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Introduction
The finger vein authentication is highly accurate and convenient by using the individual’s 
unique biological characteristics. Vascular patterns are unique to each individual—even 
identical twins have different patterns. Finger vein authentication works based on the 
vein patterns in the superficial subcutaneous finger skin that are unique [1–3]. Three 
main advantages of vein authentication are following: (1) Because the finger veins are 
hidden inside human’s body, some little risks of forgery or theft appear in daily activities. 
The conditions on surface of the skin in finger, e.g. dry or wet, will have no effect on its 
authentication. (2) It is non-invasive and contactless in the finger vein imaging, which is 
convenient and cleanliness for the users. (3) The stability and complexity of finger vein 
patterns will be better than other biometric features on human’s body, which have the 
higher security level for personal identification [4].

The physiological information extracted from human body including the features of 
individual face, palm-print or fingerprint, hand-shape, skin, temperature and arte-
rial pulse, etc. is used to recognize personal identification and diagnose some diseases. 
The information mentioned above, plus subcutaneous superficial vein pattern, could be 
extracted and digitized as biometric data. It could be further represented as a typical 
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pattern in order to identify individual identification [5–9]. It is convenience to use the 
identified biometric to be the access right. The relative applications always focus in the 
remote access control in the websites, e.g. the website of finance or bank, etc. However, 
the image data of biometric is sensitive to the physiological conditions and environ-
ments. For example, the captured feature in human’s face, where the factors of its illu-
mination distribution and direction should be modified or normalized before storing it. 
It may exists lots of shadow images or noises in this captured image. Finally, Its features 
will then be strongly influenced by the shadow images or noises [10]. On the other hand, 
the non-uniformed illumination will increase the interference and redundant informa-
tion, or submerge some patterns. It will lead to the deformation of dimensionality. It is 
very important to normalize the captured biometric information before keeping them 
to the storage of biometric system [11, 12]. The similar problems mentioned above are 
also appeared in the finger vein image capturing processes [13–18]. The width of vein in 
the captured image will be changed under different intensity near-infrared light. Because 
thickness of each finger is different, the under/over-exposure may appears in the thick/
thin area of the finger by using one fixed-intensity-light. It will be inundated by this vein 
pattern. The vein pattern integrity is very important for the biometric system. Thus, it is 
necessary to normalize the illumination in the vein image capture before storing them in 
the biometric information storages or databases.

The main work of finger vein authentication is to collect the data: finger vein images. 
The quality of the image will affect directly the accuracy and its recognition speed. 
This paper presents the details in analyses of infrared finger vein images. In addition, 
the transmitting model is built from the observed data, e.g. multi-light-intensity vein 
images. Finally, the pixel level fusion method based on the transmitting model as well as 
spatial smoothing is proposed in this paper.

The remainders of this paper are organized as follows: in “The infrared light transmis-
sion model of the finger” section, we introduce the infrared light transmission model of 
the finger. In “Multi-light-intensity finger vein images’ fusion based on the transmitting 
model” section, we first formalize a multi-light-intensity finger vein images’ fusion based 
on the transmitting model. Next, we present examinations and discussions in “Examina-
tions and discussions” section. Finally, we draw our conclusions and further works in 
“Conclusions and further works” section.

The infrared light transmission model of the finger
This model is extended and modified from Ref. [3]. The steps of basic works from bio-
information to the biometric data in this model are described in “Basic works from bio-
information to the biometric data” section, and its single infrared transmitting model is 
described in “A single infrared transmitting model” section.

Basic works from bioinformation to the biometric data

The applications of the biometric data includes personal identification and disease diag-
nosis. The system architecture is illustrated from the bioinformation to the biometric 
data for a single infrared transmitting model in biometric system shown in Fig. 1. Obvi-
ously, the capturing, digitizing and normalizing methods of bioinformation should be 
efficient in order to record the complete pattern or texture feature information, uniform 
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gray distribution and contrast before their applications. This paper presents a single 
transmitting model of finger vein imaging in Biometric system and use it for fuse the 
multi-light-intensity finger vein images to one image, which integrates the vein pattern 
information of each source image and keeps the complete vein pattern information.

A single infrared transmitting model

The single infrared transmitting model described in this subsection. It is popular to 
use near-infrared (NIR) light transmitting the finger to achieve the angiogram imaging. 
Because the oxyhemoglobin content (HbO) in the venous blood is far beyond the arterial 
blood and other tissue, such as fat and muscle, the wavelength of the transmitting light 
absorption should be relatively high. Thus, the 760–1100 nm is suitable for the angio-
gram imaging from the absorption rate of the water, oxyhemoglobin (HbO) and deox-
yhemoglobin (Hb), which is shown in Fig.  2. This higher absorption property of HbO 
results in that the region of vein pattern is darker than other surrounding region after 
the NIR light transmitting the finger. This technology is widely used in the vascular vein 
imaging of breast and cerebral.

The tissue optical properties have been modeled based upon photon diffusion theory. 
The epidermis (the outermost layer of skin) only accounts for 6% of scattering and can be 
regarded a primary absorptive medium. Therefore, a simplified model on the reflectance 
of blood and tissue considers the reflectance from only the scattering tissue beneath the 
epidermis [12]. The skin is assumed to be a semi-infinite homogeneous medium, under 
a uniform and diffusive illumination. The photon has a relatively long residence time 
which allows the photon to engage in a random walk within the medium. The photon 
diffusion depends on the absorption and scattering properties of the skin, which pen-
etration depth for different wavelengths shown in Fig. 3.

Fig. 1  The system architecture
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Consider all these factors: the tissue (water, Hb and HbO) absorption in the vein, the 
depth of penetration. The infrared wave band of finger vein imaging is about 850 nm in 
practice.

Because the thickness of the finger is a nonlinear variable, it is hard to only use invari-
able light intensity to vein imaging at infrared 850 nm. Thus, overexposure and under-
exposure often appear in the infrared finger vein images. And these areas with over/
under exposure can’t be enhanced, which cause the vein pattern lack in the biometric 
data extraction. An infrared multi-light-intensity finger vein imaging technology is used 
in the paper [13] to solve the problem, which extends the dynamic range of the infrared 
vein imaging [14]. Additionally, it is necessary to fuse the complementary vein informa-
tion in the next process. This paper presents a calculation method of the infrared finger 

Fig. 2  The absorptivity of water, Hb, HbO in the finger’s vein [19]

Fig. 3  The penetration depth of different wavelengths [12]
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vein transmitting model based on the multi-light-intensity imaging. The model presents 
the monotone increasing nonlinear function relationship between the light-intensity and 
pixel-gray value, which can be built by the genetic algorithm and used in the imaging 
quality estimation of the pixel-level fusion to infrared multi-light-intensity finger vein 
images.

The infrared finger vein transmitting model [3] is defined as:

X is the irradiance of the infrared light of transmitting the finger, and B is represented 
as a pixel gray value. Generally, the gray level of the pixel is 8 bits. The infrared finger 
vein transmitting model function [3] is explicitly written as

Assume there are N  vein images captured under increasing light intensity 
Xp, p = 1, . . . ,N . The size of each image is m× n, sign K = m× n. The qth pixel of the pth 
light-intensity image will be denoted Bpq, the set 

{

Bpq

}

, p = 1, . . . ,N and q ∈ {1, . . . ,K } , 
represents the known observations. The goal is to determine the underlying light values 
or irradiances, denoted by Xq, that gave rise to the observations Bpq. Because the N  vein 
images has be properly registered in the pixel level, so that for a particular a, the light 
value Xa contributes to Bpq , p = 1, . . . ,N and q ∈ {1, . . . ,K }. For this work, a normalized 
cross-correlation function is used as the matching criterion to register images to 1/2-
pixel resolution [15].

The model can be rewritten as:

It means the transmitting model of position q is different. Nevertheless the shape of 
each model is similar, it gives an easy solution to estimate the transmitting model for 
each pixel for the application.

Since f is a monotonic and invertible function, its inverse function could be repre-
sented as g.

It is necessary to recover the function g and the irradiances of Xp, p = 1, . . . ,N , which 
satisfy the set of equations arising from Eq. (4) in a least-squared error sense. Recovering 
function g only requires recovering the finite number of values that g(B) could take since 
the domain of X, pixel brightness values, is finite. Letting Bmin and Bmax be the least and 
greatest pixel values (integers), q be the number of pixel locations and N  be the number 
of photographs, we formulate the problem as one of finding the [Bmin Bmax ] values of 
g(B) and the q values of X that minimize the following quadratic objective function [3]:

(1)B = f (X)

(2)







Bmin = 0,
B = f (X),
Bmax = 255,

if
if
if

X ≤ Xmin

Xmin < X < Xmax

Xmax ≤ X

(3)Bpq = fq(Xpq), p = 1, . . . ,N , q ∈ {1, . . . ,K }.

(4)Xpq = gq(Bpq), p = 1, . . . ,N , q ∈ {1, . . . ,K }.

(5)ξ =

N
∑

i=1

q
∑

j=1

[g(Bij)− Xi]
2 + �

b=Bmax−1
∑

b=Bmin+1

(g ′′(b))2
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The first term ensures that the solution satisfies the set of equations arising from 
Eq.  (4) in a least squares sense. The second term is a smoothness term on the sum of 
squared values of the second derivative of g to ensure that the function g is smooth; in 
this discrete setting, the second part can be calculated by the formula (6).

This smoothness term is essential to the formulation in that it provides coupling 
between the values g(z) in the minimization. The scalar weights the smoothness term 
relative to the data fitting term, and should be chosen appropriately for the amount of 
noise expected in the Bij measurements.

Because it is quadratic in the Xp and g(z)’s, minimizing ξ is a straightforward linear 
least squares problem. The overdetermined system of linear equations is robustly solved 
using the singular value decomposition (SVD) method. An intuitive explanation of the 
procedure may be found in “The infrared light transmission model of the finger” section 
and Fig. 2 of reference paper [15].

In the reference paper [16], the noise, in the Xp, is an independent Gaussian random 
variable, in which the variance is σ 2 and the joint probability density function can be 
written as:

A maximum-likelihood (ML) approach is taken to find the high dynamic range image 
values. The maximum likelihood solution finds the values Xq that maximize the prob-
ability in Eq. (7). Maximizing Eq. (7) is equivalent to minimizing the negative of its natu-
ral logarithm, which leads to the following objective function to be minimized:

With Gaussian simplifying approximation, the noise variances σ 2
pq would be difficult to 

characterize accurately. Again, detailed knowledge of the image capture process would 
be required, and the noise characterization would have to be performed each time a dif-
ferent image is captured on a device.

Equation (8) can be minimized by setting the gradient ξ(X) equal to zero. But if the 
Xp were unknown in each pixel, one could jointly estimate Xp and Xq by arbitrarily fix-
ing one of the q positions, and then performing an iterative optimization of Eq. (8) with 
respect to both Xp and Xq. It is difficult to solve these estimating values without the ana-
lytic expression of the transmitting model.

From the observed pixels, this paper presents the estimated transmitting model curve 
by the sliding the sampled curve segments, and blending these to a monotone increasing 
curve based on the genetic algorithm. So, if the blending curve is built or fit and then the 
other function curve can be redrawn by several sample points. It is possible to recover 
the blending curve shown in Fig. 4. The mixed complete curve g can be used to get the 
transmitting model function f , which is shown in Fig. 5.

(6)g ′′ = g(b+ 1)+ g(b− 1)− 2g(b)

(7)P(XB) ≺ exp







−
1

2

�

p,q

wpq(IBpq − Xpq)
2







(8)ξ(X) =
∑

p,q

wpq(IBpq − Xpq)
2
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Multi‑light‑intensity finger vein images’ fusion based on the transmitting 
model
This session presents a fusion algorithm for the multi-light-intensity finger vein images 
based on the transmitting model. In the image pixel level fusion, the imaging quality 
estimation of the pixel is very important. In Section II, the transmitting model has been 
established by the observed data. Its derivative curve is shown in Fig. 6. It is obvious that 
the value of �B is about zero in the underexposed and overexposed range. This means 
that the infrared light intensity in these ranges is not suitable for the finger vein imaging. 
On the other hand, the value �B could be used to evaluate the fitness of the irradiance of 
the infrared intensity.

Fig. 4  Sliding and blending the sampled curves into one complete curve [15]. a Three curves from the 
observed three points under five different irradiation conditions. b Sliding the curve and blending them to 
one curve
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In this paper, the fusion method is based on the pixel level. Firstly, the infrared multi-
light-intensity finger vein images are divided into R independent blocks by column.

To sign every divided block as Trp, r = 1, 2, . . . ,R and p = 1, 2, . . . ,N , where 
r is the index of the block, and p is the image number. In order to estimate the qual-
ity of each Trp, the average gray value of the block is calculated by its quality value as 
grp = mean2(Trp), r = 1, 2, . . . ,R and p = 1, 2, . . . ,N . Then, the grp is put into the deriv-
ative curve of Fig. 5 to calculate the �Bgrp

 value in the next fusion. The fusion weight 
value of the block Trp is defined [3] as:

The constant parameter α is the smoothing coefficient. In order to avoid the check-
erboard edge between two adjacent blocks, it needs to define other spatial smoothing 
weighting Grp:

(9)Srp = exp
[

α ·�Bḡrp

]

(10)Grp(x, y) = exp

[

−
(y− yc)

2

2σ 2

]

Fig. 6  The derivatives function curve to Fig. 5

Fig. 5  A transmitting model curve of a finger
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The constant parameter σ is the variance of the Gaussian coefficient. x is the row num-
ber and y is the column number in the finger vein image, and yc is the block center col-
umn number.

The weighting is the joint value of the gray information coefficient Srp and spatial 
smoothing coefficient Grp. The joint weighting is defined as:

Its normalized value is defined as:

In the fusion, each fused block Ir , r = 1, 2, . . . ,R is calculated by Eq. (13) [3]:

(11)ωrp = Grp ∗ Srp

(12)
̟rp = ωrp

�





N
�

p=1

ωrp





(13)Ir =

N
∑

p=1

(Irp ∗ ωrp), r = 1, 2, . . . ,R

Fig. 7  The finger vein images captured through ten different light intensities. a Duty of PWM is 10%. b Duty 
of PWM is 20%. c Duty of PWM is 30%. d Duty of PWM is 40%. e Duty of PWM is 50%. f Duty of PWM is 60%. g 
Duty of PWM is 70%. h Duty of PWM is 80%. i Duty of PWM is 90%. j Duty of PWM is 100%
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Examinations and discussions
The sample of infrared multi-light-intensity finger vein images is shown in Fig. 7, which 
is captured by a self-developed platform, shown in Fig. 8. The infrared light intensity is 
dependent on the duty of PWM, which drives the infrared led irradiance. The transmit-
ting model is shown in Fig. 9 and the differential curve is shown in Fig. 10.

In the fusion step, the three finger vein images are selected to the weighting fuse [17, 18], 
which is Fig. 7c–e. Each of them has been divided into ten blocks by the column shown in 
Fig. 11. According to the transmitting model curve, the most suitable blocks are blending 
to one finger vein image, which is shown in Fig. 12. The weighting value of Srp can be cal-
culated by Eq. (9), which is shown in Fig. 13. The weighting value of Grp could be calculated 
by Eq. (10), which is shown in Fig. 14. The joint weighting value of wrp can be calculated 

Fig. 8  The infrared multi-light-intensity finger’s vein image capturing platform

Fig. 9  The transmitting model curve of the samples
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by Eq. (11), which is shown in Fig. 15. The fusion finger vein image is blended by Eq. (12), 
which is shown in Fig. 16.     

Two other fuse methods are tested for the performance comparison in this paper. 
One is discrete wavelet transform (DWT) and the other is contrast pyramid, which 
flow charts are shown in Fig. 17. The source images are decomposed by discrete wavelet 
transform. And chooses the max coefficient at each pixel before the image rebuild. The 

Fig. 10  The differential curve of Fig. 9

Fig. 11  The three finger vein images are selected from Fig. 7, and each of them has been divided into 10 
blocks

Fig. 12  The blending of one finger’s vein image from the most suitable blocks from Fig. 11a–c
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source images are pyramid decomposed by the down sample. And calculate the contrast 
at each pixel. The pyramid layer which has max contrast value is choice before the pyra-
mid image rebuild.

The fused performance is tested by the following statistics method [3]. The standard 
deviation of an image is defined as formula (14), µ is the mean value of the image I in 
which the size is m× n and σ is the standard deviation.

Fig. 13  The weighting value of Srp to Fig. 11

Fig. 14  The weighting value of Grp to Fig. 11
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The Shannon Information entropy of the image is defined as formula (15), the P(gray) 
is the gray probability of the pixel in the image I:

(14)

µ =
1

m ∗ n

m
∑

x=1

n
∑

y=1

I(x, y)

σ =

√

√

√

√

1

m ∗ n

m
∑

x=1

n
∑

y=1

(I(x, y)− µ)

(15)H(I) = −

255
∑

gray=1

P(gray) log2[P(gray)]

Fig. 15  The weighting value of ωrp to Fig. 11

Fig. 16  The fused finger vein image of Fig. 11
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The standard deviation and information entropy of multi-light-intensity finger vein 
images together with the fused image by proposed method are shown in Table  1 [3]. 
However, the standard deviation and information entropy of the fused image is less than 
Figs. 2, 3, and 4, that means the gray uniformity and consistency of the fused image is 
better than Figs. 2, 3, and 4. For the image of Fig. 10a, its gray contrast is quite low, in 
which the image is nearly under exposure.

The degree of dependence between one source image and the fused image could be 
measured by the mutual information (FMI), which can be calculated by the formula (16):

Fig. 17  The flow chats of DWT and contrast pyramid fuse. a Discrete wavelet transform fuse flow chart. b 
Contrast pyramid fuse flow chart

Table 1  The pixel level statistics of  the multi-light-intensity images and  proposed fused 
image

Images Standard deviation Information entropy

Figure 11a 29.51 6.74

Figure 11b 37.79 7.18

Figure 11c 34.53 7.09

Proposed fuse image 27.31 6.69

DWT fuse image 34.64 7.09

Contrast pyramid image 37.56 7.19
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In the formula (16), MI(Ii, If ) is defined as formula (17), and the joint histogram 
between the source image Ii and the fused image If  is defined as h(Ii, If ).

The results of fusion mutual information (MI) between the source image and the fused 
image are shown in Table  2 [3]. The MI between the three source images and fused 
image is the sum of the MI of each source image and fused image.

The information fused from the source images could be calculated as the fusion quality 
index (FQI), which could be calculated by Eq. (18).

where �i is computed over a window w, which can be calculated by the formula (19):

c(w) is a normalized version of C(w), which can be calculated by the formula (20):

(16)FMI =

4
∑

i=1

MI(Ii, If )

(17)MI(Ii, If ) =

m
∑

x=1

n
∑

y=1

h(Ii(x, y), If (x, y))· log2

(

h(Ii(x, y), If (x, y))

h(Ii(x, y)) · h(If (x, y))

)

(18)FQI =
∑

w∈W

c(w)

(

4
∑

i−1

�(i)QI(Ii, If |w)

)

,

(19)�i = σ 2
Ii

/ 4
∑

i=1

σ 2
Ii

Table 2  The fusion mutual information between the source image and the fused images

MI Figure 11a Figure 11b Figure 10c Figure 11a–c

Proposed fuse image 5.85 6.77 6.93 19.55

DWT fuse image 6.85 7.22 7.42 21.50

Contrast pyramid image 6.93 7.32 7.60 21.89

Table 3  The fused mutual information between the source image and the fused images

The fused mutual information Proposed fused image DWT fused image Contrast pyramid image

FQI 0.5719 0.5991 0.6012

Table 4  The fused mutual information between the source image and the fused images

SSIM Figure 10a Figure 10b Figure 10c

Proposed fused image 0.9541 0.9069 0.8235

DWT fuse image 0.9229 0.9402 0.9150

Contrast pyramid image 0.9270 0.9673 0.9425
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QI
(

Ii, If |w
)

 is the quality index over a window for a given source image and fused 
image.

In the test, the size of the window is 8 × 8. The FQI values of the fusion quality index 
are shown in Table 3 [3].

In order to compare the fused performance, the structural similarity index measure 
(SSIM) is applied in this test. The results are shown in Table 4 [3].

The results of Tables 1, 2, 3 and 4 show that the proposed fused method based on the 
column blocking of the image is effective applied to the infrared multi-light-intensity fin-
ger vein images.

Conclusions and further works
The infrared finger-transmitting model is proposed in this paper, which it could be easily 
built by the observed data of multiple light-intensity images. This model provides a bet-
ter approach to get the intact vein patterns by adopting the vein biometric data captured 
by the bioinformation. The features of captured image are estimated and fused by using 
this model’s differential curves. In this paper, the examination approach has been proven 
that it is an efficient and practical method for the finger’s fusion approach via infrared 
transmitting model. It is suitable for fusion of the infrared images in biometric system. 
Finally, the applications in detail and their analyses on while applying the multi-light-
intensity finger vein images’ fusion which is based on the transmitting model to big data 
environments will be stated in future works.
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