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Introduction
Many sensor networks have been used in various fields such as agricultural manage-
ment [1], traffic control [2], emergency navigation [3] and security surveillance [4]. In 
particular, wireless sensor networks (WSNs) provide a powerful and effective means for 
monitoring and controlling environment. A WSN is composed of a number of tiny and 
low-power devices such as transceivers, actuators, and oscillators [5]. In a WSN, a large 
number of sensors are deployed in a field of interest to collect and process data. Since 
sensor deployment affects the cost and detection capability of a WSN, it is one of the 
key topics addressed in the researches of WSNs. It is well known that effective sensor 
deployment methods can greatly improve the performance of a WSN in a wide range of 
applications, including surveillance, monitoring, robot navigation, and location tracking 
[6].

The studies in [7–9] have suggested sensor deployment method that aim to optimize 
the coverage of individual sensors in indoor environments. In this paper, we propose a 
sensor deployment strategy that optimally deploys sensors as well as efficiently achieves 
coverage and connectivity properties between sensors. In addition, it can use to localize 
moving objects within the sensing range of the network since it ensures the trilateration 
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connectivity between sensors placed in the path for tracking the mobile object. There-
fore, we propose an optimized deployment strategy of sensors through a method to clas-
sify signal points within overlapped area between sensors and a method to place sensors 
for tracing of the moving object. Classification method for signal area between sensors 
was developed based on SVM classifier and trilateration technique for estimating the 
position was developed based on Apriori method. Therefore, we do not use conventional 
methods based on geometry and we model the sensor based on the point with low com-
putational complexity. Thus, we propose a novel method to deploy the sensor with mini-
mum cost while maintaining the accuracy for localization compared with the previous 
methods.

Related work
Sensor deployment problems have been studied in a variety of fields, including machine 
learning, robotics, computer vision, and computational geometry [10–18]. Especially in 
the field of machine learning and computational geometry, researches on sensor cover-
age issues are actively under way. The works use mesh-based geometry approaches to 
address the coverage issues in sensor deployment, such as different sensing ranges, rela-
tionships between sensors, and overlapped sensor coverage areas [19–23]. Typically, a 
sensor is modelled in triangular and hexagonal patterns, and signal points set of a sensor 
is generated by using a Voronoi diagram (or a Delaunay triangulation) to achieve full 
coverage and connectivity [24–26]. Our sensor deployment strategy is based on trilat-
eration to determine the location of a mobile object, so it requires that at least three 
sensors shall be detected on all the places in the path. Therefore, the proposed strategy 
can deploy sensors as a constant distance determined according to the sensing range of 
sensors, as well as satisfy full connectivity between sensors in the path.

In sensor network, another important deployment issue is the classification of signal 
points in the overlapped area between sensors. The classifiers used in many fields are 
support vector machines (SVM) and Bayesian decision theory [27–30]. SVM and Bayes-
ian decision techniques can effectively solve the quadratic programming problem when 
classifying a large number of data sets with the same coefficient. SVM is used to predict 
or classify as basically a non-probabilistic binary linear classifier. Our strategy assumes 
that given data (a signal point) belongs to one of two classes, and it uses the SVM clas-
sifier to produce a hyperplane that maximizes the margin between the two classes. The 
Bayesian decision theory is a method of classifying the data so as to minimize decision 
errors. In experiment, we compare the proposed method with the minimax Bayesian 
decision theory of the previous research [27] to minimize the maximum error when 
one signal data is within the overlapped area of two classes with the same distribution 
probability.

Most of all, overlapped sensor coverage areas should be minimized for an optimal sen-
sor deployment. Apriori algorithm and the frequent-pattern tree (FP-tree) structure are 
commonly used to find the association rules between the data in the class [31, 32]. Apri-
ori algorithm finds item datasets with high frequency included in several classes and 
evaluates the association between datasets as using threshold values, called support and 
confidence. It repeats the process until it can no longer find an associated dataset that 
satisfies the values. The algorithm generates the candidate dataset with high frequency in 
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each step, and reduces the execution time by repeating regular progress. The proposed 
sensor deployment strategy uses the Apriori algorithm to yield an optimum deployment 
of sensors. Our method using Apriori algorithm counts support of the given data and 
repeatedly selects candidate sensors to eliminate according to support. In this paper, sup-
port presents the probability of belonging to one class and confidence shows the asso-
ciation value between the classes. In other words, they are defined according to the 
overlapped degree of the classes, and are calculated as frequency of signal points in the 
sensor. The FP-tree algorithm spends lower cost when processing input and output data 
by scanning only 2 times compared to previous algorithms scanning the dataset several 
times. In the first step, the class of the signal points with low frequency is removal candi-
date set because of having low degree of overlapped with different classes. In the second 
step, the class with highest frequency is selected from the overlapped signal points and it 
is stored in the FP-tree.

In both algorithms, we define the frequency that is the number of overlapped classes 
with one class, and arrange the sensors while repeating the process of removing the sen-
sors with the highest frequency. However, the methods have an issue that a large amount 
of memory is required compared with other algorithms. In order to solve this problem, 
we only process the whole dataset as the number of scanning times is predetermined 
and the number of the candidate set is limited.

Efficient location tracking strategy
We propose efficient sensor deployment strategy in wide area. A sensor is modelled as 
using the strength distribution of signal based on Gaussian, and the sensors are deployed as 
considering connectivity and coverage between sensors for tracking of moving target in real 
time. Therefore, we propose methods that classifies the signal points in the overlapping area 
of the sensors using the e-SVM, and selects the sensors for trilateration using the f-Apriori.

Signal classification using e‑SVM

The sensor signal is simulated as taking into account the characteristics of the sensor 
that the signal strength decreases as its distance from the signaling node increases. Fig-
ure  1a shows the sensor strength based on Gaussian distribution model, and Fig.  1b 
presents the sensor signal points generated as circle set. Figure  1c represents a polar 
coordinate model of the sensor signal. In Fig. 1c, the detection range of a sensor is repre-
sented by one circle with a radius of r, and one sensor is consisted of n concentric circles 
with an offset of r_off. In the concentric circles, each signal point is radiated at a constant 
distance of θ in the range [−π, +π]. The Eq.  (1) calculates r and Eq.  (2) evaluates the 
position of one signal point in the circle.

The signal reception of sensors can be blocked by the obstacle like nearby a build-
ing, so the actual sensing range of sensors is often different from the estimated one. 
In this paper, we simulate the sensor signal as considering three different cases where 

(1)r = x1 cos θ + x2 sin θ

(2)
(
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x2

)
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cos θ cos θ
sin θ sin θ
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each sensor is installed in different places of a building. As depicted in Fig. 2, this work 
assumes the three different cases of sensor installation in outdoor, each of which has a 
different degree of coverage range (i.e., 270-, 180-, and 90-degree coverages). The sensor 
signal propagation is modelled as these three cases. When there is more than one sensor 
in the vicinity, the proposed method uses SVM classifier to determine which one sensor 
a certain signaling point should belong to, and we compare its performance with other 
classifiers such as k-NN and Bayesian in “Experimental results and discussion”.

The SVM classifier is used to find the class for a signal point included in overlapped 
areas between sensors. The SVM finds a hyperplane h(x) which maximizes the margin. 
The Eq.  (3) below represents Lagrange multiplier for estimating maximum margin and 
it is used in a general SVM-based classification model. In this paper, it is applied for gen-
erating a hyperplane to classify signal points belonged in overlapped ranges. Each signal 
point x has a feature vector in a feature space X. A kernel function K is denoted by a k × k 
matrix, and it has the characteristics of being symmetric and positive-semidefinite in this 
paper. Here, k signal points are defined as training data xi with label yj. In addition, the 
soft margin that determines the error tolerance is defined as C. In the Eq. (3), the support 
vector is selected as b with yjhK(xi) = 1 for all i. The decision rule for classifying each sig-
nal point is shown in Eq. (4). We define it as e-SVM that means enhanced SVM technique.

(3)
W(α) =

k
∑

i=1

αi −
1

2

k
∑

i,j=1

yiyjαiαjK (xi, xj)

Fig. 1  Signal generating simulation: a sensor signal modelling based on Gaussian distribution, b point-based 
sensor signal simulation, and c signal points generating on the polar coordinate

Fig. 2  Three sensing fields according to signal region: a 270, b 180, and c 90 degrees
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subject to 

where 

With two classes p and q, a binary function B determines a class including a signal 
point. This function is represented in Eq. (5).

Sensor placement with f‑Apriori

We use Apriori algorithm for finding optimally position of the selected sensors in previ-
ous stage. Above all, in order to place the sensors, the distance between the sensors has 
to be determined. We define that F is the area in which the sensor is placed and I is the 
area of interest in F, and S is the sensor set included in F. After the sensors are relocated 
at previous stage, we find the sensors satisfying the predetermined coverage and con-
nectivity in I. Here, we estimate the total entropy to maximize the number of removable 
sensors and minimize the remaining sensors. The total entropy is the sum of the entropy 
of each sensor. In Eqs. (6) and (7), Δn means the entropy for removing one sensor, and di 
is the signal range of one sensor and Ei is the initial entropy of the removable sensor i. If 
there are obstacles, di has to be set so that overlapping coverage is minimized. The dis-
tance between neighboring sensors satisfying the equations is r ≤ di < √3 r. In addition, 
it satisfies the condition for applying the trilateration technique. This is the distance to 
guarantee coverage and connectivity between the sensors as shown in Fig. 3.

Once the coverage and connectivity of the sensors are determined, we use the sensor 
deployment strategy applying Apriori algorithm to find the removable sensors. When a 
signal point is included in the sensing range of more than two sensors (classes), we find 
association rules between the sensors in overlapping area. The association rules are esti-
mated by counting the signal points in overlapping coverage generated by nearby sen-
sors. The user-predefined minimum support value and confidence value are applied in 
finding the association rules. As shown in Fig. 4, Apriori algorithm produces removable 

k
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candidate datasets C (candidate itemset) that have high frequency in the database D, 
and extends them to longer datasets L (large itemset) consisted from candidate datasets 
C. Note that the initial datasets in the database satisfy an essential prerequisite for per-
forming trilateration, one of constraints. At each step, large itemset L is generated from 
the candidate datasets by using a join operation. This process quickly is repeated until 
further large itemset L are not found. Therefore, we define the method as f-Apriori.

Experimental results and discussion
When modeling the sensor, we experiment whether the density of the signal points 
according to radius ratio or angle ratio of a sensor affects the results of the proposed 
method. In other words, we compare and analyze the effect of parameters when use the 
proposed method. As shown in Fig.  5, it is an example of generating signal points in 
a sensor by applying the signal strength characteristic of the sensor. The sensor signal 
points are generated in m concentric circles with the sensor signal radius r, radius offset 
roff, and angle offset θoff. Therefore, this figure shows an example of signal points gener-
ated by a change of radius offset roff, and angle offset θoff. The signal points are gener-
ated differently depending on radius offset and angle offset as shown in the figure. The 
figure is the result of simulation with Matlab. The simulation result shows that the finer 

Fig. 3  Sensor coverage and connectivity according to sensor placement: a maximum distance and b mini‑
mum distance between sensors considering trilateration

Fig. 4  Example of generating process of large itemset L
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of radius offset or angle offset between signal points takes the longer time for simula-
tion. However, there is no problem in real-time processing since this task is performed 
only once in the preprocessing step. In addition, the sensor modeling method proposed 
in this paper considers only two important parameters (radius offset and angle offset) 
without regard to other parameters because signal points of a sensor are generated in a 
circular shape based on Gaussian distribution.

In next, we experiment the change of the ratio of signal points in each sensor according 
to angle offset and radius offset. Then, e-SVM classifier is used for classifying the signal 
points in the overlapped area between the sensors. Each experiment evaluates the num-
ber of the signal points created by five sensors and the cases of twelve offsets. Figure 6 
shows the results of signal points generated according to a change of angle offset θ_off 
when radius offset R_off is fixed at 1.0, and Fig. 7 presents the results of signal points 
generated according to a change of radius offset R_off when angle offset θ_off is 0.5. As in 
the experimental results, each offset does not affect the ratio of the signal points in the 
overlapping region. In other words, the fourth sensor has the largest number of signal 
points because it overlaps most of the other sensors. In addition, as shown in the figure, 
the ratio of the signal points accumulated in five sensors is the same as that of the signal 
points in the range. Finally, we confirm that the offsets do not affect in the proposed 
method, and verify that the experimental results are the same whenever simulated at 
arbitrary offsets such as angle and radius. However, performance evaluation based on 
parameters other than the radius and angle was not performed here.

We have performed the experiment to estimate the accuracy of signal transmission in 
the three cases installing a sensor described in “Efficient location tracking strategy”. That 
is, the actual receiving range of the signal is measured when the sensors have the sensing 
coverage of 270, 180, and 90 degrees. Figure 8 shows that the accuracy error is within 
a distance of 2–3.5 m in all three cases. However, we have not been performed experi-
ments under a variety of sensing coverage and various environments.

In order to determine classes of signal points in overlapped area made by two sen-
sors, we experiment the performance of the proposed e-SVM classifier employed in 

Fig. 5  Example of signal points generated by a change of radius offset roff, and angle offset θoff
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the sensor deployment strategy that is compared with the two previous classifiers, the 
probabilistic Bayesian classifier in [27] and the k-NN method in [33]. This comparison 
experiment is performed in two different conditions: (a) the signals are generated irre-
spective of the location of sensors and (b) the signals are generated as being influenced 
by installed location such as the three cases described in “Efficient location tracking 
strategy”. The sensors are placed in a residential area where buildings and other struc-
tures are densely populated, and 1500 sensors are virtually deployed in simulation. 
Figure  9 shows the performance of the three classifiers. In Condition 1, the proposed 

Fig. 6  Example the ratio of signal points according to angle offset θ_off

Fig. 7  Example the ratio of signal points according to radius offset R_off

Fig. 8  Signal accuracy of three sensing fields: 270 (left), 180 (middle), and 90 degrees (right)
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classifier can efficiently lower the cost for decreasing deployed sensors by three times in 
comparison with the k-NN classifier and 1.5 times compared with the Bayesian classifier. 
In Condition 2, the proposed e-SVM classifier reduces the number of deployed sensors 
by 1.8–4 times compared to the two previous classifiers.

For optimal placement of sensors, it is important to minimize the overlapping area 
of sensors by making one signal point belong only to one class. In this paper, we com-
pare the proposed f-Apriori method with the FP-tree method, which is similar to the 
proposed method, to find the sensors needed for trilateration. In other words, FP-tree 
is used to find removable sensors with frequent patterns through association and cor-
relation analysis between sensors. As shown in Fig.  10, the f-Apriori method reduces 
the cost about 50% less than the FP-tree method in both Condition 1 and 2. However, 
we have not performed comparative experiments on geometry-based methods and com-
pared only the performance of two methodologically similar methods. In addition, we 
have not been able to compare various methods because it is difficult to model other 
methods by considering trilateration.

Figure 11 shows an example of the experimental results using the proposed method. 
We classify signal points in overlapping areas using the proposed e-SVM classifier. As 

Fig. 9  The number of sensor according to each classifier

Fig. 10  The number of sensor according to each placement technique
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shown in the figure, the number of signal points voting to each sensor is accumulated to 
find the candidate sensors, and some of the sensors are determined as removable sen-
sor by the proposed f-Apriori method. This process is repeated for each step to deter-
mine the optimum position of the sensors. The top figures show the simulation result by 
means of Matlab, and the bottom figures represent the signal boundary of each sensor 
and removable sensors (bold circle). By applying the proposed method, it is possible to 
optimally deploy the sensors considering the connectivity between sensors. Therefore, 
as shown in Fig. 11, in order to deploy the sensors, it is necessary to secure not only the 
distance between the sensors but also the connectivity between the sensors on the path. 
However, our method takes a long time when simulate for deploying multiple sensors in 
a large space such as outdoor environment. However, it is not a problem at all since the 
simulation process is performed only once at the beginning to arrange the sensor. There-
fore, our method is more useful when deploying many sensors of the same type in a large 
space or when deploying various kinds of sensors.

Conclusion
Existing sensor deployment methods focus on maximizing the sensor field coverage in 
indoor environments. This paper has proposed an efficient sensor deployment strategy that 
covers an outdoor sensing area by deploying a minimum number of sensors while main-
taining the connectivity between the deployed sensors. The proposed strategy can localize 
the likely position of a moving object within the sensing range of sensors via trilateration, 
and ensure the connectivity between transmitting and receiving sensor signal by placing the 
sensors along the expected motion paths of mobile object. This paper has also presented the 
classification of signaling points in overlapped sensor areas and the optimization of sensor 
deployment that enables moving objects to track anywhere in the sensing range through tri-
lateration. In the experiments, the efficiency of the proposed e-SVM classifier and f-Apriori 
deployment method is demonstrated by comparing it with other algorithms.

Fig. 11  An example of experimental results: a shows initial sensors deployed randomly and b is the result 
after removing two sensors in previous stage, and c presents optimal deployment of sensors finally
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