
Efficient motion blurred shadows using
a temporal shadow map
MinhPhuoc Hong*  and Kyoungsu Oh

Background
According to recent research described by ThanhBinh [1], Agarwal and Bedi [2], image
processing is an important part of modern graphics and motion blur is an essential effect
in that field. Instead of processing images, we render images with motion blurred shad-
ows. Motion blurred shadow effect enhances the sense of realism experienced by users.
When a geometry is blurred, its shadows should be blurred as well. However, there are
few proposed algorithms for rendering motion blurred shadows.

Because the shadow casters, the shadow receivers and the light source can move dur-
ing a frame, motion blurred shadows rendering is a challenging problem in real-time
rendering. For a given pixel which is visible to the camera at a certain time, it is difficult
to determine if the current pixel is occluded or not with respect to the light.

A brute force method renders a scene with shadow many times and then aver-
ages the results to produce correct motion blurred shadows. However, this approach
is extremely slow, so it is not suitable for the real-time rendering. Stochastic sampling
based approaches use multi-samples per pixel, with each sample has a unique random
time, to render motion blurred shadows. However, time mismatch when generating and
sampling a shadow map causes visual artifacts.

Contrary to previous approaches, we seek an approach that finds a range of time when
each geometry is visible to the light for a given pixel. In this paper, we introduce a novel
algorithm that renders motion blurred shadows efficiently on GPUs using a temporal
shadow map. During a frame, at each pixel, each moving triangle is visible to the light

Abstract 

In this paper, we propose a novel algorithm that renders motion blurred shadows
efficiently on GPUs using a temporal shadow map. Each triangle moves during a frame
and for each pixel, it is visible to the light in a range of time. The main idea of our algo-
rithm is to find such visible ranges and store in the temporal shadow map. For each
sample which is visible to the camera at a certain time, we can determine whether it is
shadowed or lit using visible ranges in the temporal shadow map. Thus, our algorithm
solves a time-mismatch problem in the time-dependent shadow mapping algorithm.
Furthermore, we use a coverage map to reduce memory footprint used for the tempo-
ral shadow map.

Keywords:  Real-time rendering, Motion blur, Motion blurred shadows, Visibility

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22
DOI 10.1186/s13673-017-0102-9

*Correspondence:
hmphuoc1985@gmail.com
Soongsil University,
Room 509, 50, Sadang‑ro,
Dongjak‑gu, Seoul 07027,
South Korea

http://orcid.org/0000-0003-2638-1932
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-017-0102-9&domain=pdf

Page 2 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

source in a range of time. For each pixel of a shadow map, we store all visible time ranges
along with depth values of all moving triangles. For a sample which is visible to the
camera, we can determine if it is shadowed at a certain time. Thus, our algorithm ren-
ders motion blurred shadows and solves time mismatch problem in the time-dependent
shadow map algorithm. We further extend our algorithm to reduce the total number of
visible time ranges stored in the temporal shadow map and simplify the shadow tests.

A summary of this paper is as follows: In “Related works”, we briefly review related
works. “Motion blurred shadows rendering” and “Extension” present our algorithm and
its extension, respectively. Finally, we show comparison results, performance and mem-
ory analysis in “Evaluation”.

Related works
Many algorithms are proposed for rendering motion blur and shadows. Therefore, we
refer readers to Navarro et al. [3] and Eisemann et al. [4] for an overview of motion blur
and shadow mapping, respectively.

Haeberli and Akeley [5] render a scene with shadow many times and average the
results to produce blurred images with motion blurred shadows. However, this approach
has ghosting artifacts at low sampling rates. But increasing the sampling rate impacts
performance substantially.

For each pixel in a shadow map, deep shadow map [6] stores a list of semi-transparent
surfaces. The visibility of a surface at a given depth is computed as

∏
pz<zi

(1− αi), where
zi and αi are a depth and an opacity of a surface. To render motion blurred shadows,
authors assign a random time for each sample and all samples at the same depth are
averaged together to an opacity of a surface. Therefore, such surfaces are regarded as
transparent blockers. This approach only works for static receivers. As receiver moves,
the time dimension is collapsed and motion blurred shadows are rendered incorrectly.

Distributed ray tracing [7] renders motion blur and soft shadows by shooting many
rays at a pixel at different times and averaging all visible rays to produce the final image.
But the computation cost of this approach is prohibitive. Akenine-Möller et al. [8] use
the stochastic rasterization to render motion blurred shadows using time-dependent
shadow maps (TSM). This algorithm uses many samples per pixel and each sample has
a random time. As rendering from the light source and from the camera, each sample
has a random time ts and tr, respectively. This algorithm uses the stratified sampling to
ensure that ts and ti belong to the same segment of the exposure interval. The time mis-
match causes visual artifacts. Samples should be lit are shadowed or samples should be
shadowed are lit. Additionally, rendered images have self-shadow artifacts at low sam-
pling rates when geometries move toward the light. Later, this idea is implemented in the
current GPUs by McGuire et al. [9].

Inspiring the idea of Akenine-Möller et al. [8], Andersson et al. [10] render motion
blurred shadows using depth layers. This approach generates time-dependent shadow
maps and then divide into multiple layers using a method described by Andersson et al.
[11]. Subsequently, this approach projects all samples along an average motion vector of
each layer, and performs shadow lookups in this representation. Finally, this approach
uses a statistical method described by Donnelly and Lauritzen [12] to approximate the
visibility of a sample. Therefore, this approach has the same problem with the variance

Page 3 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

shadow map. Apart from that problem, artifacts might occur when samples in the same
layer move in the different directions and speeds. Authors alleviate but not address com-
pletely this problem using a tile-variance approach described by Guertin et al. [13].

Motion blurred shadows rendering
Figure 1 gives an overview of our algorithm. Our algorithm composes of two passes: a
shadow pass and a lighting pass. First, we present our main idea and describe the details of
the shadow pass in “Shadow pass”. Later, we describe the lighting pass in “Lighting pass”.
Throughout the presentation, we use the term triangle, but it can naturally extend to a gen-
eral geometry which might have animation data defined by Myeong-Won et al. [14].

Shadow pass

We assume a triangle linearly moves from the beginning (t = 0) to the end (t = 1) of a
frame. The position of this triangle at t = 0 and t = 1 is ABC and A′B′C′, respectively. To
generate motion blurred shadows for this triangle, a brute force method renders this tri-
angle many times and averages all rendered images. The goal is to find a visible time range
of this triangle at each pixel and compute an average color along this time range. At the

Fig. 1  The data flow in our algorithm. First, we render all triangles at t = 0 and t = 1 from the light source to
generate a temporal shadow map. For each pixel in the temporal shadow map, we store a list of visible time
ranges along with depth values. In the subsequent pass, we render all triangles from the camera and use the
temporal shadow map to perform the shadow tests at a sample H

Page 4 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

pixel P, this triangle is visible through five intersection points at five times t1, t2, t3, t4, and
t5, in Fig. 2a. From this observation, our main idea is to render this triangle only once and
get a visible time range of this triangle by finding the first and the last intersection points
(F1 and F2) at the first time (t1) and the last time (t5), respectively. So at the pixel P, we can
compute the visible time range of this triangle and know a depth range from F1 to F2.

To implement our main idea, we assign a time to each vertex of two triangles ABC
(t = 0) and A′B′C′ (t = 1). Next, we use ABC and A′B′C′ to form a prism, in Fig. 2b, and
then triangulate this prism. For each pixel, GPU generates two points (F1 and F2), with
each point having an interpolated time and a depth value. These two points form a vis-
ible time range of the triangle which can be computed as |t1 − t5|.

With this main idea, we render a scene from the light to generate a temporal shadow
map. For each pixel in the temporal shadow map, we store a list of tuples with five values
in the form: (t1_t2, z1_z2, id), where (t, z) is an interpolated time, a depth value of a gener-
ated point such as F1. “id” is an id of a triangle in which the current fragment belongs to,
and this triangle id is used to address self-shadow artifacts in the lighting pass.

Lighting pass

In this pass, we use the stochastic rasterization [5] to render a scene from the camera. A
triangle covers a set of pixels when moving from the start (t = 0) to the end (t = 1) of a
frame. We use two positions of this triangle at t = 0 and t = 1 to make a convex hull to
cover all such pixels. There are multi-samples per pixel and each sample has a random
time. To check whether the current sample is visible or not, we shoot a ray from the
camera through the current sample and then perform a ray-triangle intersection. If there
is an intersection, the current sample is visible.

To perform the shadow lookup at a visible sample, we do as follows. First, we project
this sample to the temporal shadow map and load each tuple (t1_t2, z1_z2, id). If the vis-
ible sample’s time (ts) is inside the visible time range [t1, t2], we find a depth value at ts
using the linear interpolation along the depth range [z1, z2] and compare the interpolated

Fig. 2  A triangle moves from the beginning (t = 0) to the end (t = 1) of a frame. At t = 0 and t = 1, this tri-
angle is ABC and A′B′C′, respectively. a A brute force method renders this triangle many times. At the pixel P,
this triangle is visible at times t1, t2, t3, t4, and t5. b Our algorithm renders this triangle only once and then finds
the first (t1) and the last times (t5) when this triangle is visible at the pixel P

Page 5 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

depth with the sample’s depth. Finally, we perform shading and average all samples’ color
in a pixel. To address the self-shadow artifacts in TSM, we check if the current sample
does not belong to the current triangle prior the shadow test.

Extension
In our algorithm, the temporal shadow map consumes a lot of graphics memory by stor-
ing all visible time ranges. In this section, we describe how to use a coverage map to
reduce graphics memory used by the temporal shadow map. The idea of this step is to
find the nearest triangle that continuously covers a pixel in a temporal shadow map,
Fig. 3. Therefore, we do not need to store all visible time ranges at this pixel and thereby
the graphics memory is reduced. The data flow in this extension is shown in Fig. 4.

The first pass

We render all triangles at the start (t = 0) and the end (t = 1) of a frame from the light source
and each triangle is assigned a triangle id. Then, we use two positions (at t = 0 and t = 1)
of each triangle to form a prism, in Fig. 4a. After that, we find the nearest triangle using the
conventional z-buffer and then store a triangle id and time of this triangle to a nearest map.
The nearest map has the same resolution as the temporal shadow map and each pixel of this
map stores two 32-bit floating point values, i.e., one for a triangle id and the other for a time.
In this pass, we use a depth test function (LESS), enable the depth write, and disable the
stencil operations. Note that we only clear a depth map in the first pass.

The second pass

Again, we render all triangles at t = 0 and t = 1 from the light source to find an over-
lap region between two positions of each triangle, Fig. 4b. Such a region denotes an area
where a triangle continuously covers a pixel during a frame. To this end, we use a coverage
map which has the same resolution as the temporal shadow map, and there is a one-to-one

Fig. 3  The key idea of the extension. Many triangles move from the start (t = 0) to the end (t = 1) of a frame.
Left in our algorithm, we store all visible time ranges of each triangle at the pixel K of the temporal shadow
map. At a certain time, t, a sample H is visible to the camera and we need to load each visible sample of each
triangle to perform the shadow tests. Right in the extension, we only store information of the blue triangle at
the pixel K. A highlighted region in the blue triangle denotes an area where this triangle continuously covers
some pixels (including the pixel K) during a time interval of a frame

Page 6 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

correspondence between pixels in the coverage map and pixels in the temporal shadow
map. The coverage map holds a 32-bit floating point value at each pixel. If this value is
“−1”, there is no triangle that continuously covers the current pixel during a time interval
of a frame. Otherwise, this value is a triangle id of a triangle occupying the current pixel
continuously. In this pass, we disable the depth test, enable the depth write. The following
pseudo code shows how to update a value of the coverage map at the current pixel.

Fig. 4  The data flow in the extension. a The first pass of the extension. We render two moving triangles
at t = 0 and t = 1 and then use two positions of each triangle to make a prism. The output of this pass is a
nearest map. b The second pass of the extension. We render these two triangles again at t = 0 and t = 1.
Using the nearest map, we find overlapping pixels between two positions of each triangle and then mark the
overlapping pixels in a coverage map. c The third pass of the extension in the top view. Since the blue triangle
does not continuously cover the yellow pixel, we remove a value stored at this pixel in the coverage map

Coverage_MapSecond_Pass (The current triangle id (id), a �me (t), the
nearest map (NM))

{

(stored_id, stored_t) = NM.Load(the current pixel’s posi�on)

If (id != stored_id)

Discard the current pixel

If (|stored_t – t| < 1)

Discard the current pixel.

Store id to the coverage map at the current pixel’s posi�on.

}

Page 7 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

The third pass

We render all triangles at t = 0 and t = 1 and then use two positions of each triangle at
t = 0 and t = 1 to make a prism. The blue triangle does not continuously covers the yel-
low pixel. Therefore, we need to reset a value of the coverage map to “−1”, Fig. 4c. In this
pass, we use a depth test function (LESS), disable the depth write. The following pseudo
code shows how to perform this pass.

Third_Pass(The current triangle id (id), the coverage map(CM))

{

cover_id = CM.Load(the current pixel’s posi�on)

If (id == cover_id)

 Discard the current pixel and do not change the coverage map.

Reset the coverage map at the current posi�on to “-1”.

}

For a given pixel in the temporal shadow map, we can skip storing the number of visi-
ble time ranges using the coverage map. To do this, we check a value of the coverage map
at the current pixel before storing visible time ranges. If this value is positive, we exit and
do not store any visible time ranges. Otherwise, we insert each visible time range to the
current pixel of temporal shadow map. And the following pseudo code shows how to
perform the shadow tests using the coverage map and the temporal shadow map.

Final_Shadow_Test(A sample posi�on (X), the current triangle id (id), a
�me (t), the coverage map(CM))

{

Y = project X to the light space.

covered_id = CM.Load(Y).

If (covered_id == id) // The triangle cannot cast shadows on itself

The current sample is lit.

If (covered_id > -1)

The current sample is shadowed.

If (covered_id == -1)

Load each visible �me range and perform the shadow tests at t.

}

Page 8 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

Evaluation
Our algorithm is implemented using DirectX 11, HLSL 5.0 with a GTX 980 Ti 6 GB
graphics card. In the shadow pass, we generate and store a temporal shadow map in
graphics memory using a per-pixel linked list described by Barta et al. [15], Burns [16]
and Salvi et al. [17]. In the lighting pass, we use the stochastic rasterization described
by McGuire et al. [5] with a fast ray-triangle intersection [18] and multi-sampling. For
comparisons, we implement a brute force method [3] using 3000 samples to generate
reference images and the time-dependent shadow mapping (TSM) using the stochas-
tic rasterization [5]. In all rendered images, the shadow map used in the TSM have
1024 × 768 resolution.

When geometries animate, their shadows should be blurred as well. Therefore, we ren-
der two scenes having animation characters to compare with TSM in terms of image
quality, in Figs. 5 and 6. Since the quality of blurred shadows is better when increasing
the number of samples per pixel, we also compare with TSM in terms of the rendering
time by varying the number samples per pixel, in Fig. 7.

Our algorithm vs. stochastic rasterization algorithm

Figures 5 and 6 show image quality comparisons between our algorithm and TSM using
multi-sampling with the same number of samples per pixel. Due to a small number of
samples per pixel, images rendered by our algorithm and TSM have noise. However,
images rendered by TSM have visual artifacts (a green highlighted inset in Fig. 5 and

Fig. 5  Image quality comparison between our algorithm (without using the coverage map) and TSM using
the same number of samples per pixel. An image rendered by TSM have self-shadow artifacts (the red high-
lighted inset) and visual artifacts (the green highlighted inset) while ours does not

Fig. 6  Image quality comparison between our algorithm (without using the coverage map) and TSM using
the same number of samples per pixel. Our result image has the similar quality with the reference image,
while TSM has visual artifacts

Page 9 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

a red highlighted inset in Fig. 6) in the shadow areas while ours does not. The reason
for this is that TSM uses two random times, ts and tr, for the same sample. ts and tr are
used when rendering from the light and from the camera, respectively. Time mismatch
results in incorrect shadow tests. Additionally, the red highlighted area in Fig. 5 shows
that TSM has self-shadow artifacts.

Fig. 7  Performance comparisons between our algorithm (without using the coverage map) and TSM by
varying the number of samples per pixel in Figs. 5 and 6. The number of triangles in Figs. 5 and 6 are 268 and
70 k, respectively

Fig. 8  A comparison about the number of visible time ranges stored at each pixel in our algorithm with and
without using the coverage map (CM). The result image is rendered using 4000 cubes that have random posi-
tions and random speeds in [4, 8]. The number of visible time ranges stored at each pixel is visualized as heat
maps. Notice the massive reduction of this number at the bottom-left heat map compared to the bottom-right
one

Page 10 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

Figure 7 shows the performance comparison between our algorithm and TSM by vary-
ing the number of samples per pixel. As increasing the number samples per pixel, the
rendering time in both algorithms increases. But in the shadow pass, the overhead of
draw calls and state changes in TSM is higher than ours. The reason for this is that the
number of draw calls in TSM is proportional to the number of samples per pixel. For
generating the shadow map, TSM renders a scene many times, while our algorithm ren-
ders the scene once.

Memory and performance

Generally, scenes have a relative high depth complexity which requires more graphics
memory for the temporal shadow map. Therefore, we render a large number of cubes that
have random positions and random moving speeds to evaluate our algorithm in terms of
performance and graphics memory. We do the evaluation in two different scenarios. In
the first scenario, we vary the number of random cubes and each cube’s moving speed
is randomized in a fixed speed range, Figs. 9 and 10. In the second scenario, we increase
the moving speed of each cube, Figs. 11 and 12.

We use the nearest map and the coverage map to reduce the graphics memory used
for the temporal shadow map. Both the nearest map and the coverage map have the
same resolution as the shadow map (1024 × 768). For each pixel, the nearest map stores
two 32-bit floating point values and the coverage map holds a single 32-bit floating point
value. So it requires about 9 MB memory for both maps. The graphics memory used
for the temporal shadow map relies on the number of visible time ranges stored at each
pixel.

Figure 8 illustrates that using the coverage map significantly reduces the total number
of visible time ranges stored in the temporal shadow map. Memory comparisons and

Fig. 9  Memory consumption in our algorithm, with and without using the coverage map (CM), by varying
the number of random cubes. Each cube has a random speed on a range [4, 8]

Page 11 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

performance comparisons are shown from Figs. 9 to 12. Graphics memory used for the
temporal shadow map in our algorithm is varied from low to high when increasing mov-
ing speed of cubes, Figs. 9 and 11. However, using the coverage map massively reduces
the memory footprint while remaining the similar rendering time. The reason for this
is that three geometry rendering passes in the extension take some time to generate the
nearest map and the coverage map.

Fig. 10  Performance comparisons, with and without using the coverage map (CM), by varying the number
of random cubes. Each cube has a random speed on a range [4, 8]

Fig. 11  Memory consumption in our algorithm, with and without using the coverage map (CM), by varying
the moving speed of 5000 cubes. Each cube has a random speed in a random speed range

Page 12 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

Conclusion and future work
We have presented a hybrid algorithm that renders motion blurred shadows efficiently
on GPUs using a coverage map. First, we generate the temporal shadow map which
stores many time ranges at each pixel. Each time range represents a period of time that
a geometry is visible to the light for a given pixel. In the second pass, we use multisam-
pling with each sample has a random time to render motion blur and motion blurred
shadows. For each visible sample, we project to the light space and then load each visible
time range along with depth values to perform the shadow tests. All test results are aver-
aged to produce the final pixel color. We not only reduce the memory footprint but also
simplify the shadow tests using the coverage map.

The current implementation can be optimized using an approach described by Vasi-
lakis and Fudos [19] to allocate memory dynamically every frame if the total number of
visible time ranges changes. This approach allows to store all visible time ranges linearly
in a one-dimensional array instead of a per-pixel linked list. In the future, we would like
to find a method for generating the coverage map in a single rendering pass.

Abbreviations
TSM: time-dependent shadow maps; NM: the nearest map; CM: a coverage map.

Authors’ contributions
The first author mainly contributes to the research. The second author suggests the idea and give discussions. Both
authors read and approved the final manuscript.

Competing interests
Both authors declare that they have no competing interests.

Availability of data and materials
Background in Figs. 5 and 6 are downloaded from Computer Graphics Archive, http://graphics.cs.williams.edu/data. All
data in comparisons are generated from our algorithm.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fig. 12  Performance comparisons, with and without using the coverage map (CM), by varying the moving
speed of 5000 cubes. Each cube has a random speed in a random speed range

http://graphics.cs.williams.edu/data

Page 13 of 13Hong and Oh ﻿Hum. Cent. Comput. Inf. Sci. (2017) 7:22

Received: 15 March 2017 Accepted: 30 May 2017

References
	1.	 ThanhBinh N (2015) Image contour based on context aware in complex wavelet domain. Hum-centric Comput Inf

Sci 5:14
	2.	 Agarwal J, Bedi S (2015) Implementation of hybrid image fusion technique for feature enhancement in medical

diagnosis. Hum-centric Comput Inf Sci 5:14
	3.	 Navarro F, Serón FJ, Gutierrez D (2011) Motion blur rendering: state of the art. Comput Graph Forum 30(1):3–26
	4.	 Eisemann E, Schwarz M, Assarsson U, Wimmer M (2011) Real-time shadows. AK Peters Ltd./CRC Press, Natick
	5.	 Haeberli P, Akeley K (1990) The accumulation buffer: hardware support for high-quality rendering. In: ACM SIG-

GRAPH computer graphics ‘90, vol 24. New York, pp 309–318
	6.	 Lokovic T, Veach E. (2000) Deep shadow maps. In: Proceedings of SIGGRAPH, ACM, pp 385–392
	7.	 Cook RL, Porter T, Carpenter L (1984) Distributed ray tracing. In: ACM SIGGRAPH computer graphics’84, vol 18. pp

137–145
	8.	 Akenine-Möller T, Munkberg J, Hasselgren J (2007) Stochastic rasterization using time-continuous triangles. In:

Graphics hardware, pp 7–16
	9.	 McGuire M, Enderton E, Shirley P, Luebke D (2010) Real-time stochastic rasterization on conventional GPU architec-

tures. In: High performance graphics, pp 173–182
	10.	 Andersson M, Hasselgren J, Munkberg J, Akenine-Möller T (2015) Filtered stochastic shadow mapping using a

layered approach. Comput Graph Forum 34(8):119–129
	11.	 Andersson M, Hasselgren J, Akenine-Möller J (2011) Depth buffer compression for stochastic motion blur rasteriza-

tion. In: High performance graphics, pp 127–134
	12.	 Donnelly W, Lauritzen A (2006) Variance shadow maps. In: Symposium on interactive 3D graphics and games, pp

161–1659
	13.	 Guertin JP, McGuire M, Nowrouzezahrai D (2014) A fast and stable feature-aware motion blur filter. In: High perfor-

mance graphics, pp 51–60
	14.	 Myeong-Won L, Chul-Hee J, Min-Geun L, Brutzman B (2015) Data definition of 3D character modeling and anima-

tion using H-Anim. J Converg 6(2):19–29
	15.	 Barta P, Kovacs B, Szecsi SL, Szirmay-kalos L (2011) Order independent transparency with per-pixel linked lists. In:

Proceedings of CESCG
	16.	 Burns CA (2013) The visibility buffer: a cache-friendly approach to deferred shading. J Comput Graph Tech

2(2):55–69
	17.	 Salvi M, Montgomery J, Lefohn A (2011) Adaptive transparency. In: High performance graphics, pp 119–126
	18.	 Laine S, Karras T (2011) Efficient triangle coverage tests for stochastic rasterization, technical report, NVIDIA
	19.	 Vasilakis A, Fudos I (2012) S-buffer: sparsity-aware multifragment rendering. In: Eurographics conference, pp

101–104

	Efficient motion blurred shadows using a temporal shadow map
	Abstract
	Background
	Related works
	Motion blurred shadows rendering
	Shadow pass
	Lighting pass

	Extension
	The first pass
	The second pass
	The third pass

	Evaluation
	Our algorithm vs. stochastic rasterization algorithm
	Memory and performance

	Conclusion and future work
	Authors’ contributions
	References

