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Background
According to recent research described by ThanhBinh [1], Agarwal and Bedi [2], image 
processing is an important part of modern graphics and motion blur is an essential effect 
in that field. Instead of processing images, we render images with motion blurred shad-
ows. Motion blurred shadow effect enhances the sense of realism experienced by users. 
When a geometry is blurred, its shadows should be blurred as well. However, there are 
few proposed algorithms for rendering motion blurred shadows.

Because the shadow casters, the shadow receivers and the light source can move dur-
ing a frame, motion blurred shadows rendering is a challenging problem in real-time 
rendering. For a given pixel which is visible to the camera at a certain time, it is difficult 
to determine if the current pixel is occluded or not with respect to the light.

A brute force method renders a scene with shadow many times and then aver-
ages the results to produce correct motion blurred shadows. However, this approach 
is extremely slow, so it is not suitable for the real-time rendering. Stochastic sampling 
based approaches use multi-samples per pixel, with each sample has a unique random 
time, to render motion blurred shadows. However, time mismatch when generating and 
sampling a shadow map causes visual artifacts.

Contrary to previous approaches, we seek an approach that finds a range of time when 
each geometry is visible to the light for a given pixel. In this paper, we introduce a novel 
algorithm that renders motion blurred shadows efficiently on GPUs using a temporal 
shadow map. During a frame, at each pixel, each moving triangle is visible to the light 
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source in a range of time. For each pixel of a shadow map, we store all visible time ranges 
along with depth values of all moving triangles. For a sample which is visible to the 
camera, we can determine if it is shadowed at a certain time. Thus, our algorithm ren-
ders motion blurred shadows and solves time mismatch problem in the time-dependent 
shadow map algorithm. We further extend our algorithm to reduce the total number of 
visible time ranges stored in the temporal shadow map and simplify the shadow tests.

A summary of this paper is as follows: In “Related works”, we briefly review related 
works.  “Motion blurred shadows rendering” and  “Extension” present our algorithm and 
its extension, respectively. Finally, we show comparison results, performance and mem-
ory analysis in  “Evaluation”.

Related works
Many algorithms are proposed for rendering motion blur and shadows. Therefore, we 
refer readers to Navarro et al. [3] and Eisemann et al. [4] for an overview of motion blur 
and shadow mapping, respectively.

Haeberli and Akeley [5] render a scene with shadow many times and average the 
results to produce blurred images with motion blurred shadows. However, this approach 
has ghosting artifacts at low sampling rates. But increasing the sampling rate impacts 
performance substantially.

For each pixel in a shadow map, deep shadow map [6] stores a list of semi-transparent 
surfaces. The visibility of a surface at a given depth is computed as 

∏
pz<zi

(1− αi), where 
zi and αi are a depth and an opacity of a surface. To render motion blurred shadows, 
authors assign a random time for each sample and all samples at the same depth are 
averaged together to an opacity of a surface. Therefore, such surfaces are regarded as 
transparent blockers. This approach only works for static receivers. As receiver moves, 
the time dimension is collapsed and motion blurred shadows are rendered incorrectly.

Distributed ray tracing [7] renders motion blur and soft shadows by shooting many 
rays at a pixel at different times and averaging all visible rays to produce the final image. 
But the computation cost of this approach is prohibitive. Akenine-Möller et al. [8] use 
the stochastic rasterization to render motion blurred shadows using time-dependent 
shadow maps (TSM). This algorithm uses many samples per pixel and each sample has 
a random time. As rendering from the light source and from the camera, each sample 
has a random time ts and tr, respectively. This algorithm uses the stratified sampling to 
ensure that ts and ti belong to the same segment of the exposure interval. The time mis-
match causes visual artifacts. Samples should be lit are shadowed or samples should be 
shadowed are lit. Additionally, rendered images have self-shadow artifacts at low sam-
pling rates when geometries move toward the light. Later, this idea is implemented in the 
current GPUs by McGuire et al. [9].

Inspiring the idea of Akenine-Möller et  al. [8], Andersson et  al. [10] render motion 
blurred shadows using depth layers. This approach generates time-dependent shadow 
maps and then divide into multiple layers using a method described by Andersson et al.
[11]. Subsequently, this approach projects all samples along an average motion vector of 
each layer, and performs shadow lookups in this representation. Finally, this approach 
uses a statistical method described by Donnelly and Lauritzen [12] to approximate the 
visibility of a sample. Therefore, this approach has the same problem with the variance 
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shadow map. Apart from that problem, artifacts might occur when samples in the same 
layer move in the different directions and speeds. Authors alleviate but not address com-
pletely this problem using a tile-variance approach described by Guertin et al. [13].

Motion blurred shadows rendering
Figure  1 gives an overview of our algorithm. Our algorithm composes of two passes: a 
shadow pass and a lighting pass. First, we present our main idea and describe the details of 
the shadow pass in “Shadow pass”. Later, we describe the lighting pass in  “Lighting pass”. 
Throughout the presentation, we use the term triangle, but it can naturally extend to a gen-
eral geometry which might have animation data defined by Myeong-Won et al. [14].

Shadow pass

We assume a triangle linearly moves from the beginning (t = 0) to the end (t = 1) of a 
frame. The position of this triangle at t = 0 and t = 1 is ABC and A′B′C′, respectively. To 
generate motion blurred shadows for this triangle, a brute force method renders this tri-
angle many times and averages all rendered images. The goal is to find a visible time range 
of this triangle at each pixel and compute an average color along this time range. At the 

Fig. 1  The data flow in our algorithm. First, we render all triangles at t = 0 and t = 1 from the light source to 
generate a temporal shadow map. For each pixel in the temporal shadow map, we store a list of visible time 
ranges along with depth values. In the subsequent pass, we render all triangles from the camera and use the 
temporal shadow map to perform the shadow tests at a sample H
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pixel P, this triangle is visible through five intersection points at five times t1, t2, t3, t4, and 
t5, in Fig. 2a. From this observation, our main idea is to render this triangle only once and 
get a visible time range of this triangle by finding the first and the last intersection points 
(F1 and F2) at the first time (t1) and the last time (t5), respectively. So at the pixel P, we can 
compute the visible time range of this triangle and know a depth range from F1 to F2.

To implement our main idea, we assign a time to each vertex of two triangles ABC 
(t = 0) and A′B′C′ (t = 1). Next, we use ABC and A′B′C′ to form a prism, in Fig. 2b, and 
then triangulate this prism. For each pixel, GPU generates two points (F1 and F2), with 
each point having an interpolated time and a depth value. These two points form a vis-
ible time range of the triangle which can be computed as |t1 − t5|.

With this main idea, we render a scene from the light to generate a temporal shadow 
map. For each pixel in the temporal shadow map, we store a list of tuples with five values 
in the form: (t1_t2, z1_z2, id), where (t, z) is an interpolated time, a depth value of a gener-
ated point such as F1. “id” is an id of a triangle in which the current fragment belongs to, 
and this triangle id is used to address self-shadow artifacts in the lighting pass.

Lighting pass

In this pass, we use the stochastic rasterization [5] to render a scene from the camera. A 
triangle covers a set of pixels when moving from the start (t = 0) to the end (t = 1) of a 
frame. We use two positions of this triangle at t = 0 and t = 1 to make a convex hull to 
cover all such pixels. There are multi-samples per pixel and each sample has a random 
time. To check whether the current sample is visible or not, we shoot a ray from the 
camera through the current sample and then perform a ray-triangle intersection. If there 
is an intersection, the current sample is visible.

To perform the shadow lookup at a visible sample, we do as follows. First, we project 
this sample to the temporal shadow map and load each tuple (t1_t2, z1_z2, id). If the vis-
ible sample’s time (ts) is inside the visible time range [t1, t2], we find a depth value at ts 
using the linear interpolation along the depth range [z1, z2] and compare the interpolated 

Fig. 2  A triangle moves from the beginning (t = 0) to the end (t = 1) of a frame. At t = 0 and t = 1, this tri-
angle is ABC and A′B′C′, respectively. a A brute force method renders this triangle many times. At the pixel P, 
this triangle is visible at times t1, t2, t3, t4, and t5. b Our algorithm renders this triangle only once and then finds 
the first (t1) and the last times (t5) when this triangle is visible at the pixel P
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depth with the sample’s depth. Finally, we perform shading and average all samples’ color 
in a pixel. To address the self-shadow artifacts in TSM, we check if the current sample 
does not belong to the current triangle prior the shadow test.

Extension
In our algorithm, the temporal shadow map consumes a lot of graphics memory by stor-
ing all visible time ranges. In this section, we describe how to use a coverage map to 
reduce graphics memory used by the temporal shadow map. The idea of this step is to 
find the nearest triangle that continuously covers a pixel in a temporal shadow map, 
Fig. 3. Therefore, we do not need to store all visible time ranges at this pixel and thereby 
the graphics memory is reduced. The data flow in this extension is shown in Fig. 4.

The first pass

We render all triangles at the start (t = 0) and the end (t = 1) of a frame from the light source 
and each triangle is assigned a triangle id. Then, we use two positions (at t = 0 and t = 1) 
of each triangle to form a prism, in Fig. 4a. After that, we find the nearest triangle using the 
conventional z-buffer and then store a triangle id and time of this triangle to a nearest map. 
The nearest map has the same resolution as the temporal shadow map and each pixel of this 
map stores two 32-bit floating point values, i.e., one for a triangle id and the other for a time. 
In this pass, we use a depth test function (LESS), enable the depth write, and disable the 
stencil operations. Note that we only clear a depth map in the first pass.

The second pass

Again, we render all triangles at t =  0 and t =  1 from the light source to find an over-
lap region between two positions of each triangle, Fig. 4b. Such a region denotes an area 
where a triangle continuously covers a pixel during a frame. To this end, we use a coverage 
map which has the same resolution as the temporal shadow map, and there is a one-to-one 

Fig. 3  The key idea of the extension. Many triangles move from the start (t = 0) to the end (t = 1) of a frame. 
Left in our algorithm, we store all visible time ranges of each triangle at the pixel K of the temporal shadow 
map. At a certain time, t, a sample H is visible to the camera and we need to load each visible sample of each 
triangle to perform the shadow tests. Right in the extension, we only store information of the blue triangle at 
the pixel K. A highlighted region in the blue triangle denotes an area where this triangle continuously covers 
some pixels (including the pixel K) during a time interval of a frame
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correspondence between pixels in the coverage map and pixels in the temporal shadow 
map. The coverage map holds a 32-bit floating point value at each pixel. If this value is 
“−1”, there is no triangle that continuously covers the current pixel during a time interval 
of a frame. Otherwise, this value is a triangle id of a triangle occupying the current pixel 
continuously. In this pass, we disable the depth test, enable the depth write. The following 
pseudo code shows how to update a value of the coverage map at the current pixel.

Fig. 4  The data flow in the extension. a The first pass of the extension. We render two moving triangles 
at t = 0 and t = 1 and then use two positions of each triangle to make a prism. The output of this pass is a 
nearest map. b The second pass of the extension. We render these two triangles again at t = 0 and t = 1. 
Using the nearest map, we find overlapping pixels between two positions of each triangle and then mark the 
overlapping pixels in a coverage map. c The third pass of the extension in the top view. Since the blue triangle 
does not continuously cover the yellow pixel, we remove a value stored at this pixel in the coverage map

Coverage_MapSecond_Pass ( The current triangle id (id), a �me (t), the 
nearest map (NM))

{

(stored_id, stored_t) = NM.Load(the current pixel’s posi�on)

If (id != stored_id) 

Discard the current pixel

If (|stored_t – t| < 1)

Discard the current pixel.

Store id to the coverage map at the current pixel’s posi�on.

}
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The third pass

We render all triangles at t = 0 and t = 1 and then use two positions of each triangle at 
t = 0 and t = 1 to make a prism. The blue triangle does not continuously covers the yel-
low pixel. Therefore, we need to reset a value of the coverage map to “−1”, Fig. 4c. In this 
pass, we use a depth test function (LESS), disable the depth write. The following pseudo 
code shows how to perform this pass.

Third_Pass( The current triangle id (id), the coverage map(CM)) 

{ 

cover_id = CM.Load(the current pixel’s posi�on) 

If (id == cover_id) 

 Discard the current pixel and do not change the coverage map. 

Reset the coverage map at the current posi�on to “-1”. 

} 

For a given pixel in the temporal shadow map, we can skip storing the number of visi-
ble time ranges using the coverage map. To do this, we check a value of the coverage map 
at the current pixel before storing visible time ranges. If this value is positive, we exit and 
do not store any visible time ranges. Otherwise, we insert each visible time range to the 
current pixel of temporal shadow map. And the following pseudo code shows how to 
perform the shadow tests using the coverage map and the temporal shadow map.

Final_Shadow_Test( A sample posi�on (X), the current triangle id (id), a 
�me (t), the coverage map(CM))

{

Y = project X to the light space.

covered_id = CM.Load(Y). 

If (covered_id == id) // The triangle cannot cast shadows on itself

The current sample is lit.

If (covered_id > -1)

The current sample is shadowed.

If (covered_id == -1)

Load each visible �me range and perform the shadow tests at t.

}
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Evaluation
Our algorithm is implemented using DirectX 11, HLSL 5.0 with a GTX 980 Ti 6  GB 
graphics card. In the shadow pass, we generate and store a temporal shadow map in 
graphics memory using a per-pixel linked list described by Barta et al. [15], Burns [16] 
and Salvi et al. [17]. In the lighting pass, we use the stochastic rasterization described 
by McGuire et al. [5] with a fast ray-triangle intersection [18] and multi-sampling. For 
comparisons, we implement a brute force method [3] using 3000 samples to generate 
reference images and the time-dependent shadow mapping (TSM) using the stochas-
tic rasterization [5]. In all rendered images, the shadow map used in the TSM have 
1024 × 768 resolution.

When geometries animate, their shadows should be blurred as well. Therefore, we ren-
der two scenes having animation characters to compare with TSM in terms of image 
quality, in Figs. 5 and 6. Since the quality of blurred shadows is better when increasing 
the number of samples per pixel, we also compare with TSM in terms of the rendering 
time by varying the number samples per pixel, in Fig. 7.

Our algorithm vs. stochastic rasterization algorithm

Figures 5 and 6 show image quality comparisons between our algorithm and TSM using 
multi-sampling with the same number of samples per pixel. Due to a small number of 
samples per pixel, images rendered by our algorithm and TSM have noise. However, 
images rendered by TSM have visual artifacts (a green highlighted inset in Fig.  5 and 

Fig. 5  Image quality comparison between our algorithm (without using the coverage map) and TSM using 
the same number of samples per pixel. An image rendered by TSM have self-shadow artifacts (the red high-
lighted inset) and visual artifacts (the green highlighted inset) while ours does not

Fig. 6  Image quality comparison between our algorithm (without using the coverage map) and TSM using 
the same number of samples per pixel. Our result image has the similar quality with the reference image, 
while TSM has visual artifacts
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a red highlighted inset in Fig. 6) in the shadow areas while ours does not. The reason 
for this is that TSM uses two random times, ts and tr, for the same sample. ts and tr are 
used when rendering from the light and from the camera, respectively. Time mismatch 
results in incorrect shadow tests. Additionally, the red highlighted area in Fig. 5 shows 
that TSM has self-shadow artifacts.

Fig. 7  Performance comparisons between our algorithm (without using the coverage map) and TSM by 
varying the number of samples per pixel in Figs. 5 and 6. The number of triangles in Figs. 5 and 6 are 268 and 
70 k, respectively

Fig. 8  A comparison about the number of visible time ranges stored at each pixel in our algorithm with and 
without using the coverage map (CM). The result image is rendered using 4000 cubes that have random posi-
tions and random speeds in [4, 8]. The number of visible time ranges stored at each pixel is visualized as heat 
maps. Notice the massive reduction of this number at the bottom-left heat map compared to the bottom-right 
one
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Figure 7 shows the performance comparison between our algorithm and TSM by vary-
ing the number of samples per pixel. As increasing the number samples per pixel, the 
rendering time in both algorithms increases. But in the shadow pass, the overhead of 
draw calls and state changes in TSM is higher than ours. The reason for this is that the 
number of draw calls in TSM is proportional to the number of samples per pixel. For 
generating the shadow map, TSM renders a scene many times, while our algorithm ren-
ders the scene once.

Memory and performance

Generally, scenes have a relative high depth complexity which requires more graphics 
memory for the temporal shadow map. Therefore, we render a large number of cubes that 
have random positions and random moving speeds to evaluate our algorithm in terms of 
performance and graphics memory. We do the evaluation in two different scenarios. In 
the first scenario, we vary the number of random cubes and each cube’s moving speed 
is randomized in a fixed speed range, Figs. 9 and 10. In the second scenario, we increase 
the moving speed of each cube, Figs. 11 and 12.

We use the nearest map and the coverage map to reduce the graphics memory used 
for the temporal shadow map. Both the nearest map and the coverage map have the 
same resolution as the shadow map (1024 × 768). For each pixel, the nearest map stores 
two 32-bit floating point values and the coverage map holds a single 32-bit floating point 
value. So it requires about 9  MB memory for both maps. The graphics memory used 
for the temporal shadow map relies on the number of visible time ranges stored at each 
pixel.

Figure 8 illustrates that using the coverage map significantly reduces the total number 
of visible time ranges stored in the temporal shadow map. Memory comparisons and 

Fig. 9  Memory consumption in our algorithm, with and without using the coverage map (CM), by varying 
the number of random cubes. Each cube has a random speed on a range [4, 8]
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performance comparisons are shown from Figs. 9 to 12. Graphics memory used for the 
temporal shadow map in our algorithm is varied from low to high when increasing mov-
ing speed of cubes, Figs. 9 and 11. However, using the coverage map massively reduces 
the memory footprint while remaining the similar rendering time. The reason for this 
is that three geometry rendering passes in the extension take some time to generate the 
nearest map and the coverage map.

Fig. 10  Performance comparisons, with and without using the coverage map (CM), by varying the number 
of random cubes. Each cube has a random speed on a range [4, 8]

Fig. 11  Memory consumption in our algorithm, with and without using the coverage map (CM), by varying 
the moving speed of 5000 cubes. Each cube has a random speed in a random speed range
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Conclusion and future work
We have presented a hybrid algorithm that renders motion blurred shadows efficiently 
on GPUs using a coverage map. First, we generate the temporal shadow map which 
stores many time ranges at each pixel. Each time range represents a period of time that 
a geometry is visible to the light for a given pixel. In the second pass, we use multisam-
pling with each sample has a random time to render motion blur and motion blurred 
shadows. For each visible sample, we project to the light space and then load each visible 
time range along with depth values to perform the shadow tests. All test results are aver-
aged to produce the final pixel color. We not only reduce the memory footprint but also 
simplify the shadow tests using the coverage map.

The current implementation can be optimized using an approach described by Vasi-
lakis and Fudos [19] to allocate memory dynamically every frame if the total number of 
visible time ranges changes. This approach allows to store all visible time ranges linearly 
in a one-dimensional array instead of a per-pixel linked list. In the future, we would like 
to find a method for generating the coverage map in a single rendering pass.
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