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Introduction
Statistical language models estimate the probability for a given sequence of words. 
Given a sentence s with n words such as s = (w1,w2 . . .wn), the language model assigns 
P(s). Statistical language models assess good word sequence estimations based on the 
sequence probability estimation. Building robust, fast and accurate language models is 
one of the main factors in the success of building systems such as machine translation 
systems and automatic speech recognition systems. Statistical language models can be 
estimated based on various approaches. Classical language models are estimated based 
on n-gram word sequences such as P(s) = P(w1,w2 . . .wn) =

∏n
i=1 P(wi|wi−1) and 

can be approximated based on the Markov concept for shorter contexts (for example, 
bigram if n =  2 or trigram if n =  3 and so on). Recent researchers have applied neu-
ral networks different architectures to build and estimate language models. The classical 
feed-forward neural network-based language models have been continuously report-
ing good results among the traditional n-gram language modeling techniques [1]. It 
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computes the probability of a word given its context. Inputs into the network are the 
previous n-words according to the language models order. A word feature vector is 
projected using the word index in the projection layer. The hidden layer output is com-
puted using Tanh function [2]. The final network output is computed using the Softmax 
activation function [3] to ensure that network output is a valid probability between 0 
and 1. Network weights are updated using the back-propagation training algorithm [4]. 
Neural network-based language models offer several advantages. Smoothing is applied 
implicitly, while in n-gram language models, smoothing must be handled explicitly for 
an unseen n-gram. Semantically, similar words are clustered due to the projection of 
the entire vocabulary into a small hidden layer [5]. Recurrent neural network-based lan-
guage models [6] are the other proposed models. In them, the feedback between hidden 
and input layer allows the hidden neurons to remember the history of the previously 
processed words, as shown in Fig.  1. The results that are reported using recurrent neural 
network-based language models are always better than those of basic neural network 
models and other traditional model results. The results reported by this work show that 
recurrent neural network-based language models results outperform traditional models 
results for two different tasks: English automatic speech recognition and Arabic auto-
matic spelling error correction. The neural network input vector is presented using a 
binary representation where the current word is set to one in the vector according to its 
index in the vocabulary, and the other vector values are set to zero. The main problem 
with this model is the size of both the input and output layer where it needs to be at least 
as large as the number of words in the language vocabulary. The vocabulary size varies 
from languages such as English that have simple morphological systems to languages 
that have richer morphological systems such as the Arabic language [7] (where every 

Fig. 1  Basic recurrent neural network language model. Basic recurrent neural network language model con-
sists of three layers: input layer, hidden layer and output layer; input word is presented to the network input 
layer using a 1-of-n encoding. The feedback between hidden and input layer allows the hidden neurons to 
remember the history of the previously processed word. The hidden layer output is computed using Tanh 
function [2]. The final network output is computed using the Softmax activation function [3]
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single root can be converted to several other valid forms using morphological deriva-
tion rules). Rich morphological system makes this architecture inefficient if it is used 
in rich morphological language applications since it needs high computational costs to 
train and use these models within real-time applications, such as speech recognition and 
automatic machine translation.

In this work, we try to build recurrent neural network-based language models that can 
handle the network training speed problem with languages that have rich morphologi-
cal systems based on word tokenization. The proposed model input layer size is shown 
in Fig.  2 for the different training sets extracted from an open source Arabic language 
corpus [8]. As shown in the figure, the network size remarkably increases as the number 
of words in the training corpus increases. In real applications, to build a robust language 
model, a large corpus with several millions of words is needed. Networks with a very 
large number of neurons have two main problems. The first one is that training time is 
very long to achieve network learning convergence. It is reported that the network learn-
ing process takes several weeks with a corpus size of approximately 6.4 M words [6].

The second problem is the memory size. Recurrent neural networks-based language 
models with large numbers of neurons are expected to need larger memory sizes than 
that of other traditional language models. Researchers tried to find solutions to these 
problems through merging all words that occur less than a given threshold into a special 
rare token or by adding classes of neurons in the output layer and factorizing the output 
layer into classes [9]. The main contribution of this work is building a recurrent neural 
network language modeling model that outperforms the basic RNNLM [6]. It is faster 
and consumes less memory than the RNNLM and its enhanced versions (the factored 
recurrent neural network language model (fRNNLM) [10] and the CUED-RNNLM 
[11]). It also adds word features implicitly with no need to add a different vector for each 
word, as proposed by the related work in the fRNNLM [10] or the FNLM [12]. These 
features make the proposed model suitable for highly inflected languages and in build-
ing models with dynamic vocabulary expansion. It also decreases the number of vocabu-
lary words since unseen words can be inferred from other seen words if the words have 
the same stem. This paper is organized as follows. “Related work” section  includes an 

Fig. 2  Effect of corpus size on the network input layer neurons number. Recurrent neural network-based 
language models input layer size depends on the vocabulary words number, training time and memory cost 
increased remarkably as the number of neurons in input and output layers becomes big number. This figure 
illustrates the relationship between corpus size and the recurrent neural network input layer size, as shown as 
we add more words to the corpus it will cause vocabulary expansion and as a result recurrent neural network 
input layer size will increase which will downgrade the network performance.
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overview of the related works. In “Proposed model” section , the researchers discuss the 
word tokenization process for English and Arabic then the proposed model is presented. 
The experimental results are discussed in  “Experiments and results” section . Finally, the 
conclusion is presented in “Conclusion” section .

Related work
Neural networks different architectures have been investigated and applied to language 
model estimations by many researchers. Feed forward neural networks [1] have been 
adapted in language modeling estimation [1]; feed forward neural network language 
models simultaneously learn the probability functions for word sequences and build the 
distributed representation for individual words, but this model has a drawback in that a 
fixed number of words can be considered as a context window for the current or target 
word. To enhance the conventional feed forward neural network language models train-
ing time, researchers proposed continuous space language modeling (CSLM), which is a 
modular open-source toolkit of feed forward neural network language models [13]; this 
model introduces support for GPU cards that enable neural networks to build models 
with corpora that contain more than five billion words in less than 24 hours with about a 
20% perplexity reduction [13]. Recurrent neural networks have been applied to estimate 
language models. However, with this model, there is no need to specify the context win-
dow size by using feedback from the hidden to the input layer as a kind of network mem-
ory for the word context. Experiment results have proved that recurrent neural networks 
in language models outperform n-gram language models [5, 6, 9, 14, 15]. An RNNLM 
toolkit was designed to estimate the class-based language model using recurrent neu-
ral networks [5, 6]. It can also provide functions such as an internist model evaluation 
using perplexity, N-best rescoring and model-based text generation. The training speed 
is the main RNNLM drawback, especially with large vocabulary sizes and large hidden 
layers. The RWTHLM [16] is another recurrent neural network-based toolkit with long 
short-term memory (LSTM) implementation, and the RWTHLM toolkits BLAS library 
was used to support reduced training time and efficient network training. The CUED-
RNNLM [11] provides an implementation for the recurrent neural network-based 
model, and it has GPU support to achieve a more efficient training speed. Both the basic 
feed forward network and the recurrent neural network-based language models do not 
include any type of word level morphological features, but some researchers tried to add 
this type of word feature explicitly by input layer factorization. Factored neural language 
models (FNLM) [12] add word features explicitly in the neural network input layer in the 
feed-forward based neural network language model and the factored recurrent neural 
network language model (fRNNLM) [10]. They also add word features to the recurrent 
neural network input layer to model the results better than the basic model. Their com-
plexity is higher than that of the original models since they add word features explicitly 
to the input layer. While adding these features improves network performance, it adds 
more complexity to the models estimation and the application performance, especially 
when applying it to large size vocabulary applications or language with rich morphologi-
cal features. Researches tries to build RNNLM personalization models [17] using data-
set collected from social media networks, model-based RNNLM personalization aims to 
captures patterns posted by used and his/her related friends while another approach is 
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feature-based where RNNLM parameters are static throw users. Recently neural-based 
language modeling models added as an extension to Kaldi automatic speech recogni-
tion (Kaldi-RNNLM) [18] software, this architecture combines the use of subword fea-
tures and one-hot encoding of words with high frequency to handle large vocabularies 
containing infrequent words. Also Kaldi-RNNLM architecture improves cross-entropy 
objective function to train unnormalized probabilities. In addition to feed forward net-
work and the recurrent neural network-based language models architectures convolu-
tion neural network (CNN) [19] was applied to estimate language models with inputs to 
the network in the form of character and output predictions is at the word-level.

Proposed model
The proposed model is a modified version of the basic recurrent neural network language 
model [6]. Instead of presenting the full word to the network input layer, we split the word 
into three parts: the prefix, the stem and the suffix. Both the prefix and the suffix may or 
may not exist. “Word tokenization” section presents a full description about word tokeni-
zation and how we implement it with English and Arabic text using modified versions of 
two free open source stemmers in “English word tokenization” and  “Arabic word tokeni-
zation” sections. Next, the proposed models architecture is discussed in “The proposed 
model” section with full details about the model’s components, inputs and outputs.

Word tokenization

The first step to build the word vector is using a stemmer. Generally, in this step, the 
input to the stemmer is a complete surface word, and the output is the stemmed word 
vector consisting of a prefix ID, a stem ID and a suffix ID. The general framework of this 
process is shown in Fig.  3. As illustrated in the figure, the stemmer has 3 lookup tables. 
The first one is for the prefixes to get the prefix ID using this table. The second one is 
for the stems. The last one has the suffix IDs. After splitting the word into its compos-
ing parts, the stemmer assigns each part a unique ID. If a word does not have a prefix or 
a suffix, it has the value − 1 to indicate that this part is not present for the given word. 
“English word tokenization” section gives a detailed description for the English stem-
ming process. “Arabic word tokenization” section shows that the Arabic language has a 
more different and richer morphological system than English to prove that this proposed 
model can effectively handle languages with highly inflected systems.

English word tokenization

Table  1 presents different examples of the stemmer input and its corresponding output 
processed by a modified version of PorterStemmer . The original version of this stem-
mer generates only the word stem. The proposed work needs to tokenize any word into 
its three components. Therefore, the researchers constructed a list of common English 
prefixes (ante, anti, co, de, dis, em, en, epi, ex and un) and check if the word starts with 
any of them. Then, the researchers separate it from the original word. If the remaining 
part of the word is still a valid English word, the stemmer tries to get the stem from it. 
Otherwise, it returns back to the original word and tries to stem it directly. After get-
ting the word stem, if it is different from the original word, the stemmer assumes that 
the word has a suffix and splits the word into the stem and suffix. The final modified 
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stemmer output always provides the word in the form of (prefix + stem + suffix). At the 
end, every part has a unique ID so that it can be used in the neural networks internal 
representation.

Arabic word tokenization

The Arabic morphological system applies different generation rules on a given root to 
generate a list of words from the same root. Many approaches have been applied to 
solve tokenization problem in Arabic. This paper investigates applying the Khoja stem-
mer [20] to handle the Arabic word tokenization problem. Khoja stemmer is a java open 
source tool that finds the roots for Arabic words. To find the root for any given Arabic 
word, first, the Khoja stemmer attempts to remove definite articles, prefixes, and suf-
fixes. It then tries to find the word root using a set of Arabic morphological patterns. If 
the found root is not applicable, it returns the word as is. We have tried to modify the 

Fig. 3  Word tokenization process flowchart. The proposed approach uses stemmer to split the word into 3 
parts word prefix, word stem and word suffix, the input to the stemmer is a complete surface word, and the 
output is the stemmed word vector consisting of a prefix ID, a stem ID and a suffix ID. After splitting the word 
into its composing parts, the stemmer assigns each part a unique ID. If a word does not have a prefix or a 
suffix, it has the value − 1 to indicate that this part is not present for the given word.

Table 1  English stemmer original input and  output after  converting it into  prefix, stem 
and suffix form

Input word Prefix Stem Suffix

Years – Year s

Government – Govern ment

Unless Un Less –

Hope – Hope –
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stemmers functionality to fit our needs. The original stemmer produces only one out-
put for any word, the word root. To find the word root, Khoja’s algorithm removes any 
prefix or suffix that is not considered as a part of a word root and compares the rest of 
the word to the Arabic morphological patterns. If it fits with any given pattern, the word 
root is then extracted using this pattern. The work in this paper modifies the original 
Khoja stemmer to generate 3 parts [the words prefix, suffix (if any), and the word stem] 
by keeping any removed characters from the word if the word roots extracted word is 
divided into the prefix, stem and suffix. The original Khoja stemmer includes a list of 
168 stop words that are removed while preprocessing Arabic words since these words 
cannot be rooted. In the modified version, the stop words are not removed. Additionally, 
the word may be normalized by the Khoja stemmer to find its root. In the modified ver-
sion, the word stem is not normalized since we try to tokenize the word into parts and 
not find the valid root for this word. Figure  3 depicts the Arabic word tokenization pro-
cess using the modified Khoga stemmer tool. The input is an Arabic word, and the final 
output is a stemmed word vector that consists of three parts (a prefix ID, a stem ID and 
a suffix ID). To construct such a vector, the stemmer tries to get an input word root by 
removing any possible prefixes or suffixes attached to the original root. Finally, the stem-
mer tries to extract the root based on different morphological patterns. If the input word 
cannot be rooted (or there is no prefix or suffix attached to the stem), the prefix ID and 
suffix ID values are set to − 1, which indicates that there is no prefix or suffix attached to 
the stem. The stemmer output may be the same as the input word in another case when 
the input word cannot be stemmed for some words such as stop words and non-Arabic 
words (i.e., words from other languages that are written in the Arabic alphabet without 
having an Arabic root). The proposed stemming algorithm can be used to tokenize a 
single word or to tokenize a complete paragraph. Table  2 shows the modified stemmer 
input, its corresponding Buckwalter transliteration [21], the English translation and its 
final output for a selected paragraph from a policy section in the open corpus [8]. As 
shown, the prefixes and suffixes don’t appear in all words and the stemmer. The stemmer 
output is the word divided into the prefix that is followed by the (+) Markup, then the 
stem followed by the (+) Markup, and finally the word suffix.

The proposed model

The proposed network architecture (as shown in Fig.  4) splits the input layer into three 
parts: the word prefix part, the word stem part and the word suffix part. Each part cor-
responds to the word input part where each part of the word is presented to the network 
using a 1-of-n encoding. The input layer size equals the sum of the hidden layer size, 

Table 2  Arabic stemmer original input and  output after  scanning words and  convert it 
into prefix + stem + suffix form

Input text

Buckwalter transliteration AqtSAd w?‘EmAl-AlhA$my yqATE mnAqSp Eqwd AlTAqp AlErAqyp

English translation Economics and business-Hashemi boycott Iraqi energy contracts tender

Stemmer output
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prefix, stem and suffix counts. The training input vector x(t) is formed by concatenat-
ing vector w that is representing the current word and the output from the neurons in 
context layer s at time t − 1. The current word is split into three parts. The word vector 
w is concatenated as expressed in Eq. 1. The prefix, the stem and the suffix vectors are 
encoded with a 1-of-n coding by setting the ith element to 1 and any other values to 0.

After representing the concatenated word vector to the input neurons, the previous time 
steps hidden layer is copied to its corresponding history neurons in the input layer, Eq. 2. 
The hidden and output layers are then computed as shown in Eqs.  3 and 4:

(1)w(t) = pr(t)+ stem(t)+ suf (t)

(2)x(t) = w(t)+ s(t − 1)

(3)sj(t) = f

(

∑

i

xi(t)uij

)

(4)yk(t) = g





�

j

sj(t)vkj





Fig. 4  The proposed recurrent neural network-based language model architecture with input layer seg-
mented into three components: the prefix, the stem and the suffix. Work in this paper suggests splitting the 
input layer of the recurrent neural network-based language models to contains three parts of the word; prefix 
part, the word stem part and the word suffix part, where each part of the word is presented to the network 
using a 1-of-n encoding.
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where f is the sigmoid function [22] and g are Softmax functions [3]. It is computed as 
follows:

where u is the weight matrix between the input and hidden layer, and v is the weight 
matrix between the hidden and output layers.

Experiments and results
The proposed model is compared with other language modeling approaches based on 
three different evaluation approaches. The first one is the model computation com-
plexity presented in “Model complexity” section. The second one in “Models perplex-
ity results” section is the proposed model perplexity enhancement and word error rate. 
The results are shown for English automatic speech recognition using the AMI meeting 
corpus and the model perplexity enhancement plus the entropy reduction result for the 
Online Open Source Arabic language corpuss experimental results. Finally, in “Arabic 
automatic spelling correction application” section, the Arabic automatic spelling error 
correction results are presented using the Qatar Arabic Language Bank (QALP) corpus.

Model complexity

The proposed system shows a very efficient memory and processing performance. To 
prove this, we have compared the neural network input layer size (i.e.: the number of 
neurons in the input layer) in the proposed architecture with the basic RNN architec-
ture. The results are shown in Fig.  5. It is clear that the number of neurons in the input 
layer generated by the proposed architecture is always smaller than that in the basic 
RNN, even with a very limited number of corpus words. This outcome confirms that the 
tokenization of Arabic words before presenting it to the neural network decreases the 

(5)f (z) =
1

1+ e−z

(6)g(zm) =
ezm

∑

k e
zk

Fig. 5  Neural network input layer size in the proposed architecture against the basic RNN architecture with 
increasing size of training corpus. In this figure we compare the number of neurons in the input layer in the 
proposed architecture with the basic RNN architecture. The figure shows that the input layer size is decreased 
from 360K to only 98K neurons with nearly 9.6 M words corpus size which is a very efficient architecture for 
memory usage and processing performance.
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memory use and computation time. The values presented in Fig.  5 show that the input 
layer size is decreased from 360K to only 98K neurons.

Complexity of the RNNLM and factored RNNLM models are 
(|V | +H) ∗H +H ∗ (C + |V |) and (|f 1| + ...+ |fK | +H) ∗H +H ∗ (C + |V |) , 
respectively. While proposed model complexity is 
(|pr| + |stem| + |suff | +H) ∗H +H ∗ (C + |V |), where V, H, C fi are the vocabulary 
count, the hidden layer size, the classes count and the ith feature vector respectively. The 
researchers observe that the sum of the prefix number and the stems count and the suf-
fixes count (|pr| + |stem| + |suff |) will be much less than vocabulary words count (|V|) 
especially for highly inflected language and language with rich morphological system. 
Also proposed model does not need extra GPU processing capabilities as needed with 
CUED-RNNLM system.

Models perplexity results

English AMI meeting corpus experiments

Our first experiment evaluates the proposed model against the n-gram, he RNNLM and 
the CUED-RNNLM using the English AMI meeting corpus [23]; the corpus consists of 
100 annotated hours of meeting records. This dataset has various numbers of features 
that make it good to be used as a benchmarking dataset for language model evaluation. 
It is a free of charge dataset that can be used for training and testing. Other good fea-
tures of this dataset are its annotations that present time and how the annotations are 
related to the transcription and to each other. This paper divided the English AMI meet-
ing corpus [23] into a training set that consists of 78 h, and the remaining part is used 
as the development and test sets. Table  3 presents the performances of different lan-
guage modeling techniques using the AMI meeting corpus. To build an n-gram model, 
we have used the popular SRILM toolkit [24]; the CRNN and FRNN with the AMI data-
set are reported to outperform the basic 3-gram model models that were built using the 
RNNLM, and the toolkit was used to build the RNNLM [6] and CUED-RNNLM [11]. 
The proposed language model results are measured by their perplexity and word error 
rate (WER), as shown in Table 4.

The results show that the proposed token-based recurrent neural network language 
model has outperformed the n-gram LM by approximately 3% and enhances the basic 
RNNLM and its GPU version CUED-RNNLM by approximately 1.5% when using the 

Table 3  English AMI meeting corpus perplexity and WER results using RNNLM and CUED-
RNNLM against our proposed model

PPL WER

Dev Eval Dev Eval

3g [25] 93.6 82.8 25.2 25.4

+CRNN (CE) [25] 83.3 75.2 23.9 24.1

+FRNN(CE) [25] 81.0 71.7 23.9 24.0

+FRNN(VR) [25] 80.4 71.6 23.9 23.9

+FRNN(NCE) [25] 81.1 72.8 24.0 24.1

+Proposed model 75.3 69.7 22.3 22.5
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English AMI meeting corpus dataset. While the proposed approach is relatively close 
to the CUED-RNNLMs reported results with the same dataset, the proposed systems 
training and decoding times are much improved compared to those of the RNNLM and 
CUED-RNNLM. Moreover, memory consumption is much lower with our proposed 
model, which make it much more applicable to be used for rescoring tasks rather than 
for the models generated by the RNNLM (that have no GPU support and have high 
memory needs) and the CUED-RNNLM (that relies on the GPU architecture and needs 
more computational resources).

Online Open Source Arabic language corpus experiments

To evaluate the proposed model, we have chosen the Online Open Source Arabic Lan-
guage corpus, which is available online. It has an ample amount of words to test and 
evaluate our proposed model. In this work, the Arabic Open corpus is used as the source 
of the training, validation and test data. Approximately 1.9 M words are used as training 
data, and 70K words are used as the test set. To train the models using this dataset, the 
vocabulary of the 10K most common Arabic words is constructed in the online open 
source Arabic language corpus. All words outside this vocabulary are counted as out-
of-vocabulary (OOV) words and are treated as unknown words (UNK-token). Table  4 
shows the results of various language models. To build the N-gram models, the SRILM 
toolkit [24] and the RNNLM tool [6] are used to build the basic RNN language models. 
The results have shown that the modified Kneser-Ney smoothing with order 5 (KN5) 
performs the best among traditional n-gram models. Thus, it was used as the benchmark 
for our test set. As shown in Table  4, our proposed models perplexity outperforms the 
baseline n-gram model by up to 30% with about a 2% enhancement compared to basic 
RNN models.

Arabic automatic spelling correction application

The automatic spelling correction problem involves two main parts. The first part 
detects the spelling mistake in the written text. The second corrects the spelling errors 
[26, 27]. Spelling errors can be identified by using a lexicon of Arabic words. If any given 
word in the text is outside the lexicon, it is considered as a spelling error. We have built 
an Arabic automatic spelling correction hybrid system based on the confusion matrix 
and the noisy channel spelling correction model to detect and automatically correct 
Arabic spelling errors. It searches for the correct word that can generate this misspelled 
word (typo) using Eq. (7) [20].

Table 4  Perplexity on 70K word as test from Arabic Open Corpus using different smooth-
ing techniques against proposed algorithm

Italic values represent proposed model perplexity and entropy reduction against different smoothing techniques

Model Perplexity Entropy reduction (%)

GT5 113.473 –

KN3 99.1785 2.85

KN5 98.9021 2.9

Basic RNN 70.58 10.04

Proposed model 68.42 10.69
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where P(typoword) is computed based on a confusion matrix and P(word) using the 
language model probability of a given word. In this paper, the proposed algorithm was 
compared with traditional n-gram language models. The proposed algorithm was used 
to estimate the probability of a given correction candidate for typos. Table   5 shows 
the overall correction accuracy using the 3-gram language model with Good–Turing 
smoothing and the proposed algorithm. The results show that the correction accuracy 
was enhanced by nearly 3.5% using the 4-gram token-based language model where 
the test set consists of 1500 test cases extracted from the Qatar Arabic Language Bank 
(QALP) corpus [28]. It was divided into 3 test sets where each one consists of 500 test 
cases.

Conclusion
In this paper, we have introduced a modified recurrent neural network-based language 
model for language modeling. The modification was to segment the network input into 
three parts. It is observed that the computational complexity is much lower than that 
in the basic recurrent neural network model. This outcome makes it possible to build 
language models for highly inflective languages (such as Arabic) from large corpora with 
smaller training times and memory costs. Using the intrinsic evaluation (perplexity), it is 
observed that our proposed model outperforms the baseline n-gram model by up to 30% 
based on the Arabic Open Corpus experimental results shown in Table 4. The results 
obtained from applying the proposed model to the Arabic automatic spelling correc-
tion problem show about a 3.5% total accuracy enhancement. This finding indicates that 
more complex and advanced Arabic language applications (such as speech recognition 
and automatic machine translation) can make use of the model described in this paper.
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(7)ẇ = argmaxword = P(word|typo) = argmaxwordP(typo|word) ∗ P(word)

Table 5  Automatic Arabic spelling correction application

Model Correction accuracy Average (%)

Test set 1 (%) Test set 2 (%) Test set 3 (%)

3-gram+ GT3 72.65 70.85 69.03 70.84

RNNLM 74. 5 73.85 71.07 73.14

Proposed model 76.03 75.36 71.50 74.30
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