
Graph clustering‑based discretization
of splitting and merging methods (GraphS
and GraphM)
Kittakorn Sriwanna*, Tossapon Boongoen and Natthakan Iam‑On

Background
Discretization is a data reduction preprocessing technique in data mining. It transforms
a numeric or continuous attribute to a nominal or categorical attribute by replacing
the raw values of a continuous attribute with non-overlapping interval labels (e.g., 0–5,
6–10, etc.). Different data mining algorithms are designed to handle different data types.
Some are designed to handle only either numerical data or nominal data, while some can
cope with both. Because real datasets are always a combination of numeric and nominal
vales, for an algorithm that only takes nominal data, numerical attributes need to be dis-
cretized into nominal attributes before the learning algorithm. After discretization, the
subsequence mining process may be more efficient as the data is reduced and simplified
resulting in more noticeable patterns [1–3]. Moreover, discretization is also expected to
improve the predictive accuracy for classification [4] and Label Ranking [5].

Abstract 

Discretization plays a major role as a data preprocessing technique used in machine
learning and data mining. Recent studies have focused on multivariate discretiza‑
tion that considers relations among attributes. The general goal of this method is to
obtain the discrete data, which preserves most of the semantics exhibited by original
continuous data. However, many techniques generate the final discrete data that may
be less useful with natural groups of data not being maintained. This paper presents a
novel graph clustering-based discretization algorithm that encodes different similarity
measures into a graph representation of the examined data. The intuition allows more
refined data-wise relations to be obtained and used with the effective graph cluster‑
ing technique based on normalized association to discover nature graphs accurately.
The goodness of this approach is empirically demonstrated over 30 standard datasets
and 20 imbalanced datasets, compared with 11 well-known discretization algorithms
using 4 classifiers. The results suggest the new approach is able to preserve the natural
groups and usually achieve the efficiency in terms of classifier performance, and the
desired number of intervals than the comparative methods.

Keywords:  Multivariate discretization, Graph clustering, Normalized cuts, Normalized
association, Data mining

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21
DOI 10.1186/s13673-017-0103-8

*Correspondence:
kittakorn.sri@gmail.com
School of Information
Technology, Mae Fah Luang
University, Phahon Yothin
Road, Muang, Chiang
Rai 57100, Thailand

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-017-0103-8&domain=pdf

Page 2 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Two main goals of discretization are to find the best intervals or the best cut points1
and to find the finite number of intervals or the number of cut points that are better
adapted to the learning. Therefore, modelling a discretization requires the development
of the following two subjects. First, discretization criterion is the criterion made for
choosing the best cut points in order to split a set of distinct numeric value into intervals
(Splitting, Top–Down methods) or merge a pair of adjacent intervals (Merging, Bot-
tom–Up methods). Second, stopping criterion is a criterion for stopping the discretiza-
tion process in order to yield the finite number of intervals.

The process of discretization typically consists of 3 main steps that are sorting attrib-
ute values, finding the cut-point model or discretization scheme of the attributes by iter-
ative splitting or merging, and finally, assigning each value in the attribute with a discrete
label corresponding to the interval it falls into. Hence, the number of intervals obtained
for attributes under question may be different depending on the number of possible cut
points, the relation with the target class, for instance.

Discretization techniques can be classified in several different ways, such as supervised
versus unsupervised, univariate versus multivariate, splitting versus merging, direct ver-
sus incremental, and more [6–9]. Supervised methods consider the class information,
whereas unsupervised ones do not consider the class information. Splitting algorithms
start from one interval and recursively select the best cut point to split the instances into
two intervals, while merging methods begin with the set of single value intervals and
iteratively merge adjacent intervals. The univariate category discretizes each attribute
independently without considering its relationship between other attributes. However,
multivariate methods also consider other attributes to determine the best cut points.
Direct techniques require inputting the number of intervals supplied by the user. Exam-
ple of this type of methods are equal-width and equal-frequency discretization algo-
rithms [10]. The number of intervals is equal for all attributes in these algorithms. In
contrast, incremental methods do not require the number of intervals, but they require
the stopping criterion to stop the discretization process in order to yield the best num-
ber of intervals of each attribute.

Most discretization algorithms proposed in the past were univariate methods [3]. Chi-
Merge [11], Chi2 [12], Modified Chi2 [13], and area-based [14] are examples of univari-
ate, supervised, incremental and merging methods. They use statistic-based algorithms
to determine the similarity of adjacent intervals. They divide the instances into intervals
and then merge adjacent intervals based on χ2 distribution. CAIM [15], ur-CAIM [16],
and CADD [17] are univariate, supervised, incremental and splitting methods. These
algorithms use class-attribute interdependence information as the discretization crite-
rion for the optimal discretization with a greedy approach, by finding locally maximum
values of the criterion. Ent-MDLP [18], D-2 [19], and FEBFP [20], which are univariate,
supervised, incremental and splitting methods, recursively select the best cut points to
partition the instances based on the class information entropy [10]. PKID and FFD [21]
are univariate and unsupervised methods that maintain discretization bias and variance
by tuning the interval frequency and the interval numbers, especially used with Naive-
Bayes classifier.

1  A cut point is the midpoints of the adjacent distinct values after sorting the attribute.

Page 3 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

The fact that univariate methods discretize only a single attribute at a time and do not
consider interactions among attribute, may lead to important information loss [3] and
not getting a global optimal result [22]. ICA [22], Cluster-Ent-MDLP [23], HDD [3], and
Cluster-RS-Disc [24] are examples of multivariate discretization methods. ICA, tries to
get a global optimal result by transforming the original attributes to new attribute space
that considers other attributes. Then, it discretizes the new attribute space using the uni-
variate discretization method (Ent-MDLP). Cluster-Ent-MDLP, similar to ICA, finds the
pseudo-class by clustering the original data via k-means [25] and SNN [26] clustering
algorithms and then uses the target class and pseudo-class to discretize using the uni-
variate discretization method (Ent-MDLP). It finds the best cut point by averaging both
entropies that considers the target class and pseudo-class. HDD extends the univari-
ate discretization method (CAIM) by improving the stopping criterion and taking into
account information specific to other attributes. Cluster-RS-Disc attempts to obtain the
natural intervals of attribute values by first partitioning using DBSCAN [27] clustering
algorithm. After that, it discretizes an attribute based on the rough set theory.

Although several multivariate discretization algorithms overcome the drawback of
univariate discretization methods by considering interactions among attributes, there
are some weaknesses. Some of them have made use of cluster labels as a part of dis-
cretization criterion. As a matter of fact, different clustering algorithms or even the
same algorithm with multiple trials may produce different cluster labels. Therefore, it
is extremely difficult for a user to decide the proper algorithm and parameters [28–30].
Despite the reported improvement, some multivariate discretization algorithms such as
EMD [31] do not concentrate the natural group of data. In fact, EMD is an evolutionary
discretization algorithm that defines the fitness function based only on high predictive
accuracy and lower number of intervals. Hence, the identified cut points may damage
the natural group of data.

In order to solve the aforementioned problems, this study presents a novel graph
clustering based algorithm that allows encoding of different similarity measures into
a graph representation of the examined data. Instead of using cluster labels, the pro-
posed method uses the similarity between data pair, which is the weighted combination
between distance and target-class agreement. Each pair of data is formed into graph,
which is then partitioned in order to find the appropriate set of cut-points. The insight-
ful observations and the benefit of graph clustering are present as follows.

In the clustering process, the instances are partitioned into clusters based on their
similarity. Instances in the same cluster are similar to one another and dissimilar to
instances in other clusters [1, 32]. Clustering is a method for recognizing and discov-
ering natural groups of similar elements in a dataset [33, 34]. Recently, clustering with
graphs has been widely studied and become very popular. The method is to treat the
entire clustering problem as a graph problem. The graph vertices are grouped into clus-
ters based on the edge structure and property [35]. Graph clustering algorithms are suit-
able for data that does not comply with a Gaussian or a spherical distribution [36]. They
can be used to detect clusters of any size and shape. Moreover, graph clustering is a very
useful technique for detecting densely connected groups [37]. The goal of graph cluster-
ing is the separation of sparsely connected dense subgraphs from one another based on
various criteria such as vertex connectivity or neighborhood similarity [38].

Page 4 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

The main graph clustering formulations are based on graph cut and partitioning
problems [39, 40]. According to the research of Foggia et al. [36], the performance of
five graph clustering algorithms: fuzzy c-means MST (minimum spanning tree) clus-
tering [41], Markov clustering [34, 42], iterative conductance cutting algorithm [43],
geometric MST clustering [44], and normalized cut clustering [40] are evaluated and
compared. Based on this empirical study, it is confirmed that the normalized cut cluster-
ing provides good performance and appears to be robust across application domains.
The normalized cut criterion avoids any unnatural bias for partitioning out small sets of
points [40]. It is used in many works such as image segmentation and spectral cluster-
ing [45, 46].

With these insightful observations, the paper introduces new discretization algo-
rithms, which exploit graph clustering and the normalized cut criterion. Because the
minimum normalized cut criterion is equivalent to the maximum normalized associa-
tion criterion (see “Measures with clusters” for details), to design the stopping criterion,
this normalize association criterion is chosen in this study. In particular, two new graph
clustering-based techniques, which are splitting method (GraphS) and merging method
(GraphM), are proposed. It is worthwhile to highlight several aspects of the proposed
models here:

• • The proposed discretization algorithms are incremental and multivariate methods.
They find the number of cut points automatically and preserve the natural group of
data by considering the correlation dependence among the attributes.

• • The algorithm encodes information of data under examination as a graph, where the
weight of each edge is evaluated by both natural distance and class similarity. This is
a novel with the capability to address both data-wise relation and class-specific in the
same decision making process.

• • The normalize cut criterion prevents an unnatural bias that partitions out a small set
of points. It helps to avoid acquiring too-small-size intervals with only a few mem-
bers, thus demoting the over-fit problem.

The rest of this paper is organized as follows. “Graph clustering and partitioning prob-
lems” provides the basis of graph clustering as to set the scene for proposed work and
following discussions. In “A novel graph clustering-based approach”, the new algorithms
are presented with related design issues being explained. The performance evaluation is
included in “Performance evaluation”, based on the experiments with a rich collection of
benchmark data. The paper is concluded in “Conclusion”, with possible future work.

Graph clustering and partitioning problems
In this paper, the undirected weighted graph with no self-loops and global graph cluster-
ing are focused. Global graph clustering assigns all of the vertices to a cluster, whereas
local graph clustering only assigns a certain subset of vertices [35]. In brief, the reviews
in this section are on these two types of undirected weighed and global graph clustering.

Throughout this paper, let G = (V ,E,ω) be an undirected graph, V = {v1, . . . , vn} is a
set of vertices and the number of vertices n = |V |, where each vertex vi represents a data
point xi, and E = {(u, v) | u, v ∈ V } is a set of edges and the number of edges m = |E|,

Page 5 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

where ω(u, v) is the positive weighting of the edges. Let the set of partitioning or cluster-
ing of G be πk = {C1, . . . ,Ck}, where Ci is a cluster in k sub-clusters.

Clustering measures

Measure with vertices

This type of measures is based on similarities or distances of the object pairs. They are
used to apply to many areas such as pattern recognition, information retrieval, and clus-
tering [47]. The common distance measures that are used in clustering are Euclidean and
Manhattan distance [48].

Euclidean distance It simply is a geometric distance in a multidimensional space. It is a
multivariate extension of the Pythagorean distance between two points. The formula for
this distance between data points u(u1, . . . ,ud) and v(v1, . . . , vd .) with d dimensions is
shown in the Eq. 1.

Manhattan distance It is also called the City-block distance, Rectilinear distance, and
Taxicab norm. The result of this distance is the distance similar to Euclidean distance.
However, the effect of outliers is dampened because they are not taking the square
root [49]. The distance is computed as the Eq. 2.

Measures with clusters

Graph clustering is dividing a graph into groups (cluster, subgraph) that vertices highly
connect in the same group [50]. To compare the quality of a given cluster C, the cluster
fitness measure (quality function) or indices for graph clustering [33, 44, 51] are used [35,
52]. This study categorizes the clustering indices into two groups: density measures, and
cut-based measures.

Density measures In the wrok of Görke et al. [53], many density measures such as
intracluster density, intercluster density, intercluster conductance, and modularity are
examined. These measures are used for unweighed graphs. They compute with number
of vertices and edges in a cluster and another clusters. Brandes et al. [44] proposed the
coverage of the graph clustering based on the number of intra-cluster edges and inter-
cluster edges as shown in Eq. 3, where m(Ci,Ci) and m(Ci, C̄i) are the numbers of intra-
edges and inter-edges in the cluster Ci respectively. Those edges are shown in Fig. 1. A
large value of coverage indicates the better quality.

Cut-based measures In undirected weighted graphs, graph-cut techniques such as
ratio cut [54], min–max cut [55], and normalized cut [40] are mostly used to solve graph

(1)distE(u, v) =

√

√

√

√

d
∑

i=1

(ui − vi)2

(2)distM(u, v) =

d
∑

i=1

|ui − vi|

(3)coverage(Ci) =
m(Ci,Ci)

m(Ci,Ci)+m(Ci, C̄i)

Page 6 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

partitioning problem, which are ones of the main keys to graph clustering algorithms.
Those measures are formulated in Eqs. 4, 5, and 6 respectively, where ω(Ci,Ci) and
ω(Ci, C̄i) are the sum of weighted edges of inter-cluster edges and intra-cluster edges of
Ci, respectively; n(Ci) is the number of vertices in the cluster Ci.

The smallest value of these criteria indicates a better quality of partitioning. Normalized
cut avoids unnaturally partitioning out any too small set of vertices by taking the frac-
tion out of the total weighted edges connected to all nodes in the graph. On the other
hand, instead of considering the minimum cut among the clusters, partitioning can be
done based on the maximum connection, called normalized association, as defined in
Eq. 7. In addition, normalized association can define as Eq. 8.

provided that

(4)Ratio Cut(πk) =

k
∑

i=1

ω(Ci, C̄i)

n(Ci)

(5)MinMax Cut(πk) =

k
∑

i=1

ω(Ci, C̄i)

ω(Ci,Ci)

(6)NCut(πk) =

k
∑

i=1

ω(Ci, C̄i)

ω(Ci,Ci)+ ω(Ci, C̄i)

(7)NAsso(πk) =

k
∑

i=1

ω(Ci,Ci)

ω(Ci,Ci)+ ω(Ci, C̄i)

(8)NAsso(πk) = NAsso(C1)+ NAsso(C2)+ · · · + NAsso(Ck)

(9)NAsso(Ci) =
ω(Ci,Ci)

ω(Ci,Ci)+ ω(Ci, C̄i)

Ci

Ci

Ci

Fig. 1  Inter and intra cluster edges. The example of inter-cluster and intra-cluster edges of Ci, the dashed lines
are the inter-cluster edges and the solid lines in cluster Ci are the intra-cluster edges

Page 7 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

The minimum NCut and the maximum NAsso are equivalent and naturally related as
NAsso(πk) = k − NCut(πk). In the authors’ observation, the coverage(Ci) is similar to
NAsso(Ci), which changes the number of edges to the sum of weighted edges as demon-
strated in [33].

Global graph clustering

The problem of global graph clustering is a dividing or grouping each vertex in the graph
into clusters of predefined size, such that vertices in the same cluster are highly related
and less related with vertices in the other clusters. The main clustering problem is NP-
hard; therefore, the algorithms selected are approximation algorithm, heuristic algo-
rithm, or greedy algorithm [35] so that the computation time is reduced.

Spectral clustering

The main tool for spectral clustering is the Laplacian matrices technique [56]. The algo-
rithm transforms the affinity matrix (similarity matrix) into Laplacian matrix of the
graph and then finds the eigenvector and eigenvalue from the matrix. Each row of eigen-
vector represents a vertex (data point). The final stage is clustering or partitioning of
those vertices by recursive two-way (bipartition) or direct k-way [39].

The unnormalized k-means algorithm [57] is an example of direct k-way clustering. It
clusters the vertices using k-mean algorithm with the number of desired clusters. The
two-way normalized spectral clustering (2NSC) and k-way normalized spectral cluster-
ing (KNSC) algorithms are proposed by [40] to solve the generalized eigenvalue system
using NCut criterion. 2NSC is a recusive two-way clustering that the number of clusters
is controlled directly by the maximum allowed NCut value, whereas KNSC is direct k-
way clustering based on k-mean algorithm.

Markov chains and random walks

The Markov cluster algorithm (MCL) [34] finds the cluster structure in the form of
graphs using the mathematical bootstrapping procedure. The main idea of MCL is to
simulate the flow within a graph, promote the flow where the current is strong and
demote the flow where the current is weak. If there is any natural group in the graph, the
current across between groups will wither away. The algorithm also simulates random
walks within a graph, starting from a vertex and randomly travelling to another vertex
that connected with many steps. Travelling within the same cluster is more likely than
across the other cluster.

A novel graph clustering‑based approach
This section introduces a new graph clustering-based approach to discretization
problems. Figure 2 summarizes the entire process of the proposed framework, which
includes three main steps: (1) create the affinity matrix using the pairwise distances
and class similarity, (2) create discretization schemes, and (3) discretize the datasets by
applying the discretization schemes.

This approach is based on the intuition of representing data points as a graph, find-
ing cut point models of numeric attributes based on graph clustering, and transform-
ing numeric to nominal data. Given the Toy dataset as shown in Fig. 3a, the graphical

Page 8 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

representation of this dataset is demonstrated in Fig. 3b. It assigns the weight of each
edge between each pair of the data points based on similarity, which both target class
and distance are considered. If the data points of the pair are close and in the same class,
the edge will have a high score. This scoring is stored in the affinity matrix (see “Pairwise
affinity matrix” for details). After that, graph clustering is used to find the best cut point
that cuts the minimum weighted edge as shown in Fig. 3c, where vertical and horizontal
dashed lines are the best cut points that cut minimum weighted edges of attributes A1
and A2, respectively (see “Graph clustering-based discretization algorithm” for details).

Fig. 2  Proposed framework. The framework of the graph clustering-based discretization. A graph clustering-
based algorithm first creates the affinity matrix to represent a graph; then, generates a discretization scheme
of each numeric attribute. Finally, the numeric attributes are transformed into the nominal attributes by
applying the dicretization schemes

a b

c
Fig. 3  Graph representation of data points. Example of a the scatter plot of the toy dataset, b the proposed
graph representation of data points, and c the cut point selections that cut the minimum weighted edges.
Note that, white and black circlets represent a different class

Page 9 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Pairwise affinity matrix

The pairwise affinity matrix (AF matrix) is an n× n matrix that contains the similarity
scores of the pair of data points, where a high score means the pair has high similarity.
In this study, the graph is represented by an AF matrix. The distance and class similar-
ity values of the pair are considered for scoring in order to find the similarity. Before
scoring, each value of the data points xi in the numeric attribute Aj, valij is the rescaled
(normalized) between 0 and 1 in order to give all attributes the same treatment as shown
in Eq. 10, where val∗ij is new rescale value of valij, minAj and maxAj are the minimum and
maximum values of the attribute Aj, respectively.

In this study, the similarity measure, sim(u, v), is proposed as Eq. 11. It contains 2 main
measures. First, simC(u, v) is a class-label measure of a pair of the data points u and v.
Second, the distance measure, based on the Euclidean distance (see Eq. 1), adds a frac-
tion of the number of attribute d in the square root in order to normalize the distance to
be between 0 and 1 and subtracts the distances from 1 in order to change to the similar-
ity (small distance values indicates high similarity). In addition, the distance of a pair in
the nominal attribute is set to 1 if the pair has the same value and 0 otherwise.

provided that

The proposed similarity measure considers both the distance and class labels for scoring.
The measure weights those values equally by combining them altogether. Each element
in the AF matrix contains the sim(u, v) value of each data-point pair, and AF ∈ [0, 2]n×n.

Graph clustering‑based discretization algorithm

Typically, the discretization algorithm discretizes attribute one by one. The process con-
sists of three main processes. First, sorting an attribute Ai and finding all the possible
cut points. Second, finding the cut point model of the attribute by iteratively finding the
model one by one until discretization is complete on all of the numeric attribute. Finally,
transforming the numeric attribute to the nominal attribute.

In order to show the difference of the data view of the proposed algorithm, an example
of the Toy dataset shown in Fig. 3 is again considered. The dataset has 2 numeric attrib-
utes, A1 and A2. In order to discretize the attribute A1, the data views of discretization
algorithms are different depending on discretization methods. Figure 4 shows the four
different data points views.

(10)val∗ij =
valij −minAj

maxAj −minAj

(11)sim(u, v) = simC(u, v)+



1−

�

�d
i=1 (ui − vi)2

d



,

(12)simC(u, v) =

{

1 if u and v have the same class label,

0 otherwise

Page 10 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

• • 	 After sorting the attribute A1, discretization algorithm that is unsupervised and uni-
variate method only considers the cut points as shown in Fig. 4a. The algorithm selects
the cut point that all intervals have the similar number of data points or similar length.

• • For discretization algorithm that is the supervised and univariate method, after sort-
ing A1, the algorithm only considers the class labels as shown in Fig. 4b. The algo-
rithm discretized based on the purity class. The data points with the same class label
are grouped. However, this method does not consider other attributes; therefore, it
tends to lose the natural group.

• • The Cluster-Ent-MDLP [23] is an example of supervised and multivariate method.
This type of algorithms includes other attributes into consideration. The data are
clustered and labelled. Then, the algorithm discretizes by considering class labels (see
Fig. 4b for details) and cluster labels (see Fig. 4c for details) together.

• • 	 In the proposed algorithm, the data point view is based on the graph as shown in Fig. 4d.
The vertices represent the data points and the edges’s weights represent the scores of sim-
ilarity of the vertex pairs (see “Pairwise affinity matrix”). As both class and cluster labels
are considered, this data view preserves much more information than the other views.

As the benefit of the data view under graph representation, this paper proposed 2 dis-
cretization algorithms using this data view: spiting and merging methods. The discre-
tization criterion and stopping criterion of these algorithms are based on the NAsso
criterion (see “Measures with clusters” for details). The algorithms attempt to find the
best set of cut points so that the data points in each cluster after partitioning are mostly
similar judging from the weighed edges.

The proposed splitting discretization algorithm

In the basis of splitting methods (top–down methods), all data points are grouped into clus-
ters/intervals. The algorithms add a new cut point to bi-partition the clusters iteratively. The
process stops partition until the number of cut points is satisfied. Similarly, the proposed
splitting discretization bi-partitions the clusters as a tree structure as shown in Fig. 5.

a b

c d
Fig. 4  Four different data point views. The data point views of attribute A1 of Toy dataset, where the vertical
dashed lines are the possible cut points, a the view under unsupervised method, b the view under the class
labels, c the view under the cluster labels, and d the view under the graph representation method. Note that,
white and black circlets represent a different class, square and triangle represent a different cluster, the edge
between the circlets represents the similarity value

Page 11 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

In this proposed top–down algorithm, the discretization criterion of NAsso is used to
consider the best new cut point. This criterion based on the sum of weights of intra-
cluster and inter-cluster. To easily find these values, the order of the pairwise affinity
matrix is used to calculate. Figure 5 is an example of discretization of attribute A1 of the
Toy dataset. The procedures are as follows:

• • Firstly, reorder the pairwise affinity matrix of A1 in ascending as shown in the top
matrix in Fig. 5. The matrix is 10× 10 elements. Each element contains the pair-sim-
ilarity value, which in this example is represented by color, where a dark color indi-
cates high similarity and a light color indicates low similarity.

• • Then, calculate the NAsso values of all possible cut points (vertical dashed-lines). The
example of calculating NAsso value of the cut point 3.5 is shown in the middle pair-
wise affinity matrix. The two square boxes in the matrix are the intra-cluster weights
of 2 partitions. The row outside the box is the inter-cluster weight of the boxed. The
algorithm calculates NAsso values of all 6 cut points and select a cut point at 3.5
according to its highest NAsso values. Then, it bi-partitions a graph into 2 clusters.

• • Finally, iteratively find the new best cut point until the stopping criterion is satisfied.
In the figure, the second cut point is 9 with the highest NAsso value of 1.039. Because
the value does not improve the NAsso value at the previous cut point (cut = 3.5,
NAsso = 1.076), the stopping criterion is stratified and stops at the previous step (see
next paragraph for the details). Hence, attribute A1 has 2 intervals with the cut point
at 3.5.

The proposed stopping criterion is based on the significant improvement of NAsso val-
ues, as the higher NAsso denotes the higher similarity or community of data points in
each cluster. If NAssso value drops or does not significantly improve after partitioning,
it should stop discretization. The proposed stopping criterion is shown in Eq. 13, where
NAsso(πi) and NAsso(πi−1) are NAsso values of the graph partitioning results with the

Fig. 5  GraphS. The affinity matrix and hierarchical tree views of the proposed splitting discretization algo‑
rithm

Page 12 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

set of i and i − 1 clusters, respectively, and β is the significant improvement percent-
age. If the stopping criterion is true, the discretizaton will stop and the result is given as
π∗ = πi−1.

The examples of the trend of NAsso value (average of all numeric attributes) of 4 real
datasets obtained from the benchmark UCI repository [58] of blood, glass, iris, and
yeast are illustrated in Fig. 6. It shows that, for all 4 datasets, when increasing the num-
ber of clusters (number of intervals), the NAsso values drastically increase at the begin-
ning, then slowly increase and finally slowly decrease. To prevent over partitioning at
the slowly increasing of NAsso value, the new NAsso value, NAsso(πi), should be signifi-
cantly better than the previous NAsso value, NAsso(πi−1). This study sets the new NAsso
value should have 1% higher in significance than the previous value i.e., β = 1.01 (see
“Parameter analysis” for details).

The details of the proposed splitting graph clustering-based discretization algorithm is
shown in Fig. 7.

The proposed merging discretization algorithm

In contrast to splitting methods, the basic merging methods (bottom–up methods) start
from many initial clusters. Each initial cluster contains data points that have the same
attribute value. The algorithm iteratively merges the adjacent pair of clusters that the
data points of the pair are most similar until the stopping criterion is met.

The proposed merging discretization algorithm includes 2 main steps. The first step
is creating initial clusters, the data points in the clusters have the same attribute value.
After that, the adjacent initial clusters that are given highest NAsso value after merging
are selected to merge. The algorithm iterates merging the adjacent clusters, one by one
until all of the clusters is grouped into a single cluster (1 interval), its forming is like a
hierarchical tree as shown in Fig. 8. The next step is finding the best set of clusters (π∗)
by examining top-down. This step starts from two intervals. It selects three intervals or
higher intervals if significantly improve the NAsso value.

For demonstrating an example of this process, the Toy dataset is used again as shown
in Fig. 8. In the first step, the initial clusters are created by grouping the data points of
attribute A1 that have the same attribute values and reordered the values in ascend-
ing. The initial clusters have 7 clusters, π7 = {C1,C2, . . . ,C7}. After that, two adjacent

(13)NAsso(πi) < NAsso(πi−1)× β

Fig. 6  Trend of NAsso. The trend of the average NAsso values of 4 datasets: blood, glass, iris, and yeast, as the
number of clusters increases

Page 13 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

clusters that have highest NAsso values are merged until all clusters are grouped into
one cluster (π1). In Fig. 8, the adjacent clusters of the cut point at 1.5, two initial clusters
that contain attribute values of 1 and 2 possess the highest NAsso value, therefore, this
pair is merged first. The adjacent clusters (intervals) are merged further until only one
cluster whose NAsso value is 1 remained. In the second step, the best set of clusters (π∗)
is searched by evaluating the NAsso values top–down. This bottom–up algorithm uses
the stopping criterion as in the top–down algorithm (see Eq. 13). As one can see that, the
set of 3 clusters (π3) separated by the cut point of 9, the NAsso(π3) value is 1.039 that less
than 1.076 of the NAsso(π2) value in the set of 2 clusters, hence π∗ = π2.

The detail of the proposed merging graph clustering-based discretization algorithm is
shown in Fig. 9.

Numeric to nominal transformation

In Fig. 7 (GraphS algorithm) and Fig. 9 (GraphM algorithm), each cluster in π∗ is equal
to the interval, which contains the data point values. The intervals are transformed to
discretization scheme as Eq. 14, where DA is a discretization scheme of attribute A, and
cuti is the result of cut point selection of attribute A.

Fig. 7  GraphS algorithm. Graph clustering-based discretization of Splitting method algorithm

Page 14 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

In the example of attribute A1 of the Toy dataset, the cut point list has only 1 cut point at
3.5. The discretization scheme of the attribute is {(−∞, 3.5], (3.5,+∞]}. In this study, the
numeric values of A1 that are equal or less than 3.5 would be changed to “(inf_3.5]” and

(14)DA = {(−∞, cut1], (cut1, cut2], . . . , (cutk ,+∞)}

Fig. 8  GraphM. The affinity matrix and hierarchical tree views of the proposed merging discretization algo‑
rithm

Fig. 9  GraphM algorithm. Graph clustering-based discretization of Merging method algorithm

Page 15 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

the values that are higher than 3.5 are denoted as “(3.5_inf]”. Each value of the numeric
attribute is transformed to the interval name by checking the condition in the discretiza-
tion scheme.

Performance evaluation
This section presents the performance evaluation of the graph clustering-based
approaches that are splitting approach (GraphS) and merging approach (GraphM). In
order to show the goodness of the proposed approaches that can handle with real world
applications, this study investigated 30 real standard datasets and 20 imbalanced data-
sets. This study evaluates the proposed methods by comparing with 11 discretization
algorithms using 4 classifiers with the objective to evaluate and compare the perfor-
mance of the selected discretization algorithms.

Investigated datasets

The experimental evaluation is conducted on 30 standard datasets and 20 imbalanced
datasets. The standard datasets obtained from the benchmark UCI repository [58] as
summarized in Table 1. The imbalanced datasets achieved from Keel-dataset reposi-
tory [59, 60] as described in Table 2. In these datasets, some datasets have only numeric
attributes and some have both numeric and nominal attributes. Because a small number
of distinct values of a numeric attribute could be ambiguous with the nominal attribute.
In the table, a numeric attribute with no more than two distinct values is regarded as
a nominal attribute. This study also evaluated the Toy dataset (see Fig. 3 for details) in
order to compare the different results of the algorithms of interest.

Experiment design

An experiment is set up to investigate the performance of the proposed algorithms com-
pared to 11 discretization algorithms, which have variously different techniques. For
comparison, 4 classifiers of: C4.5 (j48) [61], K-Nearest Neighbors (KNN) [62], Naive
Bayes (NB) [63], and Support Vector Machine (SVM) [64] classifiers which are in the top
10 algorithm in data mining [65, 66] are examined.

The standard datasets considered are partitioned using the tenfold cross-validation
procedure [67]. Each discretization algorithm performed with pairs of 10 training and 10
testing of each dataset. For the imbalanced datasets, each dataset was separated in five-
fold already, this study evaluates them using fivefold cross-validation procedure.

The performance measures

To evaluate the quality of the discretization algorithms, the following 3 measures are
employed: number of intervals, running time, and predictive accuracy, respectively.

The number of intervals The result of the number of intervals is expected to be a small
number as a large number of intervals may cause the learning to be slow and ineffec-
tive [7, 19], and the small number of intervals is easier to understand. However, too sim-
ple, too small discretization schemes may lead to lose classification performance [16].

Furthermore, this study compared the average number of intervals per attribute of
the discreteization algorithms. Let Du = {du1 , d

u
2 , . . .} be a set of numeric attributes,

NC(dui , rj) be a number of cut points of attribute dui of dataset rj. The average number of

Page 16 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

intervals per attribute of dataset rx, AI(rx) is computed as Eq. 15, where NC(dui , rx)+ 1
is the number of intervals of attribute dui in the dataset rx.

The running times To create a discretization scheme (cut points model), the process of
discretization is done only once with the training dataset. It seems to be an important
evaluation; however, it should not take too long in order to be able to discretize with the
real world dataset, which normally high number of data points.

The predictive accuracy The successful discretization algorithm should perform discre-
tization such that the predictive accuracies are increased or without significant reduc-
tion of predictive accuracy. This study evaluates the classification performance of 30

(15)AI(rx) =
1

|Du|

|Du|
∑

i=1

(

NC(dui , rx)+ 1
)

Table 1  Description of 30 standard datasets

n, number of instances; d, number of attributes; du , number of numeric attributes; do , number of nominal attributes; c,
number of classes

Dataset n d du do c

Australian 690 14 10 4 2

Autos 205 24 14 10 6

Banknote 1372 4 4 0 2

Biodeg 1055 41 38 3 2

Blood 748 4 4 0 2

Bupa 345 6 6 0 2

Cleve 295 13 6 7 2

Column2C 310 6 6 0 2

Column3C 310 6 6 0 3

Ecoli 336 8 5 3 8

Faults 1941 27 25 2 7

Glass 214 9 9 0 6

Haberman 306 3 3 0 2

Hayes 132 5 5 0 3

Heart 270 13 10 3 2

Hepatitis 155 19 6 13 2

ILPD 583 10 9 1 2

Ionosphere 351 34 32 2 2

Iris 150 4 4 0 3

Liver 345 6 6 0 2

Pima 768 8 8 0 2

Seeds 210 7 7 0 3

Segment 2310 19 18 1 7

Sonar 208 60 60 0 2

Tae 151 5 3 2 3

Transfusion 748 4 4 0 2

Vowel 990 13 11 2 11

Wine 178 13 13 0 3

Wisconsin 683 9 9 0 2

Yeast 1484 9 7 2 10

Page 17 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

standard datasets using predictive accuracy. The predictive accuracy results of the data-
set are summarized by the mean of its 10 folds.

AUC Because the predictive accuracy is not a suitable measure for imbalanced data,
this study evaluates 20 imbalanced datasets using AUC (area under the ROC curve) [68,
69]. The AUC is wildly used for classification evaluation for imbalanced data [70, 71],
which measure the diagnostic accuracy of a test. The AUC value lies between 0 and 1,
the higher value is the better average accuracy test. This study summarized AUC results
of 20 imbalanced dataset by the mean of its 5 folds.

Statistical analysis

In this study, the ranking of discretization algorithms is obtained from the Friedman
test [72, 73]. The discretization algorithm that obtains the lowest rank value is the better
performance. Friedman test is non-parametric statistical test for assessing the difference
between several related samples. It gives the mean rank for each discretization algorithm
based on median difference, such that the algorithm with high averaged accuracy may
not be in the first rank. If the Friedman test can show that at least one algorithm is signif-
icantly different from at least another algorithm (using a level of significance α = 0.05 ),
two post-hoc tests of Nemenyi and Holm are used to find the significantly different.

1.	 The Nemenyi post-hoc test [74] is used to find the critical difference (CD). Two algo-
rithms are significantly different if the corresponding average ranks differ by at least
the CD (using 95% confident level).

Table 2  Description of 20 imbalanced datasets

n, number of instances; nmin, number of minority classes; kmin minority class ratio; d number of attributes; du , number of
numeric attributes; do , number of nominal attributes; c, number of classes

Dataset n nmin kmin d du do c

Abalone19 4174 32 0.008 8 7 1 2

Abalone9-18 731 42 0.057 8 7 1 2

Ecoli-0_vs_1 220 77 0.350 7 5 2 2

Ecoli-0-1-3-7_vs_2-6 281 7 0.025 7 5 2 2

Ecoli1 336 77 0.229 7 5 2 2

Ecoli2 336 52 0.155 7 5 2 2

Ecoli3 336 35 0.104 7 5 2 2

Ecoli4 336 20 0.060 7 5 2 2

Glass0 214 70 0.327 9 9 0 2

Glass1 214 76 0.355 9 9 0 2

Glass2 214 17 0.079 9 9 0 2

Glass4 214 13 0.061 9 9 0 2

Glass5 214 9 0.042 9 9 0 2

Page-blocks0 5472 559 0.102 10 10 0 2

Pima 768 268 0.349 8 8 0 2

Segment0 2308 329 0.143 19 18 1 2

Vehicle0 846 199 0.235 18 18 0 2

Vowel0 988 90 0.091 13 11 2 2

Wisconsin 683 239 0.350 9 9 0 2

Yeast-0-5-6-7-9_vs_4 528 51 0.097 8 7 1 2

Page 18 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

2.	 The Holm post-hoc test [75, 76] is used to find the p-value of the post-hoc Holm
(pHolm) of each pair comparison. The discretization algorithm that obtains the lowest
rank value is set as a control algorithm. The control algorithm is compared against
the rest algorithms.

These tests performed with three comparisons of: a ranking of the number of intervals,
ranking of running time, and ranking of classification performances (predictive accuracy
and AUC).

Compared discretization algorithms

In order to properly examine the potential of the proposed discretization algorithms
(GraphS, GraphM), they are evaluated against 11 well-known discretization algorithms.
Those algorithms are Ameva, CAIM, ChiMerge, EMD, FFD, FUSINTER, HDD, MChi2,
PKID, ur-CAIM, and Zeta, which various discretization types as shown in Fig. 10. EMD
and ur-CAIM are recently published which show high classifier’s performance. This
study takes ur-CAIM program that is distributed from the authors ur-CAIM2, EMD pro-
gram is derived from the authors of EMD, and the rest discretization programs are taken
from KEEL software [59, 60]. The programs of GraphS and GraphM are included as an
Additional file 1. The details of comparison algorithms are described as:

Ameva [77] An autonomous discretization algorithm (Ameva) is univariate, supervised
and splitting methods. The discretization criterion of the algorithm based on χ2 values.
There are two objectives of Ameva: maximize the dependency relationship between the
target class and an attribute, and minimize the minimum number of intervals.

CAIM [15] Class-Attribute Interdependence Maximization discretization algorithm
(CAIM) is a splitting method proposed by Kurgan and Cios. The goal of the algorithm
is to find the minimum number of discrete intervals, while minimizing the loss of class-
attribute interdependency for the optimal discretization with a greedy approach. It
iteratively finds the best cut point in order to split into two intervals until the stopping
criterion is satisfied. The algorithm mostly generates discretization schemes that the
number of intervals equal to the number of classes [16, 78].

ChiMerge [11] ChiMerge is a merging method introduced by Kerber. It uses a χ2 val-
ues as a discretization criterion. It divides the instances into intervals of distinct values
and then iteratively merges the best adjacent intervals until the stopping criterion is ful-
filled. The stopping criterion of ChiMerge is related to the χ2−threshold, and in order to
compute the threshold the user must specify the significance level.

EMD [31] The Evolutionary Multivariate Discretizer (EMD) is a multivariate method
based on CHC algorithm [79], the subclass of Genetic algorithm that is one of the pow-
erful search methods. The algorithm defines a fitness function for two objectives of: the
lower classification error (based on C4.5 and NB classifiers) and the lower number of
cut points. A chromosome is encoded as a binary array of the cut-points selection, 1 is
selected and 0 otherwise. The chromosome is encoded for all possible cut-points of con-
tinuous attributes. Therefore, the algorithm requires a lot of time in order to search for
the optimal result, especially in high dimension of data and large number of instances.

2  http://www.uco.es/grupos/kdis/wiki/ur-CAIM.

http://www.uco.es/grupos/kdis/wiki/ur-CAIM

Page 19 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

FFD and PKID [21] These algorithms are unsupervised method proposed by Young
and Webb. The key of the algorithms is to maintain discretization bias and variance by
tuning the interval frequency and the interval numbers, especially used in Naive-Bayes
classier. The fixed frequency discretization (FFD) sets a sufficient interval frequency m,
then discretizes such that all intervals have approximately the same number m of train-
ing instances with adjacent values. The proportional discretization (PKID) sets the inter-
val frequency and the interval number to be proportional to the amount of training data
in order to achieve a low variance and a low bias.

FUSINTER [80] This algorithm is a greedy merging method. It uses the same strategy
as ChiMerge. The main characteristic of the algorithm is that it is based on the sensitiv-
ity measure of the sample size to avoid very thin partitioning. The algorithm first merges
the adjacent intervals that all instances of the intervals are the same target class, and
continues until no improvement is possible or the number of intervals reaches 1. The
user must specify 2 parameters, α and �, which are significance level and variable tuning,
in order to control the performances of the discretization procedure.

HDD [3] HDD extends CAIM by improving the stopping criterion and discretization
by taking other attributes into account (multivariate method). The algorithm considers
the distribution of both target class and continuous attributes. The algorithm divides the
continuous attribute space into a finite number of hypercubes that the objects within
each hypercube belongs to the same decision class. However, the algorithm mostly gen-
erates a large number of intervals and has slow discretization time [16].

MChi2 [13] Modified Chi2 (MChi2) is proposed by Tay and Shen. It is a merging
method using statistic-based (χ2) to determine the similarity of the adjacent intervals.
The algorithm enhances Chi2 algorithm [12] by making the discretization process com-
pletely automatic. It replaces the inconsistency check in the Chi2 with a level of consist-
ency that is approximated after each step of discretization. The algorithm also considers
the factor of degree of freedom in order to improve the accuracy.

ur-CAIM [16] The algorithm proposed by Janssens et al. It improves CAIM which
combines the CAIR [81], CAIU [82], and CAIM discretization criterion together in
order to generate more flexible discretization schemes, require lower running time than
CAIM, and improve predictive accuracy, especially in unbalanced data.

Zeta [83] This algorithm is introduced by Ho and Scott. It is a direct method that the
user must specify the number of intervals, k, where each attribute is discretized into k
intervals. The discretization criterion of the algorithm is based upon lambda [84] that is

Fig. 10  Discretization categories. The categories of discretization methods of 13 discretization algorithms

Page 20 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

widely used to measure strength association between nominal variables. This criterion
is defined as the maximum accuracy achievable when each value of a feature predicts a
different class value.

Parameter settings

Many discretizaion algorithms desire the input parameters from the user before discre-
tization. Same parameters of the classifiers must also be set. Since the different parame-
ters affect the performance, in order to evaluate the quality of discretization algorithms,
those parameters of discretization algorithms and classifiers specified in Table 3 are set
as recommended by [7] and [31] .

Experiment results and analysis of standard datasets

Number of intervals

The average numbers of intervals per attribute of 30 standard datasets for 13 discretiza-
tion algorithms are shown in Fig. 11a (calculated with Eq. 15). The details of the result
are included as an Additional file 2.

In the figure, the lowest average number of intervals per attribute of all datasets
belongs to EMD (2.04), the second is Ameva (2.51), and the third is ChiMerge (2.99).
Since EMD uses the predictive accuracy of C4.5 and NB as a part of the fitness function,
some attributes excluded from the final classification model will have no cut-point, i.e.,
the whole attribute domain is considered as only 1 interval. For ChiMerge, the number
of intervals depends on the user’s specification on the significant level (α). If the user sets
this value high (α close to 0), the algorithm will over merging, leading to a low number
of intervals. EMD and ChiMerge generate one number of intervals of some attributes,
the attributes are removed in classification learning. Unlike EMD and ChiMerge that
are an implicit coupling of supervised feature selection and discretization, GrpahM and
GraphS concentrate on the later, with the possibility to combine with many advanced
feature selection methods. The average number of remove attributes of all discretization
algorithms is summarized in Fig. 11c.

Many datasets of CAIM, and Zeta have the lowest number of intervals. CAIM discre-
tizes with the number of intervals close to the number of target classes. If there are many
target classes, the number of intervals of CAIM is high too (if there is enough number of

Table 3  Parameters of classifiers and discretizers

Method Parameters

Classifier

 C4.5 Pruned tree = true, confidence = 0.25, minimum example per leaf = 2

 KNN k = 3, distanced function = EuclideanDistance

Discretizer

 ChiMerge Confidence threshold = 0.05

 EMD Population size = 50, Me = 10, 000, α = 0.7, Rrate = 0.1, Rperc = 0.5

 FFD Frequency size = 30

 FUSINTER α = 0.975, � = 1

 HDD Coefficient = 0.8

 GraphS, GraphM β = 1.01

Page 21 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

cut points to split). Zeta is a direct method that fixes the number of intervals equal the
number of target classes. Resulting in all attributes having the equal number of intervals.

Running time

Figure 11b presents the actual computational time (in seconds) required for creating
the discretization scheme and discretization from the experimented datasets. These
algorithms are implemented in Java and all experiments are conducted on an Intel(R)
Xeon(R) CPU@2.40 GHz and 4 GB RAM. The execution time is measured using the
System.currentTimeMillis() Java method (endTime − startTime).

The execution time averages from tenfold discretization (the time of classifier learning
not included). The fastest technique over 30 standard datasets is PKID (0.109 s), while
the slowest is EMD (113.435 s). With these, EMD is more than a 1000 times slower than
PKID. That is because EMD is designed as an evolutionary process, which uses a wrap-
per fitness function with the chromosome encoding all cut-point of examined attributes.
Without applying any approximation heuristics, EMD naturally requires a long time to
look for the optimal fitness value.

GraphS and GraphM are multivariate method similar to EMD and HDD, however,
their running times are similar to the other univariate discretization algorithms. The

a b

c

Fig. 11  Discretization results of: a average number of intervals, b average running times (seconds), and c
average number of remove attributes for standard datasets

Page 22 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

average running time of GraphM is more than ten times faster than GraphS. It is because
GraphM iteratively merged considering two adjacent intervals. In contrast, GraphS con-
sidered all cut points in order to find the best cut point and hence lose some time in
searching. More details are discussed in “Time complexity and parameter analysis”.

Predictive accuracy

Based on the classification predictive accuracy, Fig. 12 summarizes the average predic-
tive accuracies over C4.5, KNN, NB, SVM, and all classifiers. The details of these results
are included as an Additional file 2.

According to these results, the three discretization algorithms with the highest average
predictive accuracy across 30 standard datasets with C4.5 classifier are EMD (78.20%),
GraphS (77.88%), and GraphM (77.79%), respectively. The similar observation with KNN
classifier are GraphS (78.04%), ur-CAIM (77.95%), and GraphM (77.73%). The three
highest average predictive accuracy with NB classifier are ur-CAIM (77.24%), GraphS
(77.20%), and EMD (77.12%). The results indicate that GraphS, GraphM, ur-CAIM, and
EMD generally performed better than the rest techniques included in this experiment.
With respect to the overall measures across three classifiers, the first highest accuracy
belongs to GraphS (77.42%), the second is ur-CAIM (77.2%), and the third is GraphM
(77.16%). As such, it has been demonstrated that the graph clustering-based discretiza-
tion algorithm is usually more accurate than many other well-known counterparts.

Friedman rankings with critical differences (CD)

The average ranking of 13 discretization algorithms with three comparisons of: number
of intervals, running times, and predictive accuracy is shown in Figs. 13 and 14. Because
all the p value of these comparisons based on Friedman test are 0.000, all the algorithms
are not equivalent ranking. Therefore, the critical differences (CD) based on Nemenyi
post-hoc test and pHolm of Holm post-hoc test can be computed. Each figure, the left
top horizontal line is the CD interval, the second line that rank from 1 to 13 is the axis
that contains average ranks of 13 algorithms, and the best value ranking is given as a
small value. Note that the tick horizontal lines are the marked intervals. If the distance
between algorithm ranks does not over the CD interval, the marked interval will be
shown, i.e., they are not significantly different.

In the ranking of average number of intervals, EMD and ChiMerge are the first and
second lowest ranking, there is no significantly different of the pair. Otherwise, EMD
shows significantly lower number of intervals than the rest algorithms. In the ranking
of average running times, ur-CAIM obtains the first ranking, whereas EMD appears to
be the last. In addition, ur-CAIM is not significantly different to GraphM, CAIM, Chi-
Merge, FFD, PKID, Zeta, and GraphS.

In order to finely compute the ranking of predictive accuracy of each discretization
algorithm, 300 predictive accuracy results over 30 standard datasets and tenfolds evalu-
ation are examined. In Fig. 14, the lowest average accuracy rankings for C4.5 classifier
belongs to EMD. However, it is not significantly better to GraphM, GraphS, ur-CAIM,
and Ameva. GraphM obtains the lowest ranking for KNN classifier, however, it is not sig-
nificantly different to ur-CAIM, GraphS, and EMD. Three lowest rankings for NB clas-
sifier are GraphM, GraphS, and EMD, there are no significantly different. In the average

Page 23 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

ranking for SVM classifier, GraphS obtains the lowest ranking, but it is not significantly
better than ChiMerge, ur-CAIM, GraphM, and CAIM. In summary, the average ranking
over all classifiers, GraphM, GraphS, and ur-CAIM obtain the first, second, and third
lowest rankings, respectively, there are no significantly different. However, GraphM and
GraphS are significantly better than the rest algorithms.

Given these findings, GraphM and GraphS can be useful not only for data analysis
with high accuracy, but also with a reasonable time requirement. Also, the resulting dis-
cretized dimensions can be coupled with many effective feature selection approaches
found in the literature.

a b

dc

e

Fig. 12  Predictive accuracy results of standard datasets. Average predictive accuracy of: a C4.5 classifier, b
K-Nearest Neighbors classifier, c Naive Bayes classifier, d Support Vector Machine classifier, and e all classifiers

Page 24 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Friedman rankings with pHolm
Because the Friedman test of all comparisons are not equivalent ranking, pHolm of Holm
post-hoc test can be computed. All results of the tests are provided in Table 4. In order
to compare the pHolm, This study used a level of significance is 0.01. If the pHolm value is
lower than 0.01, there is significantly different of the pair.

The results of pHolm test for a number of intervals, running times, and predictive accu-
racy of all classifiers is similar to the Nemenyi post-hoc test. EMD is not significantly
lower number of intervals than ChiMerge. ur-CAIM is not significantly faster than
GraphM, CAIM, ChiMerge, FFD, PKID, and GraphS. For average ranking of predictive
accuracy over all classifiers, GraphM, GraphS, and ur-CAIM obtain the first, second,
and third lowest ranking. By using significant level α = 0.1, GraphM is not significantly
better accuracy than GraphS and ur-CAIM, in fact, GraphM is significantly better
accuracy than the rest discretization algorithms. Besides, by using α = 0.05, GraphM
shows significantly better predictive accuracy than the other well-known discretization
algorithms.

Experiment results and analysis of imbalanced datasets

Number of intervals

The average numbers of intervals per attribute of 20 imbalanced datasets for 13 discre-
tizers are shown in Fig. 15a. The details of the result are included as an Additional file 3.

a

b
Fig. 13  The average rankings of: a average number of intervals and b average running times for standard
datasets. These rankings obtain from the non-parametric Friedman test and the critical difference (CD) of
the Nemenyi post hoc test. Note that, the ranking of number of intervals in a is tested with 300 samples (30
standard datasets and tenfolds), the ranking of running times in b is tested with 30 samples (30 standard
datasets)

Page 25 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

a

b

c

d

e
Fig. 14  Ranking of predictive accuracies for standard datasets. Average predictive accuracies ranking with
different classifiers of: a C4.5, b KNN, c NB, d SVM, and e all classifiers, obtain from the non-parametric Fried‑
man test and the critical difference (CD) of the Nemenyi post hoc test. Note that, the ranking in a,b, c, and d
are tested with 300 samples (30 standard datasets and tenfolds), while the ranking in e is tested with 1200
samples (30 standard datasets of 4 classifiers and tenfolds)

Page 26 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Table 4  Average Friedman rankings and pHolm of the number of intervals, running time,
and predictive accuracy for standard datasets

Discretizer Raking pHolm Discretizer Raking pHolm

Number of intervals Running times

 EMD 2.7533 – ur-CAIM 3.05 –

 ChiMerge 3.3883 0.045827 GraphM 3.5167 0.642579

 Ameva 4.39 0.000001 CAIM 4.35 0.392135

 CAIM 4.4767 0 ChiMerge 4.85 0.220322

 Zeta 4.7017 0 FFD 5.5667 0.058782

 GraphM 5.735 0 PKID 5.5833 0.058782

 GraphS 5.98 0 Zeta 5.8333 0.033841

 ur-CAIM 6.1883 0 GraphS 6.15 0.014349

 MChi2 8.2133 0 FUSINTER 9.0667 0

 FFD 9.7033 0 Ameva 9.2667 0

 PKID 10.5367 0 MChi2 9.5 0

 FUSINTER 11.9667 0 HDD 11.2667 0

 HDD 12.9667 0 EMD 13 0

Accuracy of C4.5 Accuracy of KNN

 EMD 5.3033 – GraphM 4.5667 –

 GraphM 5.4417 0.888248 ur-CAIM 5.0667 0.05

 GraphS 5.5467 0.888248 GraphS 5.0833 0.025

 ur-CAIM 5.7417 0.504152 EMD 5.5167 0.016667

 Ameva 6.2867 0.007941 Ameva 5.7667 0.0125

 ChiMerge 6.615 0.000185 Zeta 6.4167 0.01

 Zeta 6.7117 0.000057 ChiMerge 6.8 0.008333

 CAIM 6.735 0.000047 CAIM 6.8333 0.007143

 MChi2 6.94 0.000002 MChi2 7.1833 0.00625

 FFD 7.7 0 FFD 8.25 0.005556

 PKID 8.4983 0 PKID 8.65 0.005

 HDD 9.5333 0 FUSINTER 9.5333 0.004545

 FUSINTER 9.9467 0 HDD 11.3333 0.004167

Accuracy of NB Accuracy of SVM

 GraphM 5.0333 – GraphS 4.7667 –

 GraphS 5.4333 0.208413 ChiMerge 4.95 0.638626

 EMD 5.9 0.012839 ur-CAIM 5.0833 0.638626

 ChiMerge 6.1 0.002385 GraphM 5.45 0.094907

 ur-CAIM 6.1833 0.001194 CAIM 5.8167 0.003839

 CAIM 6.2833 0.000423 EMD 6.55 0

 Zeta 6.9 0 MChi2 6.7333 0

 FFD 7.0167 0 Zeta 6.7833 0

 Ameva 7.1833 0 Ameva 7.0333 0

 MChi2 7.4333 0 PKID 8.3167 0

 PKID 7.6 0 FFD 8.7333 0

 FUSINTER 9.6167 0 FUSINTER 10.1 0

 HDD 10.3167 0 HDD 10.6833 0

Accuracy of all classifiers

 GraphM 5.1229 –

 GraphS 5.2075 0.594723

 ur-CAIM 5.5188 0.025572

 EMD 5.8175 0.000037

 ChiMerge 6.1163 0

 CAIM 6.4171 0

Page 27 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

The average number of intervals per attribute result is similar to the standard data-
sets, which the lowest and the highest average number of intervals belong to EMD (1.48)
and HDD (154.51), respectively. Some discretization algorithms are an implicit coupling
with supervised feature selection, especially EMD, ChiMerge, and MChi2 as shown in
Fig. 15c, average number of remove attributes. The proposed methods obtain the lower
number of intervals, the average values of GraphS and GraphM is 2.4. They do not
remove any attributes. The proposed methods can be combined with advanced feature
selection methods on the latter, the classification performance may improve.

Table 4  continued

Discretizer Raking pHolm Discretizer Raking pHolm

 Ameva 6.5675 0

 Zeta 6.7029 0

 MChi2 7.0725 0

 FFD 7.925 0

 PKID 8.2663 0

 FUSINTER 9.7992 0

 HDD 10.4667 0

a b

c

Fig. 15  Discretization results of: a average number of intervals, b average running times (seconds), and c
average number of remove attributes for imbalanced datasets

Page 28 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Running time

The running time result is averaged from fivefold discretization, including two processes
of the crating discretization scheme and transform numeric to nominal dataset. The fast-
est running time belongs to ur-CAIM (0.0757 s), while the slowest is EMD (36.4306 s) as
shown in Fig. 15b, average running time in seconds. Generally a multivariate method
requires higher running time than univariate method. GraphS and GraphM are mul-
tivariate methods same as EMD and HDD. However, their running time is faster than
EMD and HDD, which the running time is similar to univariate method. The details of
running time results are included as an Additional file 3.

AUC

Based on the classification performance of AUC, Fig. 16 summarizes the average AUC of
20 imbalanced datasets over C4.5, KNN, NB, SVM, and all classifiers. For more details of
these results, this study included the results as an Additional file 3. The proposed meth-
ods usually achieve high AUC value. For the average of all classifiers, GraphS, GraphM,
and ur-CAIM show the first, second, and third highest AUC values that are 0.8324,
0.8299, and 0.8188, respectively. The results suggest that the proposed methods can han-
dle with imbalanced datasets, which usually achieve high AUC value than many well-
known discretizers.

Friedman rankings with critical differences (CD)

Based on Friedman ranking test, 20 imbalanced datasets, Figs. 17 and 18 show the rank-
ing of: number of intervals, running times, and AUC. Each ranking is not equivalent
ranking (p value of the test is 0.000), the critical differences (CD) based on Nemenyi
post-hoc test is included in the figures.

This ranking of average number of intervals is similar to the ranking of the standard
datasets, EMD and ChiMerge show the first and second lowest ranking, while HDD
shows the highest ranking. In the ranking of average running times, GraphM obtains the
first ranking, however, it is not significantly different to ur-CAIM, Zeta, ChiMerge, FDD,
PKID, and GraphS. The slowest running time still belongs to EMD.

The average ranking of AUC for C4.5, KNN, NB, SVM, and all classifiers shown in
Fig. 18. In the ranking of AUC for C4.5 and SVM classifiers, the top three lowest rank-
ings belong to EMD, GraphM, and GraphS. These tree discretizers are close in the
rankings and are not significant differences. In the average ranking of AUC for KNN
classifier, GraphS and GraphM obtain the lowest ranking. However, they are not signif-
icant differences to FFD, PKID, ur-CAIM, and MChi2. For NB classifier, the first and
second lowest ranking belongs to FFD and PKID, where GraphS and GraphM lie in the
fourth and seventh ranking, respectively. In summary, the average ranking over all clas-
sifiers, GraphS and GraphM obtain the first and second best ranking. However, they are
not significantly different to ur-CAIM.

These ranking suggests that the proposed methods can be useful for imbalanced data,
achieve the best ranking of AUC. Furthermore, they require lower running times and
obtain a lower number of intervals.

Page 29 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Friedman rankings with pHolm
Because the Friedman ranking test of the number of intervals, running times, and AUC
of imbalanced datasets are not equivalent ranking test, these tree ranking can compute
pHolm of Holm post-hoc test. The pHolm results of these rankings are provided in Table 5.
In order to compare pHolm of the rankings, the significant level (α) is set to 0.01. If the
pHolm value is lower than 0.01, there is significantly different of the pair.

a b

c d

e
Fig. 16  AUC results of imbalanced datasets. Average AUC of: a C4.5 classifier, b K-Nearest Neighbors classi‑
fier, c Naive Bayes classifier, d Support Vector Machine classifier, and e all classifiers

Page 30 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

The pHolm results of the average ranking number of intervals shows that EMD is not a
significant difference to ChiMerge. However, it is significant lower number intervals to
the rest discretizers. In the average ranking running time, GraphM is not significantly
faster than ur-CAIM, Zeta, ChiMerge, FFD, PKID, and GraphS. For an average ranking
of AUC over all classifiers, GraphS is not significantly better AUC than GraphM and
ur-CAIM. However, by using α = 0.05, GraphS shows significantly better AUC than the
other well-known discretization algorithms.

Experiment results of Toy dataset

This section aims at showing characteristics of different discretization algorithms on the
Toy dataset. The discretization results of Toy dataset are represented as a scatter plot as
shown in Fig. 19, where the vertical dashed lines represent the cut points of attribute A1
and horizontal dashed lines represent the cut points of attribute A2.

The results show that, ChiMerge and FFD created no cut points. The number of cut
points selected by ChiMerge depends on the significant level (α), and in this study α
is set to 0.05 (recommended by the authors of ChiMerge). Too high significant level
(α is close to 0) will lead to over merging. In order to allow the algorithm to select the
cut points, the significant level should be reduced. FFD algorithm is an unsupervised
method that the user must specify the frequency size. In this study the frequency size
is set 30 (recommended by the authors of FFD). Since the number of the data points is

a

b
Fig. 17  The average rankings of: a average number of intervals and b average running times for imbalanced
datasets. These rankings obtain from the non-parametric Friedman test and the critical difference (CD) of
the Nemenyi post hoc test. Note that, the ranking of number of intervals in a is tested with 100 samples (20
imbalanced datasets and fivefolds), the ranking of running times in b is tested with 20 samples (20 imbal‑
anced datasets)

Page 31 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

a

b

c

d

e
Fig. 18  Ranking of AUC for imbalanced datasets. Average AUC ranking with different classifiers of: a C4.5,
b KNN, c NB, d SVM, and e all classifiers, obtain from the non-parametric Friedman test and the critical dif‑
ference (CD) of the Nemenyi post hoc test. Note that, the ranking in a–d are tested with 100 samples (20
imbalanced datasets and fivefolds), while the ranking in e is tested with 400 samples (20 imbalanced datasets
of 4 classifiers and fivefolds)

Page 32 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Table 5  Average Friedman rankings and pHolm of the number of intervals, running time,
and AUC for imbalanced datasets

Discretizer Raking pHolm Discretizer Raking pHolm

Number of intervals Running times

 EMD 1.51 – GraphM 2.65 –

 ChiMerge 2.095 0.288157 ur-CAIM 2.875 0.855034

 CAIM 3.73 0.000167 Zeta 4.3 0.360623

 Zeta 3.73 0.000167 ChiMerge 5.05 0.15396

 GraphM 6.295 0 FFD 5.225 0.14615

 GraphS 6.325 0 PKID 5.55 0.092665

 ur-CAIM 6.47 0 GraphS 6.45 0.012189

 Ameva 6.91 0 FUSINTER 7.775 0.000221

 MChi2 8.715 0 CAIM 8.6 0.000011

 FFD 10.22 0 MChi2 8.9 0.000003

 PKID 11.1 0 Ameva 9.85 0

 FUSINTER 11.81 0 HDD 10.825 0

 HDD 12.09 0 EMD 12.95 0

AUC of C4.5 AUC of KNN

 EMD 4.8 – GraphS 4.525 –

 GraphM 4.8 1.855328 GraphM 4.525 1.501358

 GraphS 4.85 1.855328 FFD 4.7 1.501358

 Ameva 5.9 0.137394 PKID 5.425 0.306705

 ur-CAIM 6.05 0.092927 ur-CAIM 5.825 0.073023

 ChiMerge 7 0.000389 MChi2 6.1 0.021202

 MChi2 7 0.000389 Ameva 6.6 0.000989

 CAIM 7.275 0.000049 ChiMerge 6.8 0.000253

 FFD 7.875 0 CAIM 8.125 0

 Zeta 7.975 0 EMD 8.15 0

 PKID 8.45 0 FUSINTER 9.05 0

 HDD 9.025 0 HDD 10.05 0

 FUSINTER 10 0 Zeta 11.125 0

AUC of NB AUC of SVM

 FFD 3.375 – EMD 5.05 –

 PKID 4.025 0.237923 GraphS 5.15 1.949658

 MChi2 5.3 0.000947 GraphM 5.225 1.949658

 GraphS 5.875 0.000017 ur-CAIM 5.3 1.949658

 ur-CAIM 6.05 0.000005 CAIM 5.675 1.025834

 FUSINTER 6.15 0.000002 ChiMerge 5.95 0.511174

 GraphM 6.375 0 Ameva 6.35 0.109535

 Ameva 6.825 0 Zeta 6.575 0.03937

 ChiMerge 8.2 0 MChi2 6.9 0.006258

 CAIM 8.325 0 FFD 9.6 0

 EMD 8.8 0 PKID 9.625 0

 HDD 9.475 0 FUSINTER 9.725 0

 Zeta 12.225 0 HDD 9.875 0

AUC of all classifiers

 GraphS 5.1 –

 GraphM 5.2312 0.633635

 ur-CAIM 5.8062 0.020656

 MChi2 6.325 0.000026

 FFD 6.3875 0.000012

 Ameva 6.4187 0.000008

Page 33 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

no more than 30, all data points are grouped into one interval. In order to achieve the
desired cut points, the frequency size should be smaller than the number of data points.

The result cut-point selection using EMD is only a single cut-point at 2.5 of attribute
A1. Because the fitness function of EMD is weighted from the lower predictive error and
the lower number of intervals, the attributes that do not use to create the classifier model

Table 5  continued

Discretizer Raking pHolm Discretizer Raking pHolm

 EMD 6.7 0

 PKID 6.8812 0

 ChiMerge 6.9875 0

 CAIM 7.35 0

 FUSINTER 8.7312 0

 Zeta 9.475 0

 HDD 9.6062 0

a b c

d e f

g h i

j
Fig. 19  The cut-point results with a Toy dataset for 13 discretization algorithms of: a ChiMerge and FFD, b
EMD, c GraphS and GraphM, d CAIM and Zeta, e Ameva, f PKID, g ur-CAIM, h FUSINTER, i MChi2, and j HDD.
Note that, the vertical dashed-lines represent the cut points of attribute A1 and horizontal dashed-line represent
the cut points of attribute A2

Page 34 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

mostly generate null cut-point. Specific to the aforementioned result, this selected cut-
point also damages the natural groups of data, which is illustrated by the upper-left 5
data points.

The proposed algorithms of GraphS and GraphM show the same discretization results.
The cut points of A1 and A2 are 3.5. Although the adjacent data points at the cut point
3.5 of A1 (3:7, 4:1) are the same target class, they highly different in natural groups, which
the upper left 5 data points are the same natural group and the lower 5 data points is the
other. The graph-based algorithms could preserve the natural groups of data points by
selected this cut point. In addition, the proposed algorithm do not partition a right data
point (12:5) to be alone same as FUSINTER, MChi2, and HDD. It is clearly shown that
the graph clustering-based discretization algorithms give a finite number of cut points,
prevent an unnatural bias for undesiredly partitioning out some data points, and pre-
serve the natural groups of data points. It is different from CAIM, Zeta, Ameva, and
ur-CAIM that only considered the target class. Based on the purity class, CAIM, Zeta,
Ameva, and ur-CAIM selected the cut point at 2.5 of A1. The result damaged the upper
left natural group.

PKID is an unsupervised method that does not consider the target class and the nat-
ural groups. The algorithm discretizes by giving all intervals similar numbers of data
points. Considering A1, there are 3 intervals and the number of data points in the inter-
vals are 4, 4, and 2. For A2, the number of data points in the divided intervals are 3, 4,
and 3.

FUSINTER, MChi2, and HDD algorithms resulted in very large numbers of intervals,
especially HDD algorithm that selected every single possible cut point.

Time complexity and parameter analysis

Time complexity

Besides previous quality assessments, the computational requirements of the graph clus-
tering-based methods are discussed here. To estimate the time complexity, only the time
taken to discretize a single attribute is considered. As the AF matrix is created once and
share resources to discretize other attributes, the complexity time did not include the
time of creating the matrix. In addition, for the ease of computing the denominator of
NAsso, ω(Ci,Ci)+ ω(Ci, C̄i) (see Eq. 7), the sum of each row is calculated and stored in
sumRowsVector.

For GraphS algorithm (see Fig. 7 for details), the primary time complexity of the algo-
rithm is spent at line 9 to line 15, which is the step of finding the best cut point. The algo-
rithm selected the best cut point from all possible cut points (c) by computing NAsso. As
the denominator of NAsso could easily be calculated by summing all of the rows in the
sumRowsVector, the primary time is only spent on calculating the numerator, ω(Ci,Ci)
(inter-cluster). In Fig. 20 balance partition and balance the number of cut points are
assumed; therefore at each parallel step of finding the best cut points, only half of the
original or previous matrices are taken into account, the time complexity is diminished.
Hence, the time complexity is formulated as Eq.16.

(16)T (n) = 2T

(

cn2

8

)

+
n2

2
× c

Page 35 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

where, n2/2 is the time complexity of NAsso and c is the number of possible cut points.
In this case, it is straightforward to sum across each row of the recursion tree to obtain
the total time complexity. However, the depth of the tree does not really matter because
the amount of time at each level drastically decrease as it expands deeper such that the
total time is only a constant factor more than the time spent at the root. Therefore, the
time complexity of GraphS is O(cn2). However, if each data value of an attribute is the
distinction, the number of possible cut points is n− 1. Hence, the time complexity is
O(n3).

For GraphM algorithm (see Fig. 9 for details), the time complexity of NAsso is similar
to GraphS but GraphM does not take any time to find the best cut point. From line 7 to
line 9, GraphM computes NAsso of a small matrices many times; however, the process
is very fast. After that, from line 10 to line 17 the algorithm iteratively merges until all
intervals merge into one. Each merging computes NAsso twice as that of the adjacent
interval; therefore, the time complexity of GraphM is O(2n2) = O(n2).

Parameter analysis

The proposed algorithms include one parameter that is the β, the significant better
rate, which is used in the stopping criterion. This study sets β = 1.01. A good β value
will resulting finite number of intervals that leads to achieve high classification perfor-
mance. The parameter analysis aims to provide a practical means that users can make
the best use of the graph clustering-based framework. To this extent, Fig. 21 illustrates
such a relationship, based on the predictive accuracy of standard datasets, the number
of intervals of standard dataset, AUC of imbalanced datasets, and number of intervals of
imbalanced datasets across all classifiers. In the figure, the value of β is varied from 1.00
through 1.05, in steps of 0.005.

An important observation of average accuracy of the standard dataset is that the pro-
posed algorithms performed well with the β value are between 1.005 and 1.015. The
accuracy and performance dropped if β is greater than 1.015 as the stopping criterion
are quickly met and hence the process stops too early such that only two intervals are
obtained. In contrast, if β is not considered (β = 1), the algorithm will be over parti-
tioning and result in too many intervals. Therefore, a good β value that gives a decent
number of intervals are in the rank 1.005–1.015. Similarly, the average AUC results of
imbalanced datasets perform well with the β are in the rank 1.000–1.015, especially
β = 1.005.

Fig. 20  The time complexity of GraphS. Note that, the black triangles denote time complicity of NAsso

Page 36 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Conclusion
This paper presents two novel, highly effective graph clustering-based discretization algo-
rithms that are graph clustering-based discretization of splitting method (GraphS) and merg-
ing method (GraphM). They aim to discretize by considering the natural groups and prevent
partitioning any interval that will possess a small number of data points. The algorithms
view the data points as a graph, where the vertices are the data points (instances) and the
weighted edges are the similarity between the data points. The NAsso measure is used as the
discretization criterion of the algorithms. The empirical study, with different discretization
algorithms, classifiers, two types of dataset of standard datasets and imbalanced datasets,
suggests that the proposed graph clustering-based methods usually achieve superior discre-
tization results compared to those of the previous well-known discretization algorithms. The
prominent future work may include an extensive study regarding the scoring of the weighted
similarity edges by considering other distance measures. In addition, this methodology will
also be applied to specific domains such as biomedical datasets; where discretization is not
only required for accurate prediction, but also an interpretable learning model.

Additional files

Additional file 1. GraphS and GraphM programs. The programs are implemented in Java, which are the Java class
file.
Additional file 2. The performance results of 30 standard datasets. The results of predictive accuracy, number of
intervals, number of remove attributes, and running times of 13 discretization algorithms of 30 standard datasets
(tenfold) and 4 classifiers.
Additional file 3. The performance results of 20 imbalanced datasets. The results of AUC, number of intervals,
number of remove attributes, and running times of 13 discretization algorithms of 20 imbalanced datasets (fivefold)
and 4 classifiers.
Additional file 4. Datasets. All datasets of: 30 standard datasets and 20 imbalanced datasets.

a b

c d

Fig. 21  β parameter. The effect of β values on the discretization results of: a average predictive accuracies of
standard datasets, b average number of intervals of standard dataset, c average AUC of imbalanced datasets,
and d average number of intervals of imbalanced dataset

http://dx.doi.org/10.1186/s13673-017-0103-8
http://dx.doi.org/10.1186/s13673-017-0103-8
http://dx.doi.org/10.1186/s13673-017-0103-8
http://dx.doi.org/10.1186/s13673-017-0103-8

Page 37 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

Authors’ contributions
KS drafts this manuscript, developed the algorithms and conducted experiments using the datasets and analysed
the results. TB provided guidelines and helped draft the manuscript. NI being supervisor this research, suggested the
methods and helped draft the manuscript. All authors corrected the manuscript. All authors read and approved the final
manuscript.

Authors’ information
KS is a lecturer at the School of Computer and Information Technology, Chiang Rai Rajabhat University (CRRU), Thailand,
since 2009. He received the BEng degree in computer engineering (first class honors) from Naresuan University (NU) in
2008 and MEng degree in computer engineering from Kasetsart University (KU) in 2012. Currently, he is a Ph.D. candidate
in computer engineering at Mae Fah Luang University (MFU). His primary research interests are in the area of machine
learning, data mining, data preprocessing, and data reduction. TB is a Lecturer at the School of Information Technology,
Mae Fah Luang University, Chiang Rai, Thailand. He obtained Ph.D. in Artificial Intelligence from Cranfield University
in 2003, and worked as Post-Doctoral Research Associate (PDRA) at Aberystwyth University, during 2007-2010. His
PDRA work focused on anti-terrorism using data analytical and decision support synthesizes. He has been the leader
of research projects in exploiting biometrics technology for anti-terrorism in southern-provinces of Thailand, funded
by Ministry of Defense. He also serves as a committee and reviewer of several venues, IEEE SMC, IEEE TKDE, Knowledge
Based Systems, International Journal of Intelligent Systems Technologies and Applications, for instance. NI is an Assistant
Professor at the School of Information Technology, Mae Fah Luang University. She received Ph.D. in Computer Science
from Aberystwyth University in 2010, funded by Royal Thai Government. Her Ph.D. work won the Thesis Prize of 2012
by Thai National Research Council. Her present research of improving face classification for anti-terrorism and crime
protection has been funded by Ministry of Science and Technology. She serves as an editor for International Journal of
Data Analysis Techniques and Strategies; as a committee and reviewer of several venues, IEEE SMC, IEEE TKDE, Machine
Learning, for instance.

Acknowledgements
The authors would like to thank KEEL software [59, 60] for distributing the source code of discretization algorithms, and
the authors of EMD [31] for EMD program, and the authors of ur-CAIM [16] for distributing the ur-CAIM program.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All datasets in this research, including 30 standard datasets and 20 imbalanced datasets can be found at website http://
archive.ics.uci.edu/ml and http://sci2s.ugr.es/keel/category.php?cat=imb, respectively. In addition, these datasets are
included in Additional file 4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 December 2016 Accepted: 30 May 2017

References
	1.	 Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann Publishers Inc.,

San Francisco
	2.	 Sriwanna K, Puntumapon K, Waiyamai K (2012) An enhanced class-attribute interdependence maximization discre‑

tization algorithm. Springer, Berlin
	3.	 Yang P, Li J-S, Huang Y-X (2011) Hdd: a hypercube division-based algorithm for discretisation. Int J Syst Sci

42(4):557–566
	4.	 Bay SD (2001) Multivariate discretization for set mining. Knowl Inf Syst 3(4):491–512
	5.	 de Sá CR, Soares C, Knobbe A (2016) Entropy-based discretization methods for ranking data. Information Sciences

329:921–936 (special issue on Discovery Science)
	6.	 Ramírez-Gallego S, García S, Mouriño-Talín H, Martínez-Rego D, Bolón-Canedo V, Alonso-Betanzos A, Benítez JM,

Herrera F (2016) Data discretization: taxonomy and big data challenge. Wiley Interdiscip Rev 6(1):5–21
	7.	 Garcia S, Luengo J, Sáez JA, López V, Herrera F (2013) A survey of discretization techniques: taxonomy and empirical

analysis in supervised learning. IEEE Trans Knowl Data Eng 25(4):734–750
	8.	 Sang Y, Li K (2012) Combining univariate and multivariate bottom-up discretization. Multiple-Valued Logic and Soft

Computing 20(1–2):161–187
	9.	 Liu H, Hussain F, Tan CL, Dash M (2002) Discretization: an enabling technique. Data Min Knowl Discov 6(4):393–423
	10.	 Dougherty J, Kohavi R, Sahami M et al (1995) Supervised and unsupervised discretization of continuous features. In:

Machine learning: proceedings of the Twelfth international conference, vol 12, pp 194–202
	11.	 Kerber R (1992) Chimerge: discretization of numeric attributes. In: Proceedings of the tenth national conference on

artificial intelligence. Aaai Press, San Jose, pp 123–128
	12.	 Liu H, Setiono R (1997) Feature selection via discretization. IEEE Trans Knowl Data Eng 9(4):642–645
	13.	 Tay FE, Shen L (2002) A modified chi2 algorithm for discretization. IEEE Trans Knowl Data Eng 14(3):666–670

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://sci2s.ugr.es/keel/category.php?cat=imb

Page 38 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

	14.	 Sang Y, Qi H, Li K, Jin Y, Yan D, Gao S (2014) An effective discretization method for disposing high-dimensional data.
Inf Sci 270:73–91

	15.	 Kurgan LA, Cios KJ (2004) Caim discretization algorithm. IEEE Trans Knowl Data Eng 16(2):145–153
	16.	 Cano A, Nguyen DT, Ventura S, Cios KJ (2016) ur-caim: improved caim discretization for unbalanced and balanced

data. Soft Computing 20(1):173–188
	17.	 Ching JY, Wong AK, Chan KCC (1995) Class-dependent discretization for inductive learning from continuous and

mixed-mode data. IEEE Trans Pattern Anal Mach Intell 17(7):641–651
	18.	 Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In:

Proceedings of the 13th international joint conference on artificial intelligence. Chambéry, France, 28 Aug–3 Sept
1993, pp 1022–1029

	19.	 Catlett J (1991) On changing continuous attributes into ordered discrete attributes. In: Kodratoff Y. (eds) Machine
Learning — EWSL-91. EWSL 1991. Lecture notes in computer science (Lecture notes in artificial intelligence), vol
482. Springer, Berlin

	20.	 Zeinalkhani M, Eftekhari M (2014) Fuzzy partitioning of continuous attributes through discretization methods to
construct fuzzy decision tree classifiers. Inf Sci 278:715–735

	21.	 Yang Y, Webb GI (2009) Discretization for naive-bayes learning: managing discretization bias and variance. Mach
Learn 74(1):39–74

	22.	 Kang Y, Wang S, Liu X, Lai H, Wang H, Miao B (2006) An ICA-based multivariate discretization algorithm. Springer,
Berlin

	23.	 Gupta A, Mehrotra KG, Mohan C (2010) A clustering-based discretization for supervised learning. Stat Probab Lett
80(9):816–824

	24.	 Singh GK, Minz S (2007) Discretization using clustering and rough set theory. In: International conference on com‑
puting: theory and applications, 2007. ICCTA’07. IEEE, New York, pp 330–336

	25.	 Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. Appl Stat 28:100–108
	26.	 Ertoz L, Steinbach M, Kumar V (2002) A new shared nearest neighbor clustering algorithm and its applications. In:

Workshop on clustering high dimensional data and its applications at 2nd SIAM international conference on data
mining, pp 105–115

	27.	 Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial data‑
bases with noise. Kdd 96:226–231

	28.	 Sriwanna K, Boongoen T, Iam-On N (2016) In: Lavangnananda K, Phon-Amnuaisuk S, Engchuan W, Chan JH (eds) An
enhanced univariate discretization based on cluster ensembles. Springer, Cham, pp 85–98

	29.	 Iam-On N, Boongoen T, Garrett S, Price C (2011) A link-based approach to the cluster ensemble problem. IEEE Trans
Pattern Anal Mach Intell 33(12):2396–2409

	30.	 Huang X, Zheng X, Yuan W, Wang F, Zhu S (2011) Enhanced clustering of biomedical documents using ensemble
non-negative matrix factorization. Inf Sci 181(11):2293–2302

	31.	 Ramirez-Gallego S, Garcia S, Benitez JM, Herrera F (2016) Multivariate discretization based on evolutionary cut points
selection for classification. IEEE Transactions on Cybernetics 46(3):595–608

	32.	 Parashar A, Gulati Y (2012) Survey of di erent partition clustering algorithms and their comparative studies. Interna‑
tional Journal of Advanced Research in Computer Science 3(3):675–680

	33.	 Brandes U, Gaertler M, Wagner D (2007) Engineering graph clustering: models and experimental evaluation. ACM J
Exp Algorithm 12(1.1):1–26

	34.	 Van Dongen SM (2001) Graph clustering by ow simulation. PhD thesis, University of Utrecht
	35.	 Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64
	36.	 Foggia P, Percannella G, Sansone C, Vento M (2009) Benchmarking graph-based clustering algorithms. Image Vis

Comput 27(7):979–988
	37.	 Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. Proc VLDB Endow

2(1):718–729
	38.	 Cheng H, Zhou Y, Yu JX (2011) Clustering large attributed graphs: a balance between structural and attribute simi‑

larities. ACM Trans Knowl Discov Data 5(2):12
	39.	 Nascimento MC, De Carvalho AC (2011) Spectral methods for graph clustering-a survey. Eur J Oper Res

211(2):221–231
	40.	 Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905
	41.	 Foggia P, Percannella G, Sansone C, Vento M (2007) In: Escolano F, Vento M (eds) Assessing the performance of a

graph-based clustering algorithm. Springer, Berlin, pp 215–227
	42.	 Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families.

Nucleic Acids Res 30(7):1575–1584
	43.	 Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM 51(3):497–515
	44.	 Brandes U, Gaertler M, Wagner D (2003) Experiments on graph clustering algorithms. Springer, Berlin, pp 568–579
	45.	 Kong W, Hu S, Zhang J, Dai G (2013) Robust and smart spectral clustering from normalized cut. Neural Comput Appl

23(5):1503–1512
	46.	 Sen D, Gupta N, Pal SK (2013) Incorporating local image structure in normalized cut based graph partitioning for

grouping of pixels. Inf Sci 248:214–238
	47.	 Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. City

1(2):1
	48.	 Everitt B, Landau S, Leese M (1993) Cluster analysis (Edward Arnold, London). ISBN 0-470-22043-0
	49.	 Soman KP, Diwakar S, Ajay V (2006) Data mining: theory and practice [with CD]. PHI Learn
	50.	 Chapanond A (2007) Application aspects of data mining analysis on evolving graphs. PhD thesis, Troy
	51.	 Boutin F, Hascoet M (2004) Cluster validity indices for graph partitioning. In: Proceedings, eighth international con‑

ference on information visualisation, 2004. IV 2004. IEEE, New York, pp 376–381
	52.	 Dua S, Chowriappa P (2012) Data mining for bioinformatics. CRC Press, Boca Raton
	53.	 Görke R, Kappes A, Wagner D (2014) Experiments on density-constrained graph clustering. J Exp Algorithmics 19:6

Page 39 of 39Sriwanna et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:21

	54.	 Leighton T, Rao S (1988) An approximate max-flow min-cut theorem for uniform multicommodity flow problems
with applications to approximation algorithms. In: 29th annual symposium on foundations of computer science,
1988. IEEE, New York, pp 422–431

	55.	 Ding CH, He X, Zha H, Gu M, Simon HD (2001) A min-max cut algorithm for graph partitioning and data clustering.
In: Proceedings IEEE international conference on data mining, 2001, ICDM 2001. IEEE, New York, pp 107–114

	56.	 Mohar B, Alavi Y (1991) The laplacian spectrum of graphs. Graph Theory Comb Appl 2:871–898
	57.	 Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
	58.	 Lichman M (2013) UCI machine learning repository
	59.	 Alcalá J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2010) Keel data-mining software tool: data

set repository, integration of algorithms and experimental analysis framework. J Mult Valued Log Soft Comput
17(255–287):11

	60.	 Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM,
Fernández JC, Herrera F (2009) Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft
Comput 13(3):307–318

	61.	 Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco
	62.	 Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66
	63.	 John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. Proceedings of the eleventh

conference on uncertainty in artificial intelligence. UAI’95. Morgan Kaufmann Publishers Inc., San Francisco, pp
338–345

	64.	 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
	65.	 Wu X, Kumar V (2009) The top ten algorithms in data mining, 1st edn. Chapman & Hall/CRC, Boca Raton
	66.	 Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY et al (2008) Top 10

algorithms in data mining. Knowl Inf Syst 14(1):1–37
	67.	 Kohavi R et al (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai

14:1137–1145
	68.	 Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern

Recognit 30(7):1145–1159
	69.	 Huang J, Ling CX (2005) Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng

17(3):299–310
	70.	 Ruan J, Jahid MJ, Gu F, Lei C, Huang YW, Hsu YT, Mutch DG, Chen CL, Kirma NB, Huang THM (2016) A novel algorithm

for network-based prediction of cancer recurrence. Genomics. doi:10.1016/j.ygeno.2016.07.005
	71.	 Lv J, Peng Q, Chen X, Sun Z (2016) A multi-objective heuristic algorithm for gene expression microarray data clas‑

sification. Expert Syst Appl 59:13–19
	72.	 Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am

Stat Assoc 32(200):675–701
	73.	 Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat

11(1):86–92
	74.	 Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
	75.	 García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the

design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci
180(10):2044–2064

	76.	 Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:65–70
	77.	 Gonzalez-Abril L, Cuberos FJ, Velasco F, Ortega JA (2009) Ameva: an autonomous discretization algorithm. Expert

Syst Appl 36(3):5327–5332
	78.	 Tsai C-J, Lee C-I, Yang W-P (2008) A discretization algorithm based on class-attribute contingency coefficient. Inf Sci

178(3):714–731
	79.	 Eshelman LJ (1991) The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional

genetic recombination. Found Genet Algorithms 1:265–283
	80.	 Zighed DA, Rabaséda S, Rakotomalala R (1998) Fusinter: a method for discretization of continuous attributes. Int J

Uncertain Fuzziness Knowl Based Syst 6(03):307–326
	81.	 Wong AKC, Liu TS (1975) Typicality, diversity, and feature pattern of an ensemble. IEEE Trans Comput 100(2):158–181
	82.	 Huang W (1997) Discretization of continuous attributes for inductive machine learning. Toledo, Department Com‑

puter Science, University of Toledo
	83.	 Ho KM, Scott PD (1997) Zeta: a global method for discretization of continuous variables. In: Proceedings of the third

international conference knowledge discovery and data mining (KDD97), pp 191–194
	84.	 Healey J (2014) Statistics: a tool for social research. Cengage Learn

http://dx.doi.org/10.1016/j.ygeno.2016.07.005

	Graph clustering-based discretization of splitting and merging methods (GraphS and GraphM)
	Abstract
	Background
	Graph clustering and partitioning problems
	Clustering measures
	Measure with vertices
	Measures with clusters

	Global graph clustering
	Spectral clustering
	Markov chains and random walks

	A novel graph clustering-based approach
	Pairwise affinity matrix
	Graph clustering-based discretization algorithm
	The proposed splitting discretization algorithm
	The proposed merging discretization algorithm

	Numeric to nominal transformation

	Performance evaluation
	Investigated datasets
	Experiment design
	The performance measures
	Statistical analysis
	Compared discretization algorithms
	Parameter settings

	Experiment results and analysis of standard datasets
	Number of intervals
	Running time
	Predictive accuracy
	Friedman rankings with critical differences (CD)
	Friedman rankings with

	Experiment results and analysis of imbalanced datasets
	Number of intervals
	Running time
	AUC
	Friedman rankings with critical differences (CD)
	Friedman rankings with

	Experiment results of Toy dataset
	Time complexity and parameter analysis
	Time complexity
	Parameter analysis

	Conclusion
	Authors’ contributions
	References

