the detection 
of activities transitions [27]. This paper contributes by analyzing several strategies for 
feature extraction and proposing several normalization approaches for dealing with the 
inter-user variability. As far as the authors know, this work reports the best HAR results 
using this dataset.

System architecture
The proposed system architecture is shown in Fig. 1. It consists of two main modules: 
feature extraction and machine learning algorithm for activity classification. The inertial 
signals are recorded by 9 inertial measurement units. Every unit contains four sensors, 
accelerometer (ACC), gyroscope (GYR), magnetometer (MAG) and quaternion (QUAD) 
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Fig. 1  System architecture (the sensor placement is referenced from [24]). The system architecture includes 
two steps: feature extraction and activity classification. This system includes 9 inertial measurement units 
generating and every unit contains four sensors, accelerometer (ACC), gyroscope (GYR), magnetometer 
(MAG) and quaternion (QUAD) sensor
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sensor, which generate 13 inertial signals: in total, 117 inertial signals are processed. For 
more details, the reader can refer to [24].

Feature extraction

In the feature extraction module, the sample sequences from the inertial signals are 
grouped together in frames: fixed-width sliding windows of 3  s and 66% overlap (150 
samples per frame with an overlap of 100 samples). For each frame, the system calcu-
lates a feature vector, which makes it easier for the machine learning module to learn the 
internal characteristics behind raw signals. These features are traditional measures like 
the mean, correlation, Signal Magnitude Area (SMA) and auto regression coefficients, 
but also, advanced ones that will be described below. These features are computed from 
117 signals obtained from nine measurement units. Taking the three accelerometer 
signals (X, Y, Z) as an example (similar signals are also considered for gyroscope, mag-
netometer and quaternion sensor): in the time domain, the signals considered in this 
work are:

• • XYZ (3 signals): Original accelerometer signals.
• • Mag (1 signal): Magnitude signal computed from the previous three signals. This 

magnitude is computed as the square root of the sum of squared components (accel-
erometer signals).

• • Jerk-XYZ (3 signals): Jerk signals (derivative of the accelerometer signals) obtained 
from the original accelerometer signals.

• • JerkMag (1 signal): Magnitude signal computed from the previous jerk signals 
(square root of the sum of squared components).

And in the frequency domain, the signals from the accelerometer sensor are:

• • fXYZ (3 signals): Fast Fourier transforms (FFTs) from XYZ.
• • fMag (1 signal): FFT from Mag.
• • fJerk-XYZ (3 signals): FFTs from Jerk-XYZ.
• • fJerkMag (1 signal): FFTs from JerkMag.

The set of features that were estimated from the time domain signals are:

• • Mean value, standard deviation, median absolute deviation, minimum and maxi-
mum values of the samples in a frame.

• • Signal Magnitude Area: The normalized integral of the samples in a frame.
• • Energy measure: Sum of the squares samples divided by the number of samples in a 

frame.
• • 	 Inter-quartile range: Variability measure obtained by dividing a data set into quartiles.
• • Signal entropy.
• • Auto-regression coefficients with Burg order equal to four correlation coefficients 

between two signals.

The set of features estimated from frequency domain signals include similar features 
to those from the time domain, plus:
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• • Index of the frequency component with largest magnitude.
• • Weighted average of the frequency components to obtain a mean frequency.
• • Skewness and Kurtosis of the frequency domain signal.
• • Energy of 6 equally spaced frequency bands within the 64 bins of the FFT.

Regarding the feature extraction complexity, we can comment that every feature is 
represented by 4 bytes, so every frame needs around 16 kB for storing a feature vector 
with all the features (4086 features) from all signals (117 signals from 9 measurement 
units). The features extractor has been implemented using Octave v.4.0.1. This module 
needs 12 min. for extracting the features in a whole session (around 18 min of physical 
exercise) using an Intel Core I7-4790 CPU at 3.6 GHz with 16 GB of RAM.

Machine learning algorithm

The machine learning algorithm module acts as a classifier. For this module, we have 
tried two popular algorithms (J48 decision tree and Random Forest) and found that the 
Random Forest algorithm [28] works better in this circumstance. In our preliminary 
experiments, it defeats the J48 decision tree algorithm by nearly 10% in accuracy. There-
fore, the Random Forest algorithm is used in our following experiments.

The Random Forest algorithm creates several decision trees during training. In our 
experiments, the number of trees ranges from 40 to 95, and the number of nodes per 
tree goes from 15 to 87. These numbers varies strongly with the number of features con-
sidered in the feature extractor. The algorithm for training the Random Forest model is:

Regarding the algorithm complexity, for building every decision tree the time com-
plexity is O(m · n · log(n)), where n is the number of feature vectors in the training set, 
and m is the number of features in every feature vector. For building all the decision 
trees, the time complexity is O(t · m · n · log(n)), where t is the number of decision trees 
considered in the model.

For classification, every new input from the testing set is run down all of the trees. The 
classification result is weighted average of all of the terminal nodes that are reached, pro-
viding the final decision:
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For testing, the time complexity is O(t · n · m), where n is the number of feature vec-
tors in the testing set, m is the number of features in every feature vector, and t is the 
number of decision trees considered in the model.

This work has been carried out using the Random Forest implementation included in 
the WEKA toolkit [8] (weka configuration weka.classifiers.trees.randomforest -I 100 -K 
0 -S 1).

The training process needs less than 10 min for training the system using 16 sessions. 
The analysis and evaluation of 1 session (around 18 min of physical exercise) need less 
than 60 s, using an Intel Core I7-4790 CPU at 3.6 GHz with 16 GB of RAM.

Experiments
This section describes the experiments conducted in this work. In first and second sub-
section, the main dataset and the evaluation methods used in this work are introduced. 
Third and fourth subsections shown the experiments carried out for the analysis of the 
type of sensor and the type of feature. In fifth subsection, the final results on the main 
dataset are given. At the end, sixth subsection includes an additional experiment on 
another HAR dataset—OPPORTUNITY dataset, using the same system.

REALDISP dataset

In this work, the HAR system has been mainly trained and tested using the REALDISP 
Activity Recognition dataset, available at the UCI Machine Learning Repository [24]. 
This dataset includes recordings from 17 subjects, seven females and ten males, with 
ages ranging from 22 to 37 years old. These recording include 13 inertial signals obtained 
from 9 on-body inertial measurement units located on different body parts. Each unit 
contains four sensors: an accelerometer, a gyroscope, a magnetometer and a quaternion 
sensor. Using these sensors, a 3D (3-dimension) linear acceleration, a 3D angular veloc-
ity, a 3D magnetic field orientation and a 4D quaternions are sampled every 20 ms (50 Hz 
sample-rate). The experiment consisted in performing a complete set of exercises: 33 
physical activities, including warm up, fitness and cool down activities (walking, jogging, 
cycling, jumping, etc.). One run-through of the exercises lasted 15–20 min. Each session 
was preceded by a preparation phase lasting around 30 min. This dataset also includes a 
Null-activity. This label has been assigned to other activities (different from the 33 activi-
ties considered in this study), and also, the transitions between activities.

The most significant characteristic of this dataset is the introduction of sensor dis-
placement, such as rotation and mis-positioning from the corresponding body part. The 
dataset includes recordings in three placement scenarios:
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• • Ideal-placement all sensors were placed by experts at their optimal place for classifi-
cation. All the subjects recorded a session in these conditions (17 sessions).

• • Self-placement every subject decides the positions of three sensors by themselves and 
the remaining sensors were situated by experts. The number of three is considered a 
reasonable estimate of the proportion of sensors that may be misplaced during the 
normal wearing. All the subjects recorded a session in these conditions (17 sessions).

• • Mutual-placement where several displacements were intentionally introduced by 
experts. Three out of the 17 volunteers were recorded for mutual-displacement sce-
nario (subjects 2, 5 and 15). These three subjects recorded one session for every sen-
sor configuration: for the case in which four, five, six or even seven out of the nine 
sensors are misplaced.

Considering the size, the number of activities and the different placement scenarios, 
we think that the REALDISP dataset is an appropriate dataset to evaluate the perfor-
mance of the proposed HAR system.

Evaluation methods

In this work, we apply two methods to evaluate the system performance. The first one is 
a tenfold random-partitioning cross-validation evaluation. This method consists of split-
ting the whole database (with all subjects’ data) randomly into 10 equal parts (subsets). 
For every experiment, one subset is used for testing and the other nine for training, con-
sidering a round-robin strategy. The final cross-validation result is the average along the 
10 experiments. This is the method used in the original paper [24].

However, our hypothesis is that this method suffers the problem that the data in both 
training and testing could contain information from a same subject, so the machine 
learning algorithm can learn not only physical activity characteristics but also some 
subject-dependent ones. This aspect makes it hard to evaluate the system performance 
when facing a new subject. In order to verify this hypothesis, sect. “Evaluation methods” 
includes some experiments comparing both evaluation methods.

Therefore, we propose the second method, a subject-wise cross-validation. In this 
case, the same kind of cross-validation is done but on different subjects rather on auto-
matically split parts: all data from the same user is considered for testing and the data 
from the remaining subjects for training. Since we have 17 subjects in the database, this 
experiment is repeated 17 times. The final experimental result is the average of accuracy 
and F-measure on all 17 sub-experiments weighted by the number of samples in every 
testing data.

In this work, we only use the tenfold cross-validation method to compare with our 
second evaluation method (“Evaluation methods”). The rest experiments are conducted 
with the subject-wise method.

In order to measure the statistical significance of the improvements, we apply the con-
cept of Confidence Interval defined by Eq. 1 [29], P is the accuracy rate, and N is the 
amount of instances in the data set: more than 130,000 in the REALDISP dataset.

(1)δ = ±1.96×

√

P(100− P)

N
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If the accuracy difference between two experiments is bigger than the confidence 
interval, this difference can be considered significant with a 95% of probability. In this 
paper, for all the experiments, the confidence interval is lower than 0.5%, so any differ-
ence higher than this value, this difference can be considered as significant with a 95% a 
probability.

Data analysis

In this section, we first conduct some experiments for HAR system configuration tuning 
in order to analyze how the evaluation, the sensor type, or the feature type influences the 
system performance.

Evaluation method

This section includes the experiments considering the two different evaluation meth-
ods. In these experiments, the setup is: ideal-placement, Null-activity removed (as in the 
original paper), and time-based features. The experimental results are shown in Table 1. 
From the results, we can clearly see that the result given by the random-partitioning 
method is significantly better than the subject-wise method: the accuracy (Acc%) differ-
ence is 3.4% (99.1–95.5%) higher than the confidence interval, 0.5%.

This result supports the hypothesis stated in the previous section: in the random-part 
evaluation, training and testing subsets could contain information from a same subject 
and this characteristic produces better classification results. In the rest of the paper, we 
will only consider the subject-wise evaluation method (more challenging situation).

Type of sensor

This section includes the experiments on different sensor types. In these experiments, 
the setup is: ideal-placement, Null-activity removed (as in the original paper), and time-
based features. The experimental results are shown in Table 2. From the results, we can 
clearly see that the 3D magnetometer works best among the four types of sensor and the 
quaternion sensor performs the worst. The accuracy (Acc%) differences are statistically 
relevant because they are bigger than the confidence interval (0.5%).

Table 1  Experimental results depending on the evaluation method

Sensor Evaluation # of features Acc% F-measure

ACC Random-part 954 99.1 0.991

ACC Subject-wise 954 95.5 0.951

Table 2  Experimental results on type of sensor

Italic values indicate the best results in this experiment

Sensor Evaluation # of features Acc% F-measure

ACC Subject-wise 954 95.5 0.951

GYR Subject-wise 954 94.4 0.941

MAG Subject-wise 954 96.3 0.952

QUAD Subject-wise 1224 93.0 0.924
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Type of feature

We also make a comparison on the performance of different kinds of features, more spe-
cifically, temporal features and frequency features as described in “Feature extraction”. 
Same as the experiments on sensor types, here, we also consider the ideal-placement, 
removing the Null-activity. For the sake of confidence, we repeat the experiments with 
different types of sensor.

From the results shown in Fig. 2, it is obvious that the temporal features always beat 
the frequency features and their combination in the cases of all three sensor types. 
Therefore, we consider only the time-based features in the rest experiments.

As a conclusion, it is clear that using the signals from magnetometer and the time-
based features is currently the best system configuration. By including all sensors, we 
obtain even higher system accuracy: 97.0%.

Normalization methods

When training and testing with different subjects, it is important to deal with the 
inter-user variability. In order to reduce this variability, we propose several normali-
zation strategies. In this work, we evaluate six normalization methods, considering 
two different places where this normalization is applied: before and after the feature 
extraction.

1.	 Mean removal: Subtract the mean value from each value in a feature or signal vector.
2.	 Z-Score: Mean removal first, and divide each value by its standard deviation.
3.	 Histogram equalization: Consider all the values in a gray-scale, and equalize its his-

togram.
4.	 0–1 mapping: Distribute all data to the 0–1 range.
5.	 Vector normalization: Divide each value in a vector with the vector’s magnitude.
6.	 Vector normalization with mean normalization: Vector normalization followed by 

mean removal.
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Fig. 2  Experimental results on type of feature. This figure represents and compares the results for different 
kinds of features: temporal features and frequency features and using different types of sensors
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Note that in Table 3, SIGN_1 means normalization on signal data using method 1 and 
FEAT_1 means normalization on feature data (i.e. after feature extraction) using method 
1. The results show that the vector normalization method (number 5) applied directly 
on the signal data outperforms all other methods. Thus, for the rest of the report, we use 
this normalization method before the feature extraction.

Final results and discussion

By applying the best experimental configuration described above, we conducted experi-
ments using data from all signals and all sensors in all the three placement scenarios.

Ideal placement

Table  4 shows our final experimental results for the ideal placement scenario. After 
introducing the signal normalization method and considering all sensors, the system 
accuracy goes to 99.4%, a 2.4% improvement compared to the original paper (97%). This 
improvement is higher than the confidence interval (0.5%) so the difference is statisti-
cally significant with a 95% of probability. It is important to notice that, in the original 
paper, the evaluation method was random-partitioning and, based on the results pre-
sented in “Evaluation method”, the baseline accuracy would be even lower when using 
the subject-wise cross-validation method.

Another aspect to comment is regarding the Null-activity. In the first two rows of 
Table 4, the experiments are conducted without considering the Null-activity, in other 
words, it is a 33-class classification task. We truncated the Null-activity samples in order 
to make a fair comparison with the original paper. In this work, we have also done exper-
iments including the Null-activity, which, in our opinion, is closer to a real situation. So, 
the problem now becomes more challenging: a 34-class classification task. Regarding the 
results shown in the third row of Table 4, our system still maintains a high performance 
when the Null-activity is included: the system only loses 0.3% accuracy (from 99.4 to 
99.1%) showing a significant improvement (2.1%) respect to the baseline system (97%). 

Table 3  Experimental results on normalization methods

Italic values indicate the best results in this experiment

Method ACC GYR MAG QUAD

Acc% F-measure Acc% F-measure Acc% F-measure Acc% F-measure

None 95.5 0.951 94.4 0.941 96.3 0.952 93.0 0.924

SIGN 1 94.7 0.943 93.6 0.935 96.1 0.957 92.2 0.923

SIGN 2 94.5 0.938 93.6 0.929 93.4 0.924 92.1 0.923

SIGN 3 89.2 0.880 88.1 0.870 93.6 0.927 87.5 0.865

SIGN 4 92.7 0.920 91.5 0.910 94.0 0.931 90.8 0.901

SIGN 5 96.4 0.961 95.4 0.950 97.9 0.976 94.1 0.939

SIGN 6 96.1 0.958 95.1 0.949 94.8 0.943 93.8 0.934

FEAT 1 95.6 0.951 94.5 0.940 95.6 0.950 93.0 0.930

FEAT 2 95.4 0.948 94.3 0.937 95.2 0.946 93.1 0.925

FEAT 3 94.7 0.940 93.5 0.932 95.0 0.944 92.1 0.920

FEAT 4 94.8 0.943 93.6 0.932 95.8 0.954 92.3 0.921

FEAT 5 92.2 0.916 91.1 0.908 96.4 0.960 90.2 0.892

FEAT 6 93.9 0.932 94.8 0.926 96.1 0.956 91.5 0.910
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Such low degradation is made possible due to the large number of features extracted and 
the suitable normalization method proposed in this paper.

Self and mutual placement

We repeat the previous experiments on the other two scenarios described in “REALD-
ISP dataset”: self-placement and mutual-placement. The results are presented in Table 5. 
In the first two columns, this table shows the type of data (or scenario where the data 
were recorded) used for training and testing the proposed system.

Regarding the self-placement scenario, this table shows 8.6% accuracy drop compared 
to the ideal-placement in the original paper (from 97.0 to 88.4%), but with our system, 
this reduction is lower than 0.5% (from 99.1 to 98.9%). When comparing these results to 
the original paper, there is a big improvement (more than 10%, from 88.4 to 98.9%) in the 
self-placement scenario. The new feature extraction module shows a very good robust-
ness against different sensor placements.

For the mutual-placement scenario, the results are considerably low in both works 
(baseline and this paper) but the degradation obtained with the system proposed in this 
paper is considerably smaller compared to the baseline system: our system shows a bet-
ter robustness. This degradation is different depending on the number of mis-displace-
ments (4, 5, 6, and 7).

In these experiments, we have used the data recorded in the mutual scenario for train-
ing and testing the system. As we commented in “REALDISP dataset”, only three out of 
the 17 volunteers were recorded for mutual-displacement scenario so the amount of data 

Table 4  Final experimental results considering the ideal placement scenario

System Accuracy % F-measure

Baseline [24]:
Evaluation method: random-partitioning
Null-activity: truncated

97.0 –

This paper:
Evaluation method: subject-wise
Null-activity: truncated

99.4 0.993

This paper:
Evaluation method: subject-wise
Null-activity: included

99.1 0.991

Table 5  Final experimental result for self-placement and mutual-placement scenarios

Train set Test set Baseline [24]:
Evaluation method: random- 
partitioning
Null-activity: truncated

This paper:
Evaluation method:  
subject-wise
Null-activity: included

Accuracy % F-measure Accuracy % F-measure

Ideal Ideal 97.0 – 99.1 0.991

Self Self 88.4 – 98.9 0.988

Mutual4 Mutual4 71.2 – 87.9 0.847

Mutual5 Mutual5 71.6 – 93.5 0.921

Mutual6 Mutual6 77.2 – 96.4 0.959

Mutual7 Mutual7 68.0 – 83.2 0.799
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for training the system is very small (2 out of the 3 subjects recorded in this scenario). 
In order to analyze the influence of the amount of data, we repeat the same experiments 
but using the ideal-placement data for training the system. Although there is a mismatch 
in the conditions, the amount of available data for training would increase a lot (from 2 
to 16 subjects). The experiments are shown in Table 6. In the “Train Set” and “Test Set” 
columns, we have also included the number of subjects considered for training and test-
ing the system.

The results show that when being trained with ideal datasets and tested with mutual 
datasets, the system reaches a very good accuracy though the training and testing sets 
come from different placement scenarios. For example, for mutual4, the accuracy goes 
from 87.9 to 99.0% (the first row). These results support the hypothesis that the amount 
of data for training is an important factor in the system performance.

With the idea of cross-dataset experiment, we go further on the ideal-placement and 
self-placement scenarios (the last row in Table 6). As Table 6 shows, there is not a signifi-
cant difference on the accuracy when testing with self-placement dataset and training 
with ideal or self placement (99.1 vs. 98.9%, difference lower than the confidence interval 
0.5%). In this case, the amount of data available in ideal-placement and self-placement 
scenarios is the same.

System analysis in a new domain: home care monitoring
In the introduction, we commented two main applications of HAR: physical exercise 
monitoring and home care monitoring. The REALDISP dataset is focused on the first 
one: physical exercise monitoring. In order to verify the viability of the proposed system 
in a home care monitoring application, we have evaluated the best system configuration 
with another dataset: the OPPORTUNITY dataset for HAR from wearable, object, and 
ambient sensors [30]. The recordings include daily morning activities: getting up from 
the bed, preparing and having breakfast (a coffee and a salami sandwich) and clean-
ing the kitchen latter. This dataset is a very popular HAR dataset on this research field. 
There is no constraining on the location or body posture in any of the scripted activities.

Table 6  Final experimental result for  self-placement and  mutual-placement scenarios: 
using ideal-placement for training

This paper:
Evaluation method: subject-wise
Null-activity: included

Train set Test set Accuracy % F-measure Train set Test set Accuracy % F-measure

Mutual4 (2 
subjects)

Mutual4 (1 
subject)

87.9 0.847 Ideal (16 
subjects)

Mutual4 (1 
subject)

99.0 0.990

Mutual5 (2 
subjects)

Mutual5 (1 
subject)

93.5 0.921 Ideal (16 
subjects)

Mutual5 (1 
subject)

98.1 0.982

Mutual6 (2 
subjects)

Mutual6 (1 
subject)

96.4 0.959 Ideal (16 
subjects)

Mutual6 (1 
subject)

99.0 0.990

Mutual7 (2 
subjects)

Mutual7 (1 
subject)

83.2 0.799 Ideal (16 
subjects)

Mutual7 (1 
subject)

94.5 0.938

Self (16 
subjects)

Self (1 sub‑
ject)

98.9 0.988 Ideal (16 
subjects)

Self (1 sub‑
ject)

98.9 0.989
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OPPORTUNITY dataset

The OPPORTUNITY dataset contains data from four subjects, performing six different 
runs each of: ADL1–ADL5 and Drill. In the Drill run, subject must act in a predeter-
mined activity sequence and, as for ADL1–ADL5, there is no restriction on the order 
and number of activities. For each subject, there is information from three types of 
sensors: body-worn sensors, object sensors and ambient sensors. The on-body sensors 
include 7 multi-sensor inertial measurement units with another 12 3D acceleration sen-
sors: 145 signals in total. Since only body-worn sensors are concerned in the evaluation 
section of the original paper [31], the data from object and ambient sensors are trun-
cated in the following experiments. In terms of activities or classes, this dataset has 3 
different sets: 4 types of locomotion (high-level activities); 17 types of gesture (mid-level 
actions); and low-level actions to objects (which is ignored in this work).

Experiments on the OPPORTUNITY dataset

We retrain and evaluate our system using the same experimental setting as in the origi-
nal paper [31]: using ADL2 and ADL3 from one subject as the testing set and use Drill, 
ADL1, ADL4 and ADL5 from the same subject as the training set. We conduct experi-
ments in this configuration for all four subjects and in the two tasks: high-level loco-
motion (Table 7) and mid-level gestures (Table 8). The first column shows the different 
proposed systems, and the best systems are remarked with bold font.

For the high-level locomotion task (Table 7), the system proposed in this paper obtains 
the best results for all subjects when the Null class is not considered (the 4 last columns). 
When including the Null class (the 4 first columns), we obtain the best results for all 
subjects except S3.

For the mid-level gesture task (Table  8), the system proposed in this paper obtains 
the best results for all subjects except S4 when the Null class is included (the 4 first 

Table 7  Experimental results on the OPPORTUNITY dataset (high-level locomotion classi-
fication)

Italic values indicate the best results in this experiment

Method F-measure F-measure (no null class)

S1 S2 S3 S4 S1 S2 S3 S4

Results from [31]

 LDA 0.62 0.64 0.68 0.43 0.73 0.70 0.74 0.53

 QDA 0.67 0.66 0.71 0.45 0.81 0.77 0.79 0.56

 NCC 0.60 0.58 0.56 0.45 0.69 0.67 0.62 0.50

 1 NN 0.84 0.85 0.83 0.76 0.85 0.85 0.85 0.76

 3 NN 0.85 0.86 0.83 0.77 0.86 0.86 0.85 0.76

 UP 0.58 0.62 0.88 0.80

 NStar 0.58 0.66 0.88 0.85

 SStar 0.61 0.68 0.87 0.83

 CStar 0.60 0.65 0.90 0.83

 NU 0.54 0.49 0.83 0.63

 MI 0.85 0.81 0.87 0.86

 MU 0.57 0.68 0.86 0.87

 UT 0.48 0.55 0.74 0.72

This paper 0.88 0.88 0.80 0.85 0.92 0.92 0.89 0.86
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columns). In conclusion, the proposed system is also a competitive solution for home 
care monitoring applications.

Conclusions
This paper has proposed a HAR system for classifying 33 different physical activities 
composed of two main modules: feature extraction and activity recognition modules.

The first contribution has been an analysis of several feature extraction strategies: 
time-based and frequency-based. The time-based features have provided better results 
compared to the frequency-based ones. This paper has also evaluated several normali-
zation methods for reducing the degradation produced when training and testing with 
different users. Thanks to the new feature extraction module and the normalization 
strategy, the system has shown strong robustness when facing the Null-activity and dif-
ferent placement scenarios, two vital aspects for real applications.

Regarding the type of sensor, the magnetometer signals have provided better discrimi-
nation capability. The best results have been obtained when combining the information 
from all the sensors. In this case, the improvement is significant. The main experiments 
have been done on a public available dataset, REALDISP Activity Recognition dataset. 
Final results have exhibited that the proposed system largely improves the performance 
compared to previous works on the same dataset [24]. Under the best configuration, the 
accuracy reaches 99.1% and F-measure 0.991.

The proposed system has been also evaluated with another public dataset (OPPOR-
TUNITY dataset) demonstrating competitive results (compared to previous work [31]) 
in two main tasks for home care monitoring: high-level locomotion and mid-level ges-
ture classification.

Abbreviations
3D: 3-dimension; ACC: accelerometer; ADL: Activities of Daily Living; GYR: gyroscope; HAR: Human Activity Recognition; 
HMM: Hidden Markov Model; MAG: magnetometer; QUAD: quaternion; SMA: Signal Magnitude Area; SVMs: Support 
Vector Machines.

Table 8  Experimental results on the OPPORTUNITY dataset (mid-level gesture classification)

Italic values indicate the best results in this experiment

Method F-measure F-measure (no Null class)

S1 S2 S3 S4 S1 S2 S3 S4

Results from [31]

 LDA 0.65 0.63 0.70 0.62 0.36 0.28 0.27 0.17

 QDA 0.60 0.57 0.69 0.64 0.34 0.29 0.34 0.22

 NCC 0.48 0.48 0.51 0.35 0.29 0.21 0.22 0.14

 1 NN 0.85 0.89 0.86 0.84 0.56 0.53 0.58 0.46

 3 NN 0.85 0.89 0.86 0.88 0.55 0.53 0.58 0.48

 NStar 0.84 0.83 0.60 0.69

 SStar 0.87 0.84 0.65 0.72

 CStar 0.88 0.87 0.72 0.80

 UP 0.64 0.64 0.64 0.23 0.19 0.16

 NAGS 0.71 0.17

This paper 0.87 0.89 0.87 0.85 0.76 0.64 0.64 0.55
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