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Background
As cloud computing and its applications have come into wide use such as security [1], 
IoT [2], and vehicular ad hoc networks [3], it is important for cloud users to provide an 
efficient task scheduling technique since cloud computing is based on the pay as you 
go pricing model [4]. For a cloud user, it is important to finish the cloud user’s tasks as 
quickly as possible in cloud computing environments [5].

For instance, suppose there are two cloud task schedulers (schedA and schedB) for cloud 
users. The cloud task schedulers deploy the tasks of the users according to the specification 
of their algorithm. If the expected makespan of schedA is 151 s and that of schedB is 130 s, 
then the user will choose schedB for the tasks deployment since the user will pay more as 
much as schedA takes longer than schedB (for 21 s) if the user chooses schedB.

Ant colony optimization (ACO) is one of nature-inspired optimization algorithms and 
is based on the population of the ant movement. It transcribes the cooperative behavior 
of the ant colony system for solving a particular optimization problem. When ants travel 
in search of food, the ants secrete a chemical trail called pheromone and the ants like to 
travel along the trails that have the strongest pheromone scent. For ACO, the role of the 
trail of pheromone is to share their experience about the journey for solving an optimi-
zation problem efficiently.
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Since cloud computing provides computing resources on a pay per use basis, a task 
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efficient manner. To enhance the performance of the task scheduler in cloud comput‑
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tion problem with slave ants by avoiding long paths whose pheromones are wrongly 
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In this paper, we propose a novel ACO based algorithm called slave ants based ant col-
ony optimization (SACO) that schedules tasks of cloud users to virtual machines (VMs) 
in cloud computing environments in an efficient manner with optimized parameter map-
ping. The proposed algorithm solves the global optimization problem with slave ants by 
avoiding long paths whose pheromones are wrongly accumulated by leading ants.

The rest of this paper is organized as follows. The next section discusses about related 
work for the ant colony optimization and cloud task scheduling techniques. Then, we 
present details of system model for SACO and the proposed task scheduling algorithm 
in “Slave ants based ant colony optimization algorithm for task scheduling”. We give our 
results highlighting the efficiency of our proposed algorithm with scalable settings in 
“Performance evaluation”. Finally, we conclude the paper in “Conclusion”.

Preliminaries and related work
Ant colony optimization

Ant colony optimization is an evolutionary computational technique proposed by 
Dorigo et al. [6]. The ACO is composed of three steps for a cycle:

  • explore() Release ants for finding the destination.
  • pheromoneUpdate() Update pheromones the ants travel across the paths.
  • iteration() Compare paths the ants found and find the best path if a predefined con-

dition is met. Otherwise, iterate the process of finding the destination.

Figure  1 illustrates an example of finding the shortest path of the journey. If an ant 
encounters three-forked paths, it selects one of the three paths with probability param-
eters. After these processes iterate, ants will follow the shortcut because pheromones are 
most accumulated on the shortcut.

Related work

There are three categories for task scheduling strategies in cloud computing environ-
ments: focusing on performance by improving of cloud task schedulers (Category 1), 
considering multi-objective (e.g., QoS, energy consumption, financial cost, and SLA) 
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Fig. 1 An example of finding the shortest path
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for finding optimal solutions (Category 2), and using nature-inspired optimization algo-
rithms to solve cloud task scheduling problems (Category 3).

Category 1

The total processing time of cloud tasks is one of most important factors for schedulers. 
To reduce the total processing time, several research studies have been proposed with 
heuristic algorithms. In [7], the authors divided the scheduling problem into two parts: 
the diversity detection and improvement detection. Then, it dynamically selects one of 
the heuristic algorithms to solve the scheduling problem. In [8], the authors considered 
information of tasks (i.e., task completion time and size of tasks) and the information is 
used in the self-adaptive scheduling technique to reduce total processing time and aver-
age response time. To solve dependency issues of cloud tasks, the scheduling problem 
can be translated to the directed acyclic graph (DAG) [9]. To address the performance 
issue, the authors of [10] proposed a prioritizing scheme of the DAG of tasks and the 
authors of [11] proposed an AREA-Oriented scheduling (AO-scheduling) to compensate 
the defects of cloud based scheduling problems. The authors of [12] proposed a work-
flow scheduling based on directed search optimization (DSO) with artificial neural net-
work (ANN) and radial basis function neural network (RBFNN).

Category 2

In cloud computing environments, there are additional factors to be considered for 
scheduling tasks (e.g., QoS, energy consumption, financial cost, and SLA). To incorpo-
rate these influencing factors, a multi-objective optimization method has been proposed 
with four performance metrics (makespan, cost, deadline violation rate, and resource 
utilization) [13]. As energy consumption becomes the key issue for the operation and 
maintenance of cloud datacenters [14], the authors of [15] introduced the concept of 
skewness to measure the unevenness of servers’ resource utilization.

Category 3

As one of the nature-inspired optimization algorithms, ACO has been widely used for solv-
ing cloud task scheduling problems. In [16], the authors employed the concept of lazy ants 
for finding solutions. However, it introduces additional preprocessing time due to travel 
iterations. The authors of [17] used ACO to schedule cloud tasks with a random approach. 
Our slave ants based ant colony optimization algorithm for task scheduling differs from 
previous work in that we adapt diversification and reinforcement strategies with slave ants 
and the proposed ACO algorithm solves the global optimization problem with slave ants by 
avoiding long paths whose pheromones are wrongly accumulated by leading ants.

Although security issues are also of concern for using cloud computing environments, 
we focus on task scheduling mechanisms to improve the performance and server utiliza-
tion. Mitigating threats [18] and detecting attacks [19] in cloud computing environments 
are beyond the scope of this paper. Nonetheless, our approach can be applied in various 
cloud computing architectures since the scheduling component can be developed and 
easily integrated to the cloud system without dependency.
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Slave ants based ant colony optimization algorithm for task scheduling
System model

Figure  2 shows the architecture framework model for SACO. When a user submits a 
set of cloud tasks, the task manager accepts the tasks and manages them with the task 
scheduler. The task scheduler, on which the proposed task scheduling algorithm resides, 
is responsible for deciding the task allocation to resources. The task scheduler interacts 
with the resource manager, which is able to monitor the physical/logical resources and 
the flow of task allocation from the task scheduler.

The resource manager periodically monitors resources (physical and virtual machines) 
and stores information about CPU utilization and memory usage. Then, the stored infor-
mation can be used for the task scheduler. Therefore, the task scheduler maintains up-
to-date resource information by collecting and updating the system’s information from 
the resource manager.

The basic rules for scheduling cloud tasks are as follows: (1) it collects information 
about cloud tasks and resources from the resource manager, (2) it checks whether the 
resource VMj meets the requirement of the task Ti. Note that the requirement is depend-
ent on the specification of the scheduling algorithm, and (3) the scheduler allocates the 
task Ti to resource VMj with the help of the resource manager.

The proposed task scheduling algorithm

In ACO, there are rules for state transitions and pheromone updates. For the state transi-
tion rule, the probability that an ant transits from node i to j is determined by Eq. 1.

where α and β are parameters that determine the amount of pheromones and pheromone 
reinforcement. The symbols used in our ACO based algorithm are listed in Table 1.

To enhance the performance of the task scheduler in cloud computing environments, we 
adapt a diversification strategy with slave ants. The basic idea of the diversification strategy 
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Fig. 2 The system framework model for SACO
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is to have different probability parameters for slave ants to solve the task scheduling opti-
mization problem. The probability parameter for slave ants is determined by Eq. 2.

where ∀n ∈ {1, 2, …, k}, sn ≤ q0, and 0 < q0 < 1.
With Eq. 2, each slave ant of the colony system has a different probability parameter 

and less dependency with other ants.
To reduce makespan of cloud tasks, an effective pheromone update scheme is essential. 

For the reinforcement strategy, we employ the acceleration parameter of local pheromones 
evaporation. The local pheromone update rule used in our algorithm is based on Eq. 3.

where φ is the parameter for local pheromones evaporation and τ0 is the initial value of 
pheromone.

Based on the local pheromone update rule, the proposed global pheromone update 
rule can be applied with Eq. 4.

Algorithm 1 shows the proposed task scheduling algorithm based on ACO with slave 
ants. The input of the algorithm is a set of cloud tasks and resources (VMs) and the out-
put is the best mapping information between the tasks and resources. At the initial stage 
of a cycle, it releases all the ants of the colony system for finding solutions.

The assignment of a task to a resource is dependent on the probability parameter 
determined by Eq. 1. For an ant group (including a normal ant and its slave ants), makes-
pan information is updated (Line 10). With updated makespan information, one of ants 
will become a normal ant whose makespan is best for the group. Other ants except the 
elected normal ant become slave ants and one of slave ants whose make space is worst 
will be designated as a weak ant (Line 11–12). Then, the local pheromone update proce-
dure is performed (Line 13).

(2)sn = q0 × n/k ,

(3)τi,j = (1− φ− d)τi,j + φτ0,

(4)τi,j = (1− p)τi,j +�τ besti,j .

Table 1 The list of symbols used in the algorithm

Symbol Definition

Ti Task, ∀i ∈ {1, 2, …, n}

Rj Resource, ∀j ∈ {1, 2, …, m}

S A set of nodes an ant traveled

ηi,j The importance between node i and j

pi,j The probability that an ant transits from node i to j

τi,j The amount of pheromones between Ti and Rj
q0 The probability parameter for host ants

sn The probability parameter for slave ants, ∀n ∈ {1, 2, …, k}

k The number of slave ants of a host ant

α, β The parameters that determine pheromones and reinforcement

φ The parameter for local pheromones evaporation

d The parameter for acceleration of local pheromones evaporation

p The parameter for global pheromones evaporation
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After all the ants of the colony system finish the journey, the makespan information is 
recoded. Among normal ants, the one that has the best mapping information between 
cloud tasks and resources will be elected as a queen ant. Next, the global pheromone 
update procedure is performed. Then, the queen ant’s makespan is better than the exist-
ing map (Ti, Rj)best, the queen ant’s mapping is assigned to map (Ti, Rj)best (Line 17–19). 
Finally, the algorithm returns map (Ti, Rj)best. The next cycle will be performed again 
when the predefined condition is not met. Otherwise, the cloud scheduler deploys the 
cloud tasks to the resources with the returned mapping information.
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Performance evaluation
In this section, we provide experimental results to show the efficiency of the proposed 
cloud task scheduling algorithm in terms of makespan. Since cloud computing environ-
ments adapt virtualization technology [20], scalability should be considered enabling 
large-scale distribution [21]. Table 2 shows the experimental settings. To show the scal-
ability of the algorithm in terms of the number of tasks, we vary the number of cloud 
tasks from 100 to 700 in comparison with default ACO and IACO algorithms [17].

Figure  3 shows the performance results of makespan for ACO, IACO, and SACO. 
When the number of cloud tasks is 100 and 200, ACO outperforms IACO since IACO 

Table 2 Experimental settings

Parameter Value

The number of data centers 6

The number of hosts 6

Host memory 4096 MB

Host bandwidth 2660 MB/s

The number of CPUs [2, 4]

The number of VMs 50

The number of vCPU [1, 4]

vCPU capacity [500, 2000] MIPS

vRAM [256, 2048] MB

Bandwidth [500, 1000] MB/s

The number of cloud tasks [100, 700]

The required MIPS for tasks [100, 20,000]

File size of tasks [200, 400] MB

Output file size [20, 40] MB

Fig. 3 Performance results of ACO, IACO, and SACO as the number of cloud tasks increases (makespan)
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relies solely on uncertainty based on probability parameters. In other words, in IACO, 
the leading ants affect the global optimization and it is very prone to local minima.

The performance gaps among the three algorithms increases as the number of cloud 
tasks increases. When the number of cloud tasks is 200, the difference of the makespan 
between ACO and SACO is about 15 s, and that between IACO and SACO is about 5 s. 
However, when the number of cloud tasks is 700, the difference of makespan between 
ACO and SACO is over 50 s, and that between IACO and SACO is over 20 s. This sig-
nifies that SACO is cost-efficient, that is, a cloud user using our proposed task sched-
uling algorithm will pay less when there are many tasks to submit to cloud computing 
environments.

Figure 4 shows the performance results for ACO, IACO, and SACO (the preprocessing 
time + makespan). It is interesting to note that SACO does not outperform ACO and 
IACO when the number of cloud tasks is 100. The reason why SACO results in longer 
makespan is that SACO involves the preprocessing time for slave ants. However, this 
preprocessing overhead is negligible and it incurs once at the initial stage of task sched-
uling. As the number of cloud tasks increases, the makespan of SACO is always less than 
ACO and IACO. This shows the efficiency of the proposed task scheduling algorithm 
and the effectiveness of the pheromone update scheme based on slave ants.

Figure  5 depicts the performance results for ACO, IACO, and SACO with different 
experiments. ACO shows the worst performance among the three algorithms. The rea-
son why ACO results in the worst performance is that the leading ants affect the global 
optimization. In other words, if the leading ants travel long paths, it is hard to reach 
the shortcut among the paths. The performance results of IACO fluctuate with different 
experiments since it is based on a random approach. Therefore, IACO sometimes out-
performs SACO. However, SACO outperforms ACO and IACO on average. The average 
makespan of SACO is about 180 s, but that of ACO and IACO is about 220 and 200 s, 

Fig. 4 Performance results of ACO, IACO, and SACO as the number of cloud tasks increases (preprocessing 
time + makespan)
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respectively. Overall, the proposed cloud task scheduling algorithm guarantees the glob-
ally optimal solution with negligible preprocessing overheads.

Conclusions
In this paper, we proposed a novel ACO algorithm called SACO with slave ants for 
scheduling tasks in cloud computing environments. We adapt diversification and rein-
forcement strategies with slave ants to avoid long paths whose pheromones are wrongly 
accumulated by leading ants. The proposed algorithm introduces minimal preprocessing 
overheads for slave ants and outperforms the existing ACO based cloud tasks scheduling 
strategies. Experimental results show that SACO solves the NP-hard problem in an effi-
cient way, while maximizing utilization of cloud servers. Our future work is to consider 
heterogeneous clusters because the cost is determined also by the type of computing 
instances.
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