
Analyzing of incremental high utility
pattern mining based on tree structures
Judae Lee, Unil Yun* and Gangin Lee

Introduction
Data mining is a series of tasks for finding interesting knowledge from various types
of data, and its merits have attracted much research attention such as clustering [5], a
phishing url detection system [7], and other interesting studies [3, 4, 11, 12]. Pattern
mining is one of data mining techniques to discover useful information from huge data-
bases, and it extracts such information in pattern forms. Although traditional pattern
mining [1, 6] that discover patterns which are frequent has played an significant role in
the data mining field, this approach not only treats all items in databases with the same
importance but also represents item occurrence as a binary form, i.e., 0 or 1. In addition,
it cannot reflect characteristics of real-world databases that can be incremented, deleted
and modified to pattern mining completely. High utility pattern mining has been pro-
posed and researched to overcome the limitations. Furthermore, database sizes become
larger incrementally in various real-world applications and previous general static meth-
ods are not suitable for finding meaningful information efficiently from such databases.
Incremental high utility pattern mining [2, 8, 10, 14] has been studied to mine essential
information from dynamic databases that new records are inserted continuously by con-
sidering real characteristics of them. In this paper, we provide how tree-based pattern
mining methods deal with incremental environments. In addition, we conduct analysis
on tree-based methods that discover high utility patterns in incremental environments.

Abstract 

Since the concept of high utility pattern mining was proposed to solve the drawbacks
of traditional frequent pattern mining approach that cannot handle various features of
real-world applications, many different techniques and algorithms for high utility pat-
tern mining have been developed. Moreover, several advanced methods for incremen-
tal data processing have been proposed in recent years as the sizes of recent databases
obtained in the real world become larger. In this paper, we introduce the basic concept
of incremental high utility pattern mining and analyze various relevant methods.
In addition, we also conduct performance evaluation for the methods with famous
benchmark datasets in order to determine their detailed characteristics. The evaluation
shows that the less candidate patterns make algorithms faster.

Keywords:  Data mining, Pattern mining, Utility mining, Incremental mining,
High utility patterns, Tree-based algorithms

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31
DOI 10.1186/s13673-017-0112-7

*Correspondence:
yunei@sejong.ac.kr
Dept. of Computer
Engineering, Sejong
University, Seoul, South Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-017-0112-7&domain=pdf

Page 2 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

Through the various tests, performances of the methods were evaluated, and we analysis
of what causes performance difference.

The remainder of this paper is organized as follows. In “Related work” section, we
describe influential researches related to tree-based incremental high utility pattern
mining. In “Tree-based incremental high utility pattern mining” section, we analyze
characteristics of recent tree-based methods for incremental high utility pattern mining
through experiments for performance evaluation with real datasets and study direction
of improvements based on experimental results. Lastly, in “Performance analysis” sec-
tion, we summarize contributions of this paper.

Related work
In this section, we describe two types of related studies: traditional frequent pattern
mining and high utility pattern mining for static databases.

Frequent pattern mining

Apriori [1] and FP-Growth [6] are well-known BFS and DFS frequent pattern mining
algorithms respectively. The former utilizes a candidate generation-and-test approach,
which causes the performance degradation since this method makes a large number of
candidates and requires multiple database scans. The latter conducts a series of mining
processes through only two database scans without candidate generation by employing a
divide-and-conquer manner. In general, FP-Growth-like algorithms outperform Apriori-
based ones. In pattern mining, meanwhile, the anti-monotone property [1] is used for
efficient mining. This suggests that if a pattern is not valid due to its smaller frequency
than a given threshold, then its super patterns are not also valid. When an invalid pat-
tern is found in mining processes, the pattern’s search space is can be eliminated, which
improves mining efficiency. Therefore, satisfying this property is an essential criterion in
pattern mining. To discover frequent patterns more efficiently, various studies such as
applying cellular learning automata [13] have been conducted.

High utility pattern mining

In utility mining, maintaining the anti-monotone property is not easy and Two-Phase [9]
is the first algorithm that satisfies the property by applying the overestimation concept,
called transaction weighted utilization (twu), to mining processes. This model gener-
ates candidates with no smaller overestimation values than a given threshold in the first
phase and then identifies actual high utility patterns by computing their utility values
through an additional database scan. Since the twu concept was suggested, although var-
ious static algorithms with the overestimation model have been developed, they are not
appropriate for handling dynamic databases. Table 1 is an example of a utility database,
and Table 2 is a set of the corresponding external utility values. Transaction utility (TU)
of a transaction is a sum of utility values of all items in the transaction. There are recent
studies such as the EFIM algorithm [15] to improve mining performance when discover-
ing high utility patterns.

Page 3 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

Tree‑based incremental high utility pattern mining
In contrast to the previous static approaches where the whole mining processes have to
be conducted whenever a target database is increased, incremental high utility pattern
mining methods simply reflect new information to the current data structures for deal-
ing with the dynamic database.

Below are the fundamental definitions of high utility pattern mining.

Definition 1 (Utility of an item in a transaction)  Given an item, ip, belonging to a
transaction, Ti, the utility of ip is denoted as u(ip, Ti) and calculated by multiplying its
internal utility, iu(ip, Ti), and its external utility, eu(ip). In the example of Tables 1 and 2,
u(C, TID:001) = 2 × 5 = 10.

Definition 2 (Utility of a pattern in a transaction)  Given a pattern, P = {i1, i2, . . . , ik},
included in a transaction, Ti, the utility of P is denoted as u(P, Ti) and calculated as
follows: ∑u(ip, Ti), where ip ∈ P and P ⊆ Ti. For example, u(CE, TID:001) = u(C,
TID:001) + u(E, TID:001) = 10 + 21 = 31.

Definition 3 (Utility of a pattern)  For pattern P = {i1, i2, . . . , ik}, belonging to a given
database, DB, its utility, denoted as u(P), is calculated as follows: ∑u(P, Ti), where P ⊆ Ti
and Ti ∈ DB. For example, u(CE) = u(CE, TID:001) + u(CE, TID:003) = 31 + 12 = 43.

In incremental high utility pattern mining, algorithms build global data structures
with the original databases, generate candidate patterns, and identify actual high utility
patterns from the candidates. After that, when new transaction information is added to
the original databases, the incremental approaches update the data structures, optimize
them, and conduct mining processes. Figure 1 shows a simple overall process of incre-
mental high utility pattern mining. In the figure, there are two types of data, the original
and incremented ones. As explained above, a set of high utility patterns is mined from
the original data and then updated pattern results are extracted by handling only the
incremented data.

Table 1  Example database for high utility pattern mining

TID Transaction TU

001 (C, 2) (E, 3) 31

002 (A, 2) (B, 1) (D, 1) 14

003 (C, 1) (D, 2) (E, 1) 24

004 (A, 2) (B, 1) (F, 4) 12

005 (G, 2) 18

Table 2  External utilities of the example database

Item A B C D E F G

External utility 3 2 5 6 7 1 9

Page 4 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

FUP-HU [8] is an Apriori-based incremental high utility pattern mining algorithm
and can reflect characteristics of real-world databases to pattern mining. However,
this method requires a lot of database scans and operations. To address this issue, FP-
Growth-based algorithms with tree data structures, incremental high utility pattern
(IHUP) [2] and high utility patterns in incremental databases (HUPID) [14], were pro-
posed. IHUP applies the overestimation model of the Two-Phase algorithm [5] to its
mining processes. For incremental high utility pattern mining, IHUP firstly constructs
a tree data structure through a single database scan, extracts candidate patterns, and
identifies actual high utility patterns from them with an additional scan. Although this
algorithm mines valid patterns faster than the previous Apriori-based ones by utilizing
the FP-Growth approach, it still generates a large number of candidates and consumes
high computational time for the identification of actual patterns. To address this issue,
HUPID extracts the fewer number of candidate patterns by reducing the overestimation
values, through which it improves mining performance of tree-based incremental high
utility pattern mining.

Performance analysis
In this section, we evaluate mining performance of tree-based incremental high utility
pattern mining algorithms, IHUP [2] and HUPID [14], in terms of runtime and the num-
ber of generated candidate patterns with the Chain-store dataset (http://cucis.ece.north-
western.edu/projects/DMS/MineBench.html), where real utility information is included.
All performance experiments were conducted on an experimental environment with
a 4.0 GHz Intel processor and 32 GB memory, running the 64 bit Windows 7 OS. For

Fig. 1  Overall process of incremental high utility pattern mining

http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

Page 5 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

the performance evaluation in an incremental environment, we first used only 20% of
the dataset, and then added each 20% of the rest to the initial data. With the incremen-
tal data, we repeatedly constructed tree data structures of the algorithms, restructured
them, and conducted mining processes.

Figures 2 and 3 show experimental results of the performance evaluation for IHUP
and HUPID with the incremental Chain-store dataset in terms of runtime and the num-
ber of candidates when a minimum utility threshold is 0.03%. From the figure, we can
observe that runtime is proportional to the number of extracted candidate patterns. In
the results, moreover, HUPID mines the same number of high utility patterns faster than
IHUP by generating the smaller number of candidates.

Figures 4 and 5 present the performance evaluation results of the algorithms with
respect to the Accidents dataset, where the minimum utility threshold is set to 40%.
As in the case of the previous test for Chain-store, HUPID shows better performance
than that of IHUP. The reason why HUPID guarantees faster runtime performance is
that the algorithm can extract a smaller number of candidate patterns. Recall that tree-
based high utility pattern mining methods cannot directly actual high utility patterns
since the utility factor does not satisfy the anti-monotone property. For this reason, they

Fig. 2  Experimental results of runtimes on Chain-store

Fig. 3  Experimental results of number of candidates on Chain-store

Page 6 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

have used overestimation techniques to maintain this property. Since the overestimation
approach has no choice but to extract a number of candidate patterns larger than that of
actual high utility patterns, it has been considered as an important issue to reduce the
number of generated candidates as many as possible. If the number of mined candidates
becomes lower, the corresponding algorithm performance is naturally improved. In this
regard, there is no doubt that HUPID outperforms IHUP since the algorithm can mine a
smaller number of candidate patterns as shown in the figure.

Figures 6 and 7 show the experimental results for the Retail dataset, where the mini-
mum utility threshold is set to 0.08%. When the database size is 20%, the runtime gap
between the algorithms is very large, but the gap decreases as the database size becomes
large because of the number of candidate patterns. Nevertheless, the performance of
HUPID is always better than that of IHUP.

In the results of the Connect dataset, HUPID also has the best performance as shown
in Figs. 8 and 9, where the minimum utility threshold is set to 92%. As shown in the
figure, HUPID presents stable runtime performance regardless of the database size. On
the other hand, IHUP shows different runtime results depending on the size settings.
As the size of the Connect dataset becomes larger, its density feature becomes stronger.
Therefore, the number of generated candidate patterns also decreases as the database

Fig. 4  Experimental results of runtimes on Accidents

Fig. 5  Experimental results of number of candidates on Accidents

Page 7 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

size becomes larger. However, since HUPID always extracts a smaller number of candi-
dates in every case, its runtime performance is also always better than that of IHUP.

From the above experimental results, we can learn that performance of incremental
high utility pattern mining algorithms depends on how many candidate patterns are

Fig. 6  Experimental results of runtimes on Retail

Fig. 7  Experimental results of number of candidates on Retail

Fig. 8  Experimental results of runtimes on Connect

Page 8 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

extracted, and as a result developing an effective method for decreasing their number
can be a good future work.

Conclusion
In this paper, we described the characteristics of various tree-based high utility pat-
tern mining methods designed to handle incremental stream data. In addition, we also
conducted extensive performance evaluation with respect to well-known benchmark
datasets in order to analyze detailed features of recent incremental high utility pattern
mining approach. The results of the performance analysis showed HUPID generates
a smaller number of candidates than the other tree-based method and faster than the
other one. The number of generated candidate patterns has a significant effect on runt-
ime performance of algorithms. That is, we determined that an algorithm has better per-
formance as it mines a smaller number of candidates on the tree-based structure. We are
scheduled to research a variety of concepts and methods for mining patterns in dynamic
environments as our future work.
Authors’ contributions
JL suggested the proposed algorithm and wrote the contents of this paper. GL wrote the contents of this paper and
reviewed this manuscript. UY provided the main idea of this paper, designed the overall architecture of the proposed
algorithm. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data will not be shared because of individual acquisition.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This study was funded by the Ministry of Education, Science and Technology of the National Research Foundation of
Korea (NRF Nos. 20152062051 and 20155054624).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fig. 9  Experimental results of number of candidates on Connect

Page 9 of 9Lee et al. Hum. Cent. Comput. Inf. Sci. (2017) 7:31

Received: 10 March 2017 Accepted: 14 August 2017

References
	1.	 Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th international

conference on very large data bases Santiago de Chile, pp 487–499
	2.	 Ahmed CF, Tanbeer SK, Jeong B-S, Lee Y-K (2009) Efficient tree structures for high utility pattern mining in incremen-

tal databases. IEEE Trans Knowl Data Eng 21(12):1708–1721
	3.	 Cho Y, Moon S (2015) Recommender system using periodicity analysis via mining sequential patterns with time-

series and frat analysis. J Converg 6(1):9–17
	4.	 Choi J, Shin H, Nasridinov A (2016) A comparative study on data mining classification techniques for military appli-

cations. J Converg 7
	5.	 Gaur M, Pant B (2015) Trusted and secure clustering in mobile pervasive environment. Hum Centric Comput Inf Sci.

5(1):1–17
	6.	 Han J, Pei J, Yin Y (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach.

Data Min Knowl Discov 8(1):53–87
	7.	 Jeeva S, Rajsingh E (2016) Intelligent phishing url detection using association rule mining. Hum Centric Comput Inf

Sci. 6(1):1–19
	8.	 Lin C-W, Lan G-C, Hong T-P (2012) An incremental mining algorithm for high utility itemsets. Expert Syst Appl

39(8):7173–7180
	9.	 Liu Y, Liao W-K, Choudhary (2005) AN a Two-Phase algorithm for fast discovery of high utility itemsets. Adv Knowl

Discov Data Min. Hanoi 689–695
	10.	 Ryang H, Yun U, Lee G, Kim D, Jung W, Lee J, Gwon G (2016) Performance analysis of incremental high utility pattern

mining methods. Korea Internet Inf Soc 17(2):99–100
	11.	 Sato A, Huang R, Yen N (2015) Design of fusion technique-based mining engine for smart business. Hum Centric

Comput Inf Sci. 5(1):1–16
	12.	 Sanna G, Angius A, Concas G, Manca D, Eros F (2015) PCE: a knowledge base of semantically disambiguated con-

tents. J Converg 6(2):10–18
	13.	 Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. Comput Hum Behav

68:244–253
	14.	 Yun U, Ryang H (2015) Incremental high utility pattern mining with static and dynamic databases. Appl Intell

42(2):323–352
	15.	 Zida S, Fournier-Viger P, Lin JC-W, Tseng VS (2017) EFIM: a fast and memory efficient algorithm for high-utility item-

set mining. Knowl Inf Syst 51(2):595–625

	Analyzing of incremental high utility pattern mining based on tree structures
	Abstract
	Introduction
	Related work
	Frequent pattern mining
	High utility pattern mining

	Tree-based incremental high utility pattern mining
	Performance analysis
	Conclusion
	Authors’ contributions
	References

