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Introduction
Data mining is a series of tasks for finding interesting knowledge from various types 
of data, and its merits have attracted much research attention such as clustering [5], a 
phishing url detection system [7], and other interesting studies [3, 4, 11, 12]. Pattern 
mining is one of data mining techniques to discover useful information from huge data-
bases, and it extracts such information in pattern forms. Although traditional pattern 
mining [1, 6] that discover patterns which are frequent has played an significant role in 
the data mining field, this approach not only treats all items in databases with the same 
importance but also represents item occurrence as a binary form, i.e., 0 or 1. In addition, 
it cannot reflect characteristics of real-world databases that can be incremented, deleted 
and modified to pattern mining completely. High utility pattern mining has been pro-
posed and researched to overcome the limitations. Furthermore, database sizes become 
larger incrementally in various real-world applications and previous general static meth-
ods are not suitable for finding meaningful information efficiently from such databases. 
Incremental high utility pattern mining [2, 8, 10, 14] has been studied to mine essential 
information from dynamic databases that new records are inserted continuously by con-
sidering real characteristics of them. In this paper, we provide how tree-based pattern 
mining methods deal with incremental environments. In addition, we conduct analysis 
on tree-based methods that discover high utility patterns in incremental environments. 
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In addition, we also conduct performance evaluation for the methods with famous 
benchmark datasets in order to determine their detailed characteristics. The evaluation 
shows that the less candidate patterns make algorithms faster.
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Through the various tests, performances of the methods were evaluated, and we analysis 
of what causes performance difference.

The remainder of this paper is organized as follows. In “Related work” section, we 
describe influential researches related to tree-based incremental high utility pattern 
mining. In “Tree-based incremental high utility pattern mining” section, we analyze 
characteristics of recent tree-based methods for incremental high utility pattern mining 
through experiments for performance evaluation with real datasets and study direction 
of improvements based on experimental results. Lastly, in “Performance analysis” sec-
tion, we summarize contributions of this paper.

Related work
In this section, we describe two types of related studies: traditional frequent pattern 
mining and high utility pattern mining for static databases.

Frequent pattern mining

Apriori [1] and FP-Growth [6] are well-known BFS and DFS frequent pattern mining 
algorithms respectively. The former utilizes a candidate generation-and-test approach, 
which causes the performance degradation since this method makes a large number of 
candidates and requires multiple database scans. The latter conducts a series of mining 
processes through only two database scans without candidate generation by employing a 
divide-and-conquer manner. In general, FP-Growth-like algorithms outperform Apriori-
based ones. In pattern mining, meanwhile, the anti-monotone property [1] is used for 
efficient mining. This suggests that if a pattern is not valid due to its smaller frequency 
than a given threshold, then its super patterns are not also valid. When an invalid pat-
tern is found in mining processes, the pattern’s search space is can be eliminated, which 
improves mining efficiency. Therefore, satisfying this property is an essential criterion in 
pattern mining. To discover frequent patterns more efficiently, various studies such as 
applying cellular learning automata [13] have been conducted.

High utility pattern mining

In utility mining, maintaining the anti-monotone property is not easy and Two-Phase [9] 
is the first algorithm that satisfies the property by applying the overestimation concept, 
called transaction weighted utilization (twu), to mining processes. This model gener-
ates candidates with no smaller overestimation values than a given threshold in the first 
phase and then identifies actual high utility patterns by computing their utility values 
through an additional database scan. Since the twu concept was suggested, although var-
ious static algorithms with the overestimation model have been developed, they are not 
appropriate for handling dynamic databases. Table 1 is an example of a utility database, 
and Table 2 is a set of the corresponding external utility values. Transaction utility (TU) 
of a transaction is a sum of utility values of all items in the transaction. There are recent 
studies such as the EFIM algorithm [15] to improve mining performance when discover-
ing high utility patterns.
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Tree‑based incremental high utility pattern mining
In contrast to the previous static approaches where the whole mining processes have to 
be conducted whenever a target database is increased, incremental high utility pattern 
mining methods simply reflect new information to the current data structures for deal-
ing with the dynamic database.

Below are the fundamental definitions of high utility pattern mining.

Definition 1 (Utility of an item in a transaction)  Given an item, ip, belonging to a 
transaction, Ti, the utility of ip is denoted as u(ip, Ti) and calculated by multiplying its 
internal utility, iu(ip, Ti), and its external utility, eu(ip). In the example of Tables 1 and 2, 
u(C, TID:001) = 2 × 5 = 10.

Definition 2 (Utility of a pattern in a transaction)  Given a pattern, P = {i1, i2, . . . , ik}, 
included in a transaction, Ti, the utility of P is denoted as u(P, Ti) and calculated as 
follows: ∑u(ip, Ti), where ip ∈ P and P ⊆ Ti. For example, u(CE, TID:001)  =  u(C, 
TID:001) + u(E, TID:001) = 10 + 21 = 31.

Definition 3 (Utility of a pattern)  For pattern P = {i1, i2, . . . , ik}, belonging to a given 
database, DB, its utility, denoted as u(P), is calculated as follows: ∑u(P, Ti), where P ⊆ Ti 
and Ti ∈ DB. For example, u(CE) = u(CE, TID:001) + u(CE, TID:003) = 31 + 12 = 43.

In incremental high utility pattern mining, algorithms build global data structures 
with the original databases, generate candidate patterns, and identify actual high utility 
patterns from the candidates. After that, when new transaction information is added to 
the original databases, the incremental approaches update the data structures, optimize 
them, and conduct mining processes. Figure 1 shows a simple overall process of incre-
mental high utility pattern mining. In the figure, there are two types of data, the original 
and incremented ones. As explained above, a set of high utility patterns is mined from 
the original data and then updated pattern results are extracted by handling only the 
incremented data.

Table 1  Example database for high utility pattern mining

TID Transaction TU

001 (C, 2) (E, 3) 31

002 (A, 2) (B, 1) (D, 1) 14

003 (C, 1) (D, 2) (E, 1) 24

004 (A, 2) (B, 1) (F, 4) 12

005 (G, 2) 18

Table 2  External utilities of the example database

Item A B C D E F G

External utility 3 2 5 6 7 1 9
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FUP-HU [8] is an Apriori-based incremental high utility pattern mining algorithm 
and can reflect characteristics of real-world databases to pattern mining. However, 
this method requires a lot of database scans and operations. To address this issue, FP-
Growth-based algorithms with tree data structures, incremental high utility pattern 
(IHUP) [2] and high utility patterns in incremental databases (HUPID) [14], were pro-
posed. IHUP applies the overestimation model of the Two-Phase algorithm [5] to its 
mining processes. For incremental high utility pattern mining, IHUP firstly constructs 
a tree data structure through a single database scan, extracts candidate patterns, and 
identifies actual high utility patterns from them with an additional scan. Although this 
algorithm mines valid patterns faster than the previous Apriori-based ones by utilizing 
the FP-Growth approach, it still generates a large number of candidates and consumes 
high computational time for the identification of actual patterns. To address this issue, 
HUPID extracts the fewer number of candidate patterns by reducing the overestimation 
values, through which it improves mining performance of tree-based incremental high 
utility pattern mining.

Performance analysis
In this section, we evaluate mining performance of tree-based incremental high utility 
pattern mining algorithms, IHUP [2] and HUPID [14], in terms of runtime and the num-
ber of generated candidate patterns with the Chain-store dataset (http://cucis.ece.north-
western.edu/projects/DMS/MineBench.html), where real utility information is included. 
All performance experiments were conducted on an experimental environment with 
a 4.0 GHz Intel processor and 32 GB memory, running the 64 bit Windows 7 OS. For 

Fig. 1  Overall process of incremental high utility pattern mining

http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
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the performance evaluation in an incremental environment, we first used only 20% of 
the dataset, and then added each 20% of the rest to the initial data. With the incremen-
tal data, we repeatedly constructed tree data structures of the algorithms, restructured 
them, and conducted mining processes.

Figures  2 and 3 show experimental results of the performance evaluation for IHUP 
and HUPID with the incremental Chain-store dataset in terms of runtime and the num-
ber of candidates when a minimum utility threshold is 0.03%. From the figure, we can 
observe that runtime is proportional to the number of extracted candidate patterns. In 
the results, moreover, HUPID mines the same number of high utility patterns faster than 
IHUP by generating the smaller number of candidates.

Figures  4 and 5 present the performance evaluation results of the algorithms with 
respect to the Accidents dataset, where the minimum utility threshold is set to 40%. 
As in the case of the previous test for Chain-store, HUPID shows better performance 
than that of IHUP. The reason why HUPID guarantees faster runtime performance is 
that the algorithm can extract a smaller number of candidate patterns. Recall that tree-
based high utility pattern mining methods cannot directly actual high utility patterns 
since the utility factor does not satisfy the anti-monotone property. For this reason, they 

Fig. 2  Experimental results of runtimes on Chain-store

Fig. 3  Experimental results of number of candidates on Chain-store
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have used overestimation techniques to maintain this property. Since the overestimation 
approach has no choice but to extract a number of candidate patterns larger than that of 
actual high utility patterns, it has been considered as an important issue to reduce the 
number of generated candidates as many as possible. If the number of mined candidates 
becomes lower, the corresponding algorithm performance is naturally improved. In this 
regard, there is no doubt that HUPID outperforms IHUP since the algorithm can mine a 
smaller number of candidate patterns as shown in the figure.

Figures 6 and 7 show the experimental results for the Retail dataset, where the mini-
mum utility threshold is set to 0.08%. When the database size is 20%, the runtime gap 
between the algorithms is very large, but the gap decreases as the database size becomes 
large because of the number of candidate patterns. Nevertheless, the performance of 
HUPID is always better than that of IHUP.

In the results of the Connect dataset, HUPID also has the best performance as shown 
in Figs.  8 and 9, where the minimum utility threshold is set to 92%. As shown in the 
figure, HUPID presents stable runtime performance regardless of the database size. On 
the other hand, IHUP shows different runtime results depending on the size settings. 
As the size of the Connect dataset becomes larger, its density feature becomes stronger. 
Therefore, the number of generated candidate patterns also decreases as the database 

Fig. 4  Experimental results of runtimes on Accidents

Fig. 5  Experimental results of number of candidates on Accidents
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size becomes larger. However, since HUPID always extracts a smaller number of candi-
dates in every case, its runtime performance is also always better than that of IHUP.

From the above experimental results, we can learn that performance of incremental 
high utility pattern mining algorithms depends on how many candidate patterns are 

Fig. 6  Experimental results of runtimes on Retail

Fig. 7  Experimental results of number of candidates on Retail

Fig. 8  Experimental results of runtimes on Connect
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extracted, and as a result developing an effective method for decreasing their number 
can be a good future work.

Conclusion
In this paper, we described the characteristics of various tree-based high utility pat-
tern mining methods designed to handle incremental stream data. In addition, we also 
conducted extensive performance evaluation with respect to well-known benchmark 
datasets in order to analyze detailed features of recent incremental high utility pattern 
mining approach. The results of the performance analysis showed HUPID generates 
a smaller number of candidates than the other tree-based method and faster than the 
other one. The number of generated candidate patterns has a significant effect on runt-
ime performance of algorithms. That is, we determined that an algorithm has better per-
formance as it mines a smaller number of candidates on the tree-based structure. We are 
scheduled to research a variety of concepts and methods for mining patterns in dynamic 
environments as our future work.
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