
Enhancing recurrent neural
network‑based language models by word
tokenization
Hatem M. Noaman1,2*†  , Shahenda S. Sarhan1† and Mohsen. A. A. Rashwan3†

Introduction
Statistical language models estimate the probability for a given sequence of words.
Given a sentence s with n words such as s = (w1,w2 . . .wn), the language model assigns
P(s). Statistical language models assess good word sequence estimations based on the
sequence probability estimation. Building robust, fast and accurate language models is
one of the main factors in the success of building systems such as machine translation
systems and automatic speech recognition systems. Statistical language models can be
estimated based on various approaches. Classical language models are estimated based
on n-gram word sequences such as P(s) = P(w1,w2 . . .wn) =

∏n
i=1 P(wi|wi−1) and

can be approximated based on the Markov concept for shorter contexts (for example,
bigram if n = 2 or trigram if n = 3 and so on). Recent researchers have applied neu-
ral networks different architectures to build and estimate language models. The classical
feed-forward neural network-based language models have been continuously report-
ing good results among the traditional n-gram language modeling techniques [1]. It

Abstract 

Different approaches have been used to estimate language models from a given cor-
pus. Recently, researchers have used different neural network architectures to estimate
the language models from a given corpus using unsupervised learning neural net-
works capabilities. Generally, neural networks have demonstrated success compared to
conventional n-gram language models. With languages that have a rich morphologi-
cal system and a huge number of vocabulary words, the major trade-off with neural
network language models is the size of the network. This paper presents a recurrent
neural network language model based on the tokenization of words into three parts:
the prefix, the stem, and the suffix. The proposed model is tested with the English AMI
speech recognition dataset and outperforms the baseline n-gram model, the basic
recurrent neural network language models (RNNLM) and the GPU-based recurrent
neural network language models (CUED-RNNLM) in perplexity and word error rate.
The automatic spelling correction accuracy was enhanced by approximately 3.5% for
Arabic language misspelling mistakes dataset.

Keywords:  Recurrent neural networks, Statistical language modeling, Automatic
speech recognition

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12
https://doi.org/10.1186/s13673-018-0133-x

*Correspondence:
hnoaman@bsu.edu.eg
†Hatem M. Noaman,
Shahenda S. Sarhan and
Mohsen. A. A. Rashwan
contributed equally to this
work
2 Computer Science
Department, Beni-Suef
University, Beni‑Suef, Egypt
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-6805-0747
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-018-0133-x&domain=pdf

Page 2 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

computes the probability of a word given its context. Inputs into the network are the
previous n-words according to the language models order. A word feature vector is
projected using the word index in the projection layer. The hidden layer output is com-
puted using Tanh function [2]. The final network output is computed using the Softmax
activation function [3] to ensure that network output is a valid probability between 0
and 1. Network weights are updated using the back-propagation training algorithm [4].
Neural network-based language models offer several advantages. Smoothing is applied
implicitly, while in n-gram language models, smoothing must be handled explicitly for
an unseen n-gram. Semantically, similar words are clustered due to the projection of
the entire vocabulary into a small hidden layer [5]. Recurrent neural network-based lan-
guage models [6] are the other proposed models. In them, the feedback between hidden
and input layer allows the hidden neurons to remember the history of the previously
processed words, as shown in Fig. 1. The results that are reported using recurrent neural
network-based language models are always better than those of basic neural network
models and other traditional model results. The results reported by this work show that
recurrent neural network-based language models results outperform traditional models
results for two different tasks: English automatic speech recognition and Arabic auto-
matic spelling error correction. The neural network input vector is presented using a
binary representation where the current word is set to one in the vector according to its
index in the vocabulary, and the other vector values are set to zero. The main problem
with this model is the size of both the input and output layer where it needs to be at least
as large as the number of words in the language vocabulary. The vocabulary size varies
from languages such as English that have simple morphological systems to languages
that have richer morphological systems such as the Arabic language [7] (where every

Fig. 1  Basic recurrent neural network language model. Basic recurrent neural network language model con-
sists of three layers: input layer, hidden layer and output layer; input word is presented to the network input
layer using a 1-of-n encoding. The feedback between hidden and input layer allows the hidden neurons to
remember the history of the previously processed word. The hidden layer output is computed using Tanh
function [2]. The final network output is computed using the Softmax activation function [3]

Page 3 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

single root can be converted to several other valid forms using morphological deriva-
tion rules). Rich morphological system makes this architecture inefficient if it is used
in rich morphological language applications since it needs high computational costs to
train and use these models within real-time applications, such as speech recognition and
automatic machine translation.

In this work, we try to build recurrent neural network-based language models that can
handle the network training speed problem with languages that have rich morphologi-
cal systems based on word tokenization. The proposed model input layer size is shown
in Fig. 2 for the different training sets extracted from an open source Arabic language
corpus [8]. As shown in the figure, the network size remarkably increases as the number
of words in the training corpus increases. In real applications, to build a robust language
model, a large corpus with several millions of words is needed. Networks with a very
large number of neurons have two main problems. The first one is that training time is
very long to achieve network learning convergence. It is reported that the network learn-
ing process takes several weeks with a corpus size of approximately 6.4 M words [6].

The second problem is the memory size. Recurrent neural networks-based language
models with large numbers of neurons are expected to need larger memory sizes than
that of other traditional language models. Researchers tried to find solutions to these
problems through merging all words that occur less than a given threshold into a special
rare token or by adding classes of neurons in the output layer and factorizing the output
layer into classes [9]. The main contribution of this work is building a recurrent neural
network language modeling model that outperforms the basic RNNLM [6]. It is faster
and consumes less memory than the RNNLM and its enhanced versions (the factored
recurrent neural network language model (fRNNLM) [10] and the CUED-RNNLM
[11]). It also adds word features implicitly with no need to add a different vector for each
word, as proposed by the related work in the fRNNLM [10] or the FNLM [12]. These
features make the proposed model suitable for highly inflected languages and in build-
ing models with dynamic vocabulary expansion. It also decreases the number of vocabu-
lary words since unseen words can be inferred from other seen words if the words have
the same stem. This paper is organized as follows. “Related work” section includes an

Fig. 2  Effect of corpus size on the network input layer neurons number. Recurrent neural network-based
language models input layer size depends on the vocabulary words number, training time and memory cost
increased remarkably as the number of neurons in input and output layers becomes big number. This figure
illustrates the relationship between corpus size and the recurrent neural network input layer size, as shown as
we add more words to the corpus it will cause vocabulary expansion and as a result recurrent neural network
input layer size will increase which will downgrade the network performance.

Page 4 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

overview of the related works. In “Proposed model” section , the researchers discuss the
word tokenization process for English and Arabic then the proposed model is presented.
The experimental results are discussed in “Experiments and results” section . Finally, the
conclusion is presented in “Conclusion” section .

Related work
Neural networks different architectures have been investigated and applied to language
model estimations by many researchers. Feed forward neural networks [1] have been
adapted in language modeling estimation [1]; feed forward neural network language
models simultaneously learn the probability functions for word sequences and build the
distributed representation for individual words, but this model has a drawback in that a
fixed number of words can be considered as a context window for the current or target
word. To enhance the conventional feed forward neural network language models train-
ing time, researchers proposed continuous space language modeling (CSLM), which is a
modular open-source toolkit of feed forward neural network language models [13]; this
model introduces support for GPU cards that enable neural networks to build models
with corpora that contain more than five billion words in less than 24 hours with about a
20% perplexity reduction [13]. Recurrent neural networks have been applied to estimate
language models. However, with this model, there is no need to specify the context win-
dow size by using feedback from the hidden to the input layer as a kind of network mem-
ory for the word context. Experiment results have proved that recurrent neural networks
in language models outperform n-gram language models [5, 6, 9, 14, 15]. An RNNLM
toolkit was designed to estimate the class-based language model using recurrent neu-
ral networks [5, 6]. It can also provide functions such as an internist model evaluation
using perplexity, N-best rescoring and model-based text generation. The training speed
is the main RNNLM drawback, especially with large vocabulary sizes and large hidden
layers. The RWTHLM [16] is another recurrent neural network-based toolkit with long
short-term memory (LSTM) implementation, and the RWTHLM toolkits BLAS library
was used to support reduced training time and efficient network training. The CUED-
RNNLM [11] provides an implementation for the recurrent neural network-based
model, and it has GPU support to achieve a more efficient training speed. Both the basic
feed forward network and the recurrent neural network-based language models do not
include any type of word level morphological features, but some researchers tried to add
this type of word feature explicitly by input layer factorization. Factored neural language
models (FNLM) [12] add word features explicitly in the neural network input layer in the
feed-forward based neural network language model and the factored recurrent neural
network language model (fRNNLM) [10]. They also add word features to the recurrent
neural network input layer to model the results better than the basic model. Their com-
plexity is higher than that of the original models since they add word features explicitly
to the input layer. While adding these features improves network performance, it adds
more complexity to the models estimation and the application performance, especially
when applying it to large size vocabulary applications or language with rich morphologi-
cal features. Researches tries to build RNNLM personalization models [17] using data-
set collected from social media networks, model-based RNNLM personalization aims to
captures patterns posted by used and his/her related friends while another approach is

Page 5 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

feature-based where RNNLM parameters are static throw users. Recently neural-based
language modeling models added as an extension to Kaldi automatic speech recogni-
tion (Kaldi-RNNLM) [18] software, this architecture combines the use of subword fea-
tures and one-hot encoding of words with high frequency to handle large vocabularies
containing infrequent words. Also Kaldi-RNNLM architecture improves cross-entropy
objective function to train unnormalized probabilities. In addition to feed forward net-
work and the recurrent neural network-based language models architectures convolu-
tion neural network (CNN) [19] was applied to estimate language models with inputs to
the network in the form of character and output predictions is at the word-level.

Proposed model
The proposed model is a modified version of the basic recurrent neural network language
model [6]. Instead of presenting the full word to the network input layer, we split the word
into three parts: the prefix, the stem and the suffix. Both the prefix and the suffix may or
may not exist. “Word tokenization” section presents a full description about word tokeni-
zation and how we implement it with English and Arabic text using modified versions of
two free open source stemmers in “English word tokenization” and “Arabic word tokeni-
zation” sections. Next, the proposed models architecture is discussed in “The proposed
model” section with full details about the model’s components, inputs and outputs.

Word tokenization

The first step to build the word vector is using a stemmer. Generally, in this step, the
input to the stemmer is a complete surface word, and the output is the stemmed word
vector consisting of a prefix ID, a stem ID and a suffix ID. The general framework of this
process is shown in Fig. 3. As illustrated in the figure, the stemmer has 3 lookup tables.
The first one is for the prefixes to get the prefix ID using this table. The second one is
for the stems. The last one has the suffix IDs. After splitting the word into its compos-
ing parts, the stemmer assigns each part a unique ID. If a word does not have a prefix or
a suffix, it has the value − 1 to indicate that this part is not present for the given word.
“English word tokenization” section gives a detailed description for the English stem-
ming process. “Arabic word tokenization” section shows that the Arabic language has a
more different and richer morphological system than English to prove that this proposed
model can effectively handle languages with highly inflected systems.

English word tokenization

Table 1 presents different examples of the stemmer input and its corresponding output
processed by a modified version of PorterStemmer . The original version of this stem-
mer generates only the word stem. The proposed work needs to tokenize any word into
its three components. Therefore, the researchers constructed a list of common English
prefixes (ante, anti, co, de, dis, em, en, epi, ex and un) and check if the word starts with
any of them. Then, the researchers separate it from the original word. If the remaining
part of the word is still a valid English word, the stemmer tries to get the stem from it.
Otherwise, it returns back to the original word and tries to stem it directly. After get-
ting the word stem, if it is different from the original word, the stemmer assumes that
the word has a suffix and splits the word into the stem and suffix. The final modified

Page 6 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

stemmer output always provides the word in the form of (prefix + stem + suffix). At the
end, every part has a unique ID so that it can be used in the neural networks internal
representation.

Arabic word tokenization

The Arabic morphological system applies different generation rules on a given root to
generate a list of words from the same root. Many approaches have been applied to
solve tokenization problem in Arabic. This paper investigates applying the Khoja stem-
mer [20] to handle the Arabic word tokenization problem. Khoja stemmer is a java open
source tool that finds the roots for Arabic words. To find the root for any given Arabic
word, first, the Khoja stemmer attempts to remove definite articles, prefixes, and suf-
fixes. It then tries to find the word root using a set of Arabic morphological patterns. If
the found root is not applicable, it returns the word as is. We have tried to modify the

Fig. 3  Word tokenization process flowchart. The proposed approach uses stemmer to split the word into 3
parts word prefix, word stem and word suffix, the input to the stemmer is a complete surface word, and the
output is the stemmed word vector consisting of a prefix ID, a stem ID and a suffix ID. After splitting the word
into its composing parts, the stemmer assigns each part a unique ID. If a word does not have a prefix or a
suffix, it has the value − 1 to indicate that this part is not present for the given word.

Table 1  English stemmer original input and output after converting it into prefix, stem
and suffix form

Input word Prefix Stem Suffix

Years – Year s

Government – Govern ment

Unless Un Less –

Hope – Hope –

Page 7 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

stemmers functionality to fit our needs. The original stemmer produces only one out-
put for any word, the word root. To find the word root, Khoja’s algorithm removes any
prefix or suffix that is not considered as a part of a word root and compares the rest of
the word to the Arabic morphological patterns. If it fits with any given pattern, the word
root is then extracted using this pattern. The work in this paper modifies the original
Khoja stemmer to generate 3 parts [the words prefix, suffix (if any), and the word stem]
by keeping any removed characters from the word if the word roots extracted word is
divided into the prefix, stem and suffix. The original Khoja stemmer includes a list of
168 stop words that are removed while preprocessing Arabic words since these words
cannot be rooted. In the modified version, the stop words are not removed. Additionally,
the word may be normalized by the Khoja stemmer to find its root. In the modified ver-
sion, the word stem is not normalized since we try to tokenize the word into parts and
not find the valid root for this word. Figure 3 depicts the Arabic word tokenization pro-
cess using the modified Khoga stemmer tool. The input is an Arabic word, and the final
output is a stemmed word vector that consists of three parts (a prefix ID, a stem ID and
a suffix ID). To construct such a vector, the stemmer tries to get an input word root by
removing any possible prefixes or suffixes attached to the original root. Finally, the stem-
mer tries to extract the root based on different morphological patterns. If the input word
cannot be rooted (or there is no prefix or suffix attached to the stem), the prefix ID and
suffix ID values are set to − 1, which indicates that there is no prefix or suffix attached to
the stem. The stemmer output may be the same as the input word in another case when
the input word cannot be stemmed for some words such as stop words and non-Arabic
words (i.e., words from other languages that are written in the Arabic alphabet without
having an Arabic root). The proposed stemming algorithm can be used to tokenize a
single word or to tokenize a complete paragraph. Table 2 shows the modified stemmer
input, its corresponding Buckwalter transliteration [21], the English translation and its
final output for a selected paragraph from a policy section in the open corpus [8]. As
shown, the prefixes and suffixes don’t appear in all words and the stemmer. The stemmer
output is the word divided into the prefix that is followed by the (+) Markup, then the
stem followed by the (+) Markup, and finally the word suffix.

The proposed model

The proposed network architecture (as shown in Fig. 4) splits the input layer into three
parts: the word prefix part, the word stem part and the word suffix part. Each part cor-
responds to the word input part where each part of the word is presented to the network
using a 1-of-n encoding. The input layer size equals the sum of the hidden layer size,

Table 2  Arabic stemmer original input and output after scanning words and convert it
into prefix + stem + suffix form

Input text

Buckwalter transliteration AqtSAd w?‘EmAl-AlhA$my yqATE mnAqSp Eqwd AlTAqp AlErAqyp

English translation Economics and business-Hashemi boycott Iraqi energy contracts tender

Stemmer output

Page 8 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

prefix, stem and suffix counts. The training input vector x(t) is formed by concatenat-
ing vector w that is representing the current word and the output from the neurons in
context layer s at time t − 1. The current word is split into three parts. The word vector
w is concatenated as expressed in Eq. 1. The prefix, the stem and the suffix vectors are
encoded with a 1-of-n coding by setting the ith element to 1 and any other values to 0.

After representing the concatenated word vector to the input neurons, the previous time
steps hidden layer is copied to its corresponding history neurons in the input layer, Eq. 2.
The hidden and output layers are then computed as shown in Eqs. 3 and 4:

(1)w(t) = pr(t)+ stem(t)+ suf (t)

(2)x(t) = w(t)+ s(t − 1)

(3)sj(t) = f

(

∑

i

xi(t)uij

)

(4)yk(t) = g





�

j

sj(t)vkj





Fig. 4  The proposed recurrent neural network-based language model architecture with input layer seg-
mented into three components: the prefix, the stem and the suffix. Work in this paper suggests splitting the
input layer of the recurrent neural network-based language models to contains three parts of the word; prefix
part, the word stem part and the word suffix part, where each part of the word is presented to the network
using a 1-of-n encoding.

Page 9 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

where f is the sigmoid function [22] and g are Softmax functions [3]. It is computed as
follows:

where u is the weight matrix between the input and hidden layer, and v is the weight
matrix between the hidden and output layers.

Experiments and results
The proposed model is compared with other language modeling approaches based on
three different evaluation approaches. The first one is the model computation com-
plexity presented in “Model complexity” section. The second one in “Models perplex-
ity results” section is the proposed model perplexity enhancement and word error rate.
The results are shown for English automatic speech recognition using the AMI meeting
corpus and the model perplexity enhancement plus the entropy reduction result for the
Online Open Source Arabic language corpuss experimental results. Finally, in “Arabic
automatic spelling correction application” section, the Arabic automatic spelling error
correction results are presented using the Qatar Arabic Language Bank (QALP) corpus.

Model complexity

The proposed system shows a very efficient memory and processing performance. To
prove this, we have compared the neural network input layer size (i.e.: the number of
neurons in the input layer) in the proposed architecture with the basic RNN architec-
ture. The results are shown in Fig. 5. It is clear that the number of neurons in the input
layer generated by the proposed architecture is always smaller than that in the basic
RNN, even with a very limited number of corpus words. This outcome confirms that the
tokenization of Arabic words before presenting it to the neural network decreases the

(5)f (z) =
1

1+ e−z

(6)g(zm) =
ezm

∑

k e
zk

Fig. 5  Neural network input layer size in the proposed architecture against the basic RNN architecture with
increasing size of training corpus. In this figure we compare the number of neurons in the input layer in the
proposed architecture with the basic RNN architecture. The figure shows that the input layer size is decreased
from 360K to only 98K neurons with nearly 9.6 M words corpus size which is a very efficient architecture for
memory usage and processing performance.

Page 10 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

memory use and computation time. The values presented in Fig. 5 show that the input
layer size is decreased from 360K to only 98K neurons.

Complexity of the RNNLM and factored RNNLM models are
(|V | +H) ∗H +H ∗ (C + |V |) and (|f 1| + ...+ |fK | +H) ∗H +H ∗ (C + |V |) ,
respectively. While proposed model complexity is
(|pr| + |stem| + |suff | +H) ∗H +H ∗ (C + |V |), where V, H, C fi are the vocabulary
count, the hidden layer size, the classes count and the ith feature vector respectively. The
researchers observe that the sum of the prefix number and the stems count and the suf-
fixes count (|pr| + |stem| + |suff |) will be much less than vocabulary words count (|V|)
especially for highly inflected language and language with rich morphological system.
Also proposed model does not need extra GPU processing capabilities as needed with
CUED-RNNLM system.

Models perplexity results

English AMI meeting corpus experiments

Our first experiment evaluates the proposed model against the n-gram, he RNNLM and
the CUED-RNNLM using the English AMI meeting corpus [23]; the corpus consists of
100 annotated hours of meeting records. This dataset has various numbers of features
that make it good to be used as a benchmarking dataset for language model evaluation.
It is a free of charge dataset that can be used for training and testing. Other good fea-
tures of this dataset are its annotations that present time and how the annotations are
related to the transcription and to each other. This paper divided the English AMI meet-
ing corpus [23] into a training set that consists of 78 h, and the remaining part is used
as the development and test sets. Table 3 presents the performances of different lan-
guage modeling techniques using the AMI meeting corpus. To build an n-gram model,
we have used the popular SRILM toolkit [24]; the CRNN and FRNN with the AMI data-
set are reported to outperform the basic 3-gram model models that were built using the
RNNLM, and the toolkit was used to build the RNNLM [6] and CUED-RNNLM [11].
The proposed language model results are measured by their perplexity and word error
rate (WER), as shown in Table 4.

The results show that the proposed token-based recurrent neural network language
model has outperformed the n-gram LM by approximately 3% and enhances the basic
RNNLM and its GPU version CUED-RNNLM by approximately 1.5% when using the

Table 3  English AMI meeting corpus perplexity and WER results using RNNLM and CUED-
RNNLM against our proposed model

PPL WER

Dev Eval Dev Eval

3g [25] 93.6 82.8 25.2 25.4

+CRNN (CE) [25] 83.3 75.2 23.9 24.1

+FRNN(CE) [25] 81.0 71.7 23.9 24.0

+FRNN(VR) [25] 80.4 71.6 23.9 23.9

+FRNN(NCE) [25] 81.1 72.8 24.0 24.1

+Proposed model 75.3 69.7 22.3 22.5

Page 11 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

English AMI meeting corpus dataset. While the proposed approach is relatively close
to the CUED-RNNLMs reported results with the same dataset, the proposed systems
training and decoding times are much improved compared to those of the RNNLM and
CUED-RNNLM. Moreover, memory consumption is much lower with our proposed
model, which make it much more applicable to be used for rescoring tasks rather than
for the models generated by the RNNLM (that have no GPU support and have high
memory needs) and the CUED-RNNLM (that relies on the GPU architecture and needs
more computational resources).

Online Open Source Arabic language corpus experiments

To evaluate the proposed model, we have chosen the Online Open Source Arabic Lan-
guage corpus, which is available online. It has an ample amount of words to test and
evaluate our proposed model. In this work, the Arabic Open corpus is used as the source
of the training, validation and test data. Approximately 1.9 M words are used as training
data, and 70K words are used as the test set. To train the models using this dataset, the
vocabulary of the 10K most common Arabic words is constructed in the online open
source Arabic language corpus. All words outside this vocabulary are counted as out-
of-vocabulary (OOV) words and are treated as unknown words (UNK-token). Table 4
shows the results of various language models. To build the N-gram models, the SRILM
toolkit [24] and the RNNLM tool [6] are used to build the basic RNN language models.
The results have shown that the modified Kneser-Ney smoothing with order 5 (KN5)
performs the best among traditional n-gram models. Thus, it was used as the benchmark
for our test set. As shown in Table 4, our proposed models perplexity outperforms the
baseline n-gram model by up to 30% with about a 2% enhancement compared to basic
RNN models.

Arabic automatic spelling correction application

The automatic spelling correction problem involves two main parts. The first part
detects the spelling mistake in the written text. The second corrects the spelling errors
[26, 27]. Spelling errors can be identified by using a lexicon of Arabic words. If any given
word in the text is outside the lexicon, it is considered as a spelling error. We have built
an Arabic automatic spelling correction hybrid system based on the confusion matrix
and the noisy channel spelling correction model to detect and automatically correct
Arabic spelling errors. It searches for the correct word that can generate this misspelled
word (typo) using Eq. (7) [20].

Table 4  Perplexity on 70K word as test from Arabic Open Corpus using different smooth-
ing techniques against proposed algorithm

Italic values represent proposed model perplexity and entropy reduction against different smoothing techniques

Model Perplexity Entropy reduction (%)

GT5 113.473 –

KN3 99.1785 2.85

KN5 98.9021 2.9

Basic RNN 70.58 10.04

Proposed model 68.42 10.69

Page 12 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

where P(typoword) is computed based on a confusion matrix and P(word) using the
language model probability of a given word. In this paper, the proposed algorithm was
compared with traditional n-gram language models. The proposed algorithm was used
to estimate the probability of a given correction candidate for typos. Table 5 shows
the overall correction accuracy using the 3-gram language model with Good–Turing
smoothing and the proposed algorithm. The results show that the correction accuracy
was enhanced by nearly 3.5% using the 4-gram token-based language model where
the test set consists of 1500 test cases extracted from the Qatar Arabic Language Bank
(QALP) corpus [28]. It was divided into 3 test sets where each one consists of 500 test
cases.

Conclusion
In this paper, we have introduced a modified recurrent neural network-based language
model for language modeling. The modification was to segment the network input into
three parts. It is observed that the computational complexity is much lower than that
in the basic recurrent neural network model. This outcome makes it possible to build
language models for highly inflective languages (such as Arabic) from large corpora with
smaller training times and memory costs. Using the intrinsic evaluation (perplexity), it is
observed that our proposed model outperforms the baseline n-gram model by up to 30%
based on the Arabic Open Corpus experimental results shown in Table 4. The results
obtained from applying the proposed model to the Arabic automatic spelling correc-
tion problem show about a 3.5% total accuracy enhancement. This finding indicates that
more complex and advanced Arabic language applications (such as speech recognition
and automatic machine translation) can make use of the model described in this paper.
Authors’ contributions
HN is the corresponding author, and SS and MR are the co-authors. HN has made substantial contributions in the design
and implementation of proposed algorithm. SH was involved in drafting the manuscript or critically revising it. All
authors read and approved the final manuscript.

Author details
1 Computer Science Department, Mansoura University, Mansoura, Egypt. 2 Computer Science Department, Beni-Suef
University, Beni‑Suef, Egypt. 3 Electronics and Communications Department, Cairo University, Cairo, Egypt.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal.
All authors have approved the manuscript and agree with its submission.

Funding
Not applicable.

(7)ẇ = argmaxword = P(word|typo) = argmaxwordP(typo|word) ∗ P(word)

Table 5  Automatic Arabic spelling correction application

Model Correction accuracy Average (%)

Test set 1 (%) Test set 2 (%) Test set 3 (%)

3-gram+ GT3 72.65 70.85 69.03 70.84

RNNLM 74. 5 73.85 71.07 73.14

Proposed model 76.03 75.36 71.50 74.30

Page 13 of 13Noaman et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 January 2018 Accepted: 9 April 2018

References
	1.	 Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. J Mach Learn Res

3:1137–1155
	2.	 Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas. Graphs Math Tables 55:83
	3.	 Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press Cambridge, Cambridge, p 30
	4.	 Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature

323(6088):533
	5.	 Kombrink S, Mikolov T, Karafiát M, Burget L (2011) Recurrent neural network based language modeling in meeting

recognition. In: Twelfth annual conference of the international speech communication association
	6.	 Mikolov T, Karafiát M, Burget L, Černockỳ J, Khudanpur S (2010) Recurrent neural network based language model.

In: Eleventh annual conference of the international speech communication association
	7.	 Bousmaha KZ, Rahmouni MK, Kouninef B, Hadrich LB (2016) A hybrid approach for the morpho-lexical disambigua-

tion of arabic. J Inf Proces Syst 12(3):358–380
	8.	 Saad MK, Ashour W (2010) Osac: open source arabic corpora. In: 6th ArchEng international symposiums, EEECS, vol.

10
	9.	 Mikolov T, Kopecky J, Burget L, Glembek O et al (2009) Neural network based language models for highly inflective

languages. In: IEEE international conference on acoustics, speech and signal processing. ICASSP 2009, pp 4725–4728
	10.	 Wu Y, Yamamoto H, Lu X, Matsuda S, Hori, C, Kashioka H (2012) Factored recurrent neural network language model

in ted lecture transcription. In: International workshop on spoken language translation (IWSLT)
	11.	 Chen X, Liu X, Qian Y, Gales M, Woodland PC (2016) Cued-rnnlman open-source toolkit for efficient training and

evaluation of recurrent neural network language models. In: 2016 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp 6000–6004

	12.	 Alexandrescu A, Kirchhoff K (2006) Factored neural language models. In: Proceedings of the human language tech-
nology conference of the NAACL, companion volume: short papers. Association for computational linguistics, pp 1–4

	13.	 Schwenk H (2013) Cslm-a modular open-source continuous space language modeling toolkit. In: INTERSPEECH, pp
1198–1202

	14.	 Devlin J, Zbib R, Huang Z, Lamar T, Schwartz R, Makhoul J (2014) Fast and robust neural network joint models for
statistical machine translation. In: Proceedings of the 52nd annual meeting of the association for computational
linguistics (Vol. 1: long papers), vol. 1, pp 1370–1380

	15.	 De Mulder W, Bethard S, Moens M-F (2015) A survey on the application of recurrent neural networks to statistical
language modeling. Comput Speech Lang 30(1):61–98

	16.	 Sundermeyer M, Schlüter R, Ney H (2014) rwthlmthe RWTH Aachen University neural network language modeling
toolkit. In: Fifteenth annual conference of the international speech communication association

	17.	 Tseng B-H, Wen T-H (2017) Personalizing recurrent-neural-network-based language model by social network. IEEE/
ACM Trans Audio Speech Lang Proces (TASLP) 25(3):519–530

	18.	 Xu H, Li K, Wang Y, Wang J, Kang S, Chen X, Povey D, Khudanpur S (2018) Neural network language modeling with
letter-based features and importance sampling. In: 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP)

	19.	 Kim Y, Jernite Y, Sontag D, Rush AM (2016) Character-aware neural language models. In: AAAI, pp 2741–2749
	20.	 Kernighan MD, Church KW, Gale WA (1990) A spelling correction program based on a noisy channel model. In:

Proceedings of the 13th conference on computational linguistics. Association for computational linguistics, vol. 2,
pp 205–210

	21.	 Buckwalter T (2004) Buckwalter arabic morphological analyzer version 2.0. linguistic data consortium, University of
Pennsylvania, 2002. ldc cat alog no.: Ldc2004l02. Technical report, ISBN 1-58563-324-0

	22.	 Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learn-
ing. In: International workshop on artificial neural networks. Springer, Berlin, pp 195–201

	23.	 Carletta J, Ashby S, Bourban S, Flynn M, Guillemot M, Hain T, Kadlec J, Karaiskos V, Kraaij W, Kronenthal M et al (2005)
The ami meeting corpus: a pre-announcement. In: International workshop on machine learning for multimodal
interaction. Springer, Berlin, pp 28–39

	24.	 Alumäe T, Kurimo M (2010) Efficient estimation of maximum entropy language models with n-gram features: An
srilm extension. In: Eleventh annual conference of the international speech communication association

	25.	 Chen X (2015) Cued rnnlm toolkit
	26.	 Noaman HM, Sarhan SS, Rashwan M (2016) Automatic arabic spelling errors detection and correction based on

confusion matrix-noisy channel hybrid system. Egypt Comput Sci J 40(2):2016
	27.	 Attia M, Al-Badrashiny M, Diab M (2014) Gwu-hasp: hybrid arabic spelling and punctuation corrector. In: Proceed-

ings of the EMNLP 2014 workshop on Arabic natural language processing (ANLP), pp 148–154
	28.	 Zaghouani W, Mohit B, Habash N, Obeid O, Tomeh N, Rozovskaya A, Farra N, Alkuhlani S, Oflazer K (2014) Large scale

Arabic error annotation: guidelines and framework. In: LREC, pp 2362–2369

	Enhancing recurrent neural network-based language models by word tokenization
	Abstract
	Introduction
	Related work
	Proposed model
	Word tokenization
	English word tokenization
	Arabic word tokenization

	The proposed model

	Experiments and results
	Model complexity
	Models perplexity results
	English AMI meeting corpus experiments
	Online Open Source Arabic language corpus experiments

	Arabic automatic spelling correction application

	Conclusion
	Authors’ contributions
	References

