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Abstract 

Objective:  To provide a parsimonious clustering pipeline that provides comparable 
performance to deep learning-based clustering methods, but without using deep 
learning algorithms, such as autoencoders.

Materials and methods:  Clustering was performed on six benchmark datasets, 
consisting of five image datasets used in object, face, digit recognition tasks (COIL20, 
COIL100, CMU-PIE, USPS, and MNIST) and one text document dataset (REUTERS-10K) 
used in topic recognition. K-means, spectral clustering, Graph Regularized Non-nega-
tive Matrix Factorization, and K-means with principal components analysis algorithms 
were used for clustering. For each clustering algorithm, blind source separation (BSS) 
using Independent Component Analysis (ICA) was applied. Unsupervised feature learn-
ing (UFL) using reconstruction cost ICA (RICA) and sparse filtering (SFT) was also per-
formed for feature extraction prior to the cluster algorithms. Clustering performance 
was assessed using the normalized mutual information and unsupervised clustering 
accuracy metrics.

Results:  Performing, ICA BSS after the initial matrix factorization step provided the 
maximum clustering performance in four out of six datasets (COIL100, CMU-PIE, MNIST, 
and REUTERS-10K). Applying UFL as an initial processing component helped to provide 
the maximum performance in three out of six datasets (USPS, COIL20, and COIL100). 
Compared to state-of-the-art non-deep learning clustering methods, ICA BSS and/
or UFL with graph-based clustering algorithms outperformed all other methods. With 
respect to deep learning-based clustering algorithms, the new methodology pre-
sented here obtained the following rankings: COIL20, 2nd out of 5; COIL100, 2nd out of 
5; CMU-PIE, 2nd out of 5; USPS, 3rd out of 9; MNIST, 8th out of 15; and REUTERS-10K, 4th 
out of 5.

Discussion:  By using only ICA BSS and UFL using RICA and SFT, clustering accuracy 
that is better or on par with many deep learning-based clustering algorithms was 
achieved. For instance, by applying ICA BSS to spectral clustering on the MNIST dataset, 
we obtained an accuracy of 0.882. This is better than the well-known Deep Embedded 
Clustering algorithm that had obtained an accuracy of 0.818 using stacked denoising 
autoencoders in its model.
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Conclusion:  Using the new clustering pipeline presented here, effective clustering 
performance can be obtained without employing deep clustering algorithms and their 
accompanying hyper-parameter tuning procedure.

Keywords:  Spectral clustering, Independent component analysis, Sparse filtering, 
Reconstruction ICA, Unsupervised feature learning, Clustering, Graph Regularized Non-
negative Matrix Factorization

Introduction
Grouping observed data into cohesive clusters without any prior label information is 
an important task. Especially, in the era of big-data, in which very large and complex 
amounts of data from various platforms are collected, such as image content from 
Facebook or vital signs and genomic sequences measured from patients in hospi-
tals [1]. Often, these data are not labeled and a significant undertaking is typically 
required (usually by individuals with domain knowledge). Even in simple tasks, such 
as labeling images or video data can require thousands of hours [2, 3]. Therefore, 
using the unsupervised learning technique of cluster analysis can aide in the process 
of providing labels to observed data [4].

Classical clustering algorithms

Classical clustering algorithms used for analysis are K-means [5], Gaussian Mixture 
Models [6], and hierarchical clustering [4], all of which are based on using a distance 
measure to assess the similarity of observations. The choice for distance measure is 
typically data dependent. For instance, in image data, the similarity between pixels 
can be represented by the Euclidean distance, where as in text documents cosine dis-
tance matrix is typically used [7]. Moreover, appropriate feature representation of the 
observations is even more critical in order to obtain correct clusters of the data [8], 
since improved features provide a better representative similarity matrix.

Deep learning‑based clustering

Early approaches for learning the appropriate feature space in clustering algorithms 
implemented deep autoencoders (DAEs) [9]. Song et  al. [10] used DAEs to directly 
learn the data representations and cluster centers. Huang et al. [11] employed a DAE 
with locality and sparsity preserving constraints, which is followed by a K-means to 
obtain the cluster memberships. A more recent and popular approach by Xie et  al. 
[8] learned the feature space and cluster membership directly using a stacked denois-
ing autoencoder [12]. Following Xie et al. [8], there have been many studies propos-
ing deep clustering algorithms to learn the feature space and cluster membership 
simultaneously using some form of an autoencoder [13–15]. A departure from the 
autoencoder framework was demonstrated by Yang et  al. [16], who used recurrent 
and convolutional neural networks with agglomerative (hierarchical) clustering.

Spectral clustering

Another class of clustering algorithms, called spectral clustering [17, 18], is based on 
embedding the graph structure of the data through eigendecomposition (also known 
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as spectral decomposition) of the Laplacian matrix [19]. Spectral clustering usually 
performs better than K-means and the aforementioned classical algorithms due to its 
ability to cluster non-spherical data [4]. A key issue in spectral clustering is to solve 
the multiclass clustering problem. This is accomplished by representing the graph 
Laplacian in terms of k eigenvectors, k being the number classes [20]. Then, either 
K-means clustering [18], exhaustive search [17], or discretization [21] is applied to 
this lower dimensional representation of the Laplacian to determine the final cluster 
memberships. Recently, autoencoders have been applied on the Laplacian to obtain 
the spectral embedding provided by the eigenvectors [22]. Another approach has 
been to use a deep learning network that directly maps the input data into the lower 
dimensional eigenvector representation, which is then followed by a simple clustering 
algorithm [23].

Research aim

The drawback of deep learning methods is that they tend to have many hyper-parame-
ters, such as learning rates, momentum, sparsity parameters, and number of features and 
layers [14, 24, 25]. All of which can make deep learning models difficult to train, since 
hyper-parameters can severely effect performance [24]. Typically, choosing the correct 
hyper-parameters requires expertise and ad hoc selection [14, 25]. However, the high 
degree of complexity in implementing deep learning-based algorithms [24] may be a lim-
iting factor of their application in non-computer science based research fields. To have 
real-world applicability, clustering applications need to have as few hyper-parameters as 
possible [14].

In this study, the aim is to provide a parsimonious and accessible clustering processing 
scheme that incorporates deep learning-style feature extraction, but without the complex 
hyper-parameter tuning procedure. The goal is to bridge the gap between deep learning-
based clustering methods and widely available standard clustering techniques. This is 
accomplished by using two procedures. First, we improve the clustering accuracy of stand-
ard clustering algorithms by applying independent component analysis (ICA) [26] blind 
source separation (BSS) after the initial matrix factorization step in principal component 
analysis (PCA) and graph-based clustering algorithms. Second, we improve the features 
used for constructing the distance matrix in graph-based clustering techniques by perform-
ing feature extraction using deep learning-inspired feature learning techniques. Prior to any 
clustering algorithm, we implement the unsupervised feature learning (UFL) algorithms of 
ICA with reconstruction cost (RICA) [27] and sparse filtering (SFT) [28], both of which 
have only one tunable hyper-parameter—the number features [28].

By implementing these two procedures we demonstrate that effective clustering perfor-
mance that is on par with more complex deep learning clustering models can be achieved. 
Thus, the clustering methodologies provided herein are designed to be simple to implement 
and train in different data applications.

Materials and methods
An overview of the clustering pipeline implementing unsupervised feature learning and 
ICA blind source separation is provided in Fig. 1. The clustering pipeline consists of four 
key components: (1) feature extraction, (2) graph construction, (3) graph embedding, 
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and (4) K-means clustering. In the following, the datasets are first described and then 
the four components are introduced.

Data

In order to test the generalizability of the proposed clustering methodology, six bench-
mark datasets are used for the experiments; five image datasets and one text dataset (see 
Table 1 for a summary of datasets).

Feature extraction and unsupervised feature learning

For all image datasets, L2-normalization (each observation input feature vec-
tor is transformed to have a unit norm) was performed on the image pixel intensi-
ties (each observation input feature vector is transformed to have a unit norm). 

Fig. 1  Pipeline for processing. Each of the components contains the options available for implementation. 
The simplest processing pipeline to obtain clustering results consists of a L2-normalization on the data, 
followed by K-means clustering. The processing stream with the most components would consist: (1) 
L2-normalization followed by UFL using either RICA or SFT; (2) similarity graph construction; (3) GNMF or 
spectral decomposition followed by ICA blind source separation; and (4) K-means clustering

Table 1  Description of datasets used in experiments

COIL20: grayscale images for object recognition dataset containing 20 objects positioned at 72 different angles [29]. 
COIL100: RGB images of 100 objects at 72 different poses [29]. The images were downsampled to 32 × 32 pixels from the 
original 128 × 128 pixels to facilitate analysis for unsupervised feature learning [24]. CMU-PIE: grayscale images of 68 human 
faces with 4 different poses [30]. USPS: grayscale images of handwritten digits (0–9) from the USPS postal service [31]. 
MNIST: grayscales images of handwritten digits (0–9) obtained from NIST [32]. REUTERS-10K: A Reuters news service dataset 
containing text documents in English that is used for topic recognition, which was processed according to Xie et al. [8]. The 
term frequency–inverse document frequency (tf-idf ) [33] feature matrix was computed, using the 2000 most frequent words

Dataset COIL20 COIL100 CMU-PIE USPS MNIST REUTERS-10K

# Observations 1440 7200 2856 9298 70,000 10,000

# Classes 20 100 68 10 10 4

Dimensions 32 × 32 × 1 32 × 32 × 3 32 × 32 × 1 16 × 16 × 1 28 × 28 2000

Type Image, pixel Image, pixel Image, pixel Image, pixel Image, pixel Text, tf-idf

Task Object rec. Object rec. Face rec. Digit rec. Digit rec. Topic rec.
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L2-normalization has been empirically shown to improve clustering performance 
[16]. The L2-normalization was not performed directly on the raw input data of the 
REUTERS-10K text document dataset because for text documents, the tf-idf matrix 
[33] was constructed. Nonetheless, each observation still has unit norm [7]. At this 
stage, the normalized image and text data can be used as input into the clustering 
algorithms.

Following normalization, the feature extraction component diverges into two separate 
stages. The first stage is performed by principal components analysis (PCA), which is a 
linear method of feature extraction and data compression [34]. PCA is performed on the 
normalized datasets by using singular value decomposition (SVD). SVD has been shown 
to be successful in topic recognition for text documents (Latent Semantic Indexing [35]) 
and face recognition in images (using eigendecomposition in Eigenfaces [36]). SVD pro-
vides a good baseline for comparison to more complex feature extraction algorithms [7, 
37]. To determine the number of principal components, we used spectral clustering as 
our inspiration. In spectral clustering, the number eigenvectors used to embed the graph 
Laplacian is set to the number of clusters expected in the observed/input data. The goal 
is to embed the signal that is unique to each class into a vector. Thus, in our processing 
pipeline the number of principal components extracted is set to the number of classes 
in each dataset, as in spectral clustering [19]. Then the principal components obtained 
from PCA are used in K-means clustering. PCA with K-means clustering has been used 
in other studies as well, such as in Cai et al. [7]. However, in Cai et al. [7], the number 
of principal components is not limited to the number of classes, as in our processing. 
Rather, the full dimensionality of the original input data is preserved. For example in the 
CMU-PIE dataset, for the pipeline proposed in our study, 68 principal components are 
extracted, whereas in [7] 32 × 32 = 1024 principal components are extracted.

After PCA is applied, blind source separation (BSS) can be applied to the extracted 
components. BSS is the problem of resolving the mixed signal sources, without know-
ing the nature of the mixture [38, 39]. ICA is mathematical model of BSS, where 
the mixed signals are separated into their original sources. This is accomplished by 
determining the mixing matrix that the maximizes non-Gaussianity and minimizes 
the mutual information [26]. ICA has been shown to successfully separate source sig-
nals into biological meaningful signals in electroencephalography (EEG) [40, 41] and 
functional magnetic resonance imaging (fMRI) data [42, 43]. In our pipeline, ICA is 
applied to the components obtained by PCA, with the goal to provide more salient 
embedding vectors to the K-means clustering algorithm. In a recent study by Nasci-
mento et al. [44] in 2017, without any PCA dimension reduction, applied ICA directly 
to the input data prior to hierarchical clustering. However, ICA following PCA has 
been shown to be more effective at separating the source signals [45]. In our study, 
the popular FastICA algorithm is used for the application of ICA [46].

The second stage of our feature extraction, which is separate from the first stage, 
uses unsupervised feature learning (UFL). UFL is a general term that is used to 
describe deep neural network-type feature extraction methods that do not use labels 
during model training. Examples of UFL are the deep learning methods of Restricted 
Boltzmann Machine (RBM) and autoencoders neural networks [9]. Many of the deep 
clustering methods use autoencoders in the core of their models [8, 10, 11, 13–15].
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A disadvantage of deep neural networks such as autoencoders is their parameter 
complexity during training [24]. To overcome this complexity, RICA and SFT algo-
rithms have been used as substitutes for the feature learning algorithm. These algo-
rithms have greatly reduced the number of parameters needed to train an effective 
model, thus decreasing training time [27, 28]. Both algorithms have only one hyper-
parameter, which is the number of features or hidden nodes that need to be learned for 
proper feature extraction. A summary of RICA [27] and SFT [28] is given below, where 
X =

(

xij
)

∈ R
q×s is the input data (with q as the of # observations and s as the # of fea-

tures in a random image patch) and W =
(

wij

)

∈ R
K×N is the weight matrix (with K as 

the # of learned features and N as the # of input features):

Reconstruction ICA

RICA relaxes the orthonormal constraint of ICA to learn an over-complete feature 
representation. Over-complete features are more robust to noise, sparse, and may cap-
ture the underlying structure of the data better [47]. The RICA algorithm minimizes W 
using the following objective function, 1

2

∥

∥W
T
Wx − x

∥

∥

2

2
+ ��Wx� , where λ is a sparsity 

parameter.

Sparse filtering

SFT directly learns the kth feature fk of the data by L1-minimization, without ever mode-
ling the data itself. The feature fk for the ith input x(i) is defined by the soft absolute func-
tion fk =

√

(wT
k x

(i))2+ ∈ where ∊ = 10−8. The feature fk is L2-normalized first by the 

rows and then the columns. Then L1-minimization is performed following the normali-
zation steps to ensure equally distributed sparse feature activation.

The second stage of UFL feature extraction is only applied to the image datasets. This 
is due to the 2D image patch extraction process that is required to implement RICA and 
SFT [27, 28, 48]. A detailed discussion about how features are extracted and convolved 
to represent a new feature space can be found in [24, 48, 49].

In summary, there are three types of feature extraction streams for the input data: (1) 
L2-normalization of the input features, (2) using the L2-normalized data, PCA feature 
extraction with the added option of ICA BSS, and (3) unsupervised feature learning with 
RICA or SFT using the L2-normalized features. At this stage, K-means clustering can be 
directly applied to each of the three types of feature representations, without using any 
of the graph-based clustering techniques described in the subsequent subsection.

Graph embedding and clustering

After the feature representation of the input data is finalized, the graph embedding 
procedure can be performed on the new representations of the data. This is a two-
step process in which the similarity graph is first constructed and then followed by a 
matrix factorization step. Once the matrix factorization is obtained, clustering can be 
performed.

We briefly review the process for constructing the similarity graph (for a detailed 
review see [19]), as used in this study. First, using the Gaussian similarity function, 
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s
(

xi, xj
)

= exp
(

−
∥

∥xi − xj
∥

∥

2
/2σ 2

)

 , all pairwise similarities among the observations 

X =
(

xij
)

∈ R
m×n (where m is the # of observations and n is the # of input features) are 

computed, controlled by the scaling factor σ. Using the similarities S =
(

sij
)

∈ R
m×m 

(where m is the # of observations) and the k-nearest neighbor (kNN) criterion, the simi-
larity graph, otherwise known as the weighted adjacency matrix W, is constructed [19]. 
Essentially, the kNN criterion simplifies the similarity matrix to a sparse matrix where 
each observation is connected to only its k-nearest neighbors and all other entries are set 
to 0.

To perform clustering using the similarity graph W, it needs to be represented by k 
eigenvectors or basis vectors by way of matrix factorization [7]. One method to accom-
plish this is through the standard spectral clustering algorithm [19]. In this study, the 
two popular spectral clustering algorithms, both of which require the construction of 
the normalized graph Laplacian, are used. The unnormalized graph Laplacian is defined 
as L = D − W, where D =

(

dij
)

∈ R
m×m (where m is the # of observations) is the diago-

nal degree matrix with diagonal elements set to dii =
∑m

i=1 wij and all other entries set 
to 0. The first version of spectral clustering used, is the method formulated by Ng et al. 
[18] and called SPC-SYM in our study, normalizes the graph Laplacian according to the 
following equation, Lsym = D

−1/2
LD

−1/2 , where Lsym is a symmetric matrix. The sec-
ond formulation by Shi and Malik [17], called SPC-RW subsequently (also known as the 
Normalized Cut algorithm), performs the normalization by Lrw = D

−1
L , where Lrw is a 

related to a random walk matrix [19]. Both algorithms obtain embedding of the similar-
ity graph by using the k eigenvectors (where k is the number of classes) computed from 
the eigendecomposition of their normalized graph Laplacians. SPC-SYM and SPC-RW 
both conclude with K-means clustering on the obtained eigenvectors [19].

The second method used in our study to obtain embedding of the similarity graph W, 
is the Graph Regularized Non-negative Matrix Factorization (GNMF) algorithm [7]. 
GNMF extends Non-negative Matrix Factorization (NMF) by including the geometri-
cal information of the input data during the minimization phase of the NMF algorithm 
[7]. In NMF, the data and the decomposed components are assumed to be non-negative 
[50], whereas in SVD the components may take on negative values. GNMF incorporates 
the unnormalized Laplacian L while solving for the NMF basis vectors of the input data 
[7]. Thus, GNMF embeds the graph structure into k basis vectors. To cluster with the 
GNMF, K-means clustering is performed on the k basis vectors. For comparison pur-
poses and as in Cai et al. [7], we also provide the cluster memberships obtained from 
NMF that is performed directly on the data feature matrix.

On each of the aforementioned graph embedding algorithms, we apply ICA BSS 
immediately after the k eigenvectors (from SPC-SYM and SPC-RW) and basis vectors 
(from GNMF) are obtained. Then, K-means is applied to obtain the cluster member-
ships. ICA BSS is also directly applied on the symmetric Laplacian Lsym matrix, which 
is called the ICA-SYM method. This is done to compare to ICA BSS performed on the 
pre-embedded vectors obtained from SPC-SYM, SPC-RW, and GNMF. In ICA-SYM, 
K-means clustering was applied on the k independent components as the final step.

Overall, graph embedding is obtained from four different methods, (1) SPC-SYM, (2) 
SPC-RW, (3) GNMF, and (4), ICA-SYM. Since the end goal of each method is to obtain 
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clustering using K-means, these four methods are referred to as clustering methods 
rather than specific embedding methods.

Experimental setup

As addressed in Dizaji et  al. [14], successful clustering algorithms need to have a few 
hyper-parameters for wide applicability in real-world situations. Dizaji et al. [14] in their 
deep learning-based clustering algorithm, limited their hyper-parameter space to a fixed 
set of values, i.e., they did not perform a parameter search. Following the same principle, 
the hyper-parameter values used in our clustering processing are summarized in Table 2.

In summary, the clustering methods used to achieve the aims of this study are

• • Without graph embedding: K-means, PCA with K-means, and NMF with K-means.
• • With graph embedding: SPC-SYM, SPC-RW, ICA-SYM, and GNMF—all of which 

used K-means as a final step to obtain the clusters.

The clustering experiments were implemented in the academic and industry standard 
numerical computing environment MATLAB (version 2017b) on a Linux based operat-
ing system of Ubuntu (version 14.04). The computational environment was setup on a 
computer with 20 GB of memory and AMD-FX-6300 3.5 GHz 6-Core CPU.

Performance evaluation

To evaluate the clusters, the standard protocol and performance metrics provided in 
other studies [8, 14, 52] are used. The number of clusters in all algorithms is provided by 
the number of unique ground-truth labels in each dataset. The first metric used to assess 
clustering performance is the normalized mutual information (NMI), which measures 
the dependence of two labels of the same data [53]. NMI is independent of the label 
permutations of the clusters and its values range from 0 (completely independent) and 
1 (completely identical). The second measure, unsupervised clustering accuracy (ACC), 
is the common accuracy metric computed for the best matching permutation between 

Table 2  Cluster processing pipeline parameters used in experiments

PC: principal component. IC: independent component. PCA: The number of features is set to the number of classes. ICA 
BSS: The number of source signals is set to the number of classes. UFL: The number of features is 256 for both RICA and SFT, 
which was determined by the source code examples from [27, 28]. kNN graph: The nearest neighbor value k is set to 5, as 
in Cai et al. [7]. The σ scaling factor is set to the mean of value of all of the kth nearest neighbors from the similarity matrix 
[19]. On large datasets, a smaller set of observations from the data is used to calculate σ, using the method of estimating 
population proportions [51]. Spectral Clustering: Two types of normalized graph Laplacians were used, the symmetric 
Laplacian and random walk Laplacian [19]. GNMF and NMF: The default parameters as provided in the code available from 
Cai et al. [7] were used. K-means algorithm: 200 repetitions of the algorithm were used in order to obtain stable clusters
a   Some processing components have more than one hyper-parameter. Thus, a second hyper-parameter is provided where 
needed
b   Spectral clustering also refers to the use of eigendecomposition for the Laplacian matrix

Componenta Feature extraction Graph 
construction

Graph embedding Clustering

PCA ICA BSS UFL kNN graph Spectral 
clusteringb

GNMF NMF K-means

Hyper-param. 
1

# PC’s = # 
classes

# IC’s = # 
classes

Method: RICA 
& SFT

k: 5 Lsym & Lrw Max 
iters. = 100

Max 
iters. = 100

200 repeti-
tions

Hyper-param. 
2

– – # feats. = 256 σ = mean of 
kth nearest 
neighbors

– α = 100 – –
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clustered labels and ground-truth labels, provided by the Hungarian algorithm [54]. 
Implementation details about the two metrics can be found in Xu et al. [53]. Calculating 
the ACC and NMI allows the results obtained in this study to be compared with almost 
any other clustering study, since these two metrics are the most widely used for evalua-
tion. This is evidenced especially in the most recent state-of-the-art clustering methods 
[14, 23].

Results
The results of implementing the new clustering pipeline on the six datasets are provided 
here. Performing ICA blind source separation, after the initial matrix factorization step, 
provided the maximum clustering performance (Table  3) in four out of six datasets 
(COIL100, CMU-PIE, MNIST, and REUTERS-10K). Applying UFL as an initial process-
ing component helped to provide the maximum performance in three out of six data-
sets (USPS, COIL20, and COIL100). Although on the COIL100 dataset, where both ICA 
BSS and UFL increased performance, no interaction effect between the two processing 
components has been shown (see the multivariate analysis of variance provided below). 
Furthermore, across all datasets the maximum performing clustering algorithms were 
GNMF (COIL100 and USPS), SPC-SYM, (COIL20 and MNIST) and PCA (CMU-PIE 
and REUTERS-10K) as shown in Table 3. This demonstrates that in four out of six data-
sets, graph-based clustering provides the maximum performance. None of the datasets 
exhibited maximum performance without using ICA BSS and/or UFL, which demon-
strates that at least one type of the processing components is necessary to achieve the 
best clustering.

To test the statistical significance and any interaction of the processing components, a 
three-way multivariate analysis of variance (MANOVA) was performed. The MANOVA 
revealed that there is no significant interaction among ICA BSS, unsupervised feature 
learning, and clustering methods (Pillais’ Trace = 0.009, F(6,166) = 0.0959, p < n.s.). This 
demonstrates that the performance effects of the three components are independent of 
each other (as shown by the NMI results in Fig. 2a and ACC results in Fig. 2b).

The key results of the processing components on each of the six datasets are summa-
rized below:

Table 3  Comparison of maximum performance across processing components

Both NMI and ACC are presented in each cell, where the first value is the NMI. Italic font within a row indicates the maximum 
performance obtained for a dataset. The clustering algorithm providing the maximum performance for a given processing 
component and dataset is indicated by the following symbols: aGNMF; bSPC-SYM; cPCA; dSPC-RW; eICA-SYM

Method Performance of applied processing (NMI, ACC)

L2 L2, ICA L2, RICA L2, RICA, ICA L2, SFT L2, SFT, ICA

COIL20 0.918, 0.857b 0.92, 0.856b 0.929, 0.894b 0.914, 0.885b 0.965, 0.93b 0.946, 0.912a

COIL100 0.914, 0.774b 0.914, 0.784a 0.943, 0.813b 0.962, 0.897a 0.932, 0.765b 0.954, 0.849a

CMU-PIE 0.941, 0.85b 0.986, 0.937c 0.816, 0.716b 0.848, 0.721d 0.844, 0.759b 0.866, 0.774b

USPS 0.845, 0.828a 0.854, 0.81a 0.868, 0.926a 0.85, 0.794e 0.852, 0.817b 0.853, 0.813b

MNIST 0.774, 0.787a 0.824, 0.882b 0.79, 0.828b 0.787, 0.822b 0.79, 0.824b 0.794, 0.853a

REUTERS-10K 0.446, 0.656c 0.46, 0.714c
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• • COIL20: Feature learning using SFT with SPC-SYM provided the highest clus-
tering performance (NMI = 0.965, ACC = 0.93), which is better than the baseline 
SPC-SYM clustering performance (NMI = 0.918, ACC = 0.857). With SFT and 
ICA BSS, GNMF also showed an improvement in both performance measures 

Fig. 2  Mean clustering performance. The mean performances (with ± s.d. error bars) are laid on top of 
the individual cluster performances. The clustering methods are organized in ascending order for each 
performance measure. Under the UFL legend, “OFF” indicates that only L2-normalized features were used for 
clustering. This means that no feature extraction was performed. a Mean NMI across all datasets. b Mean ACC 
across all datasets. The MANOVA revealed that there was a statistically significant difference in applying ICA 
BSS after the matrix factorizations (Pillais’ Trace = 0.058, F(1,166) = 4.05, p < 0.05). The post hoc pairwise t-tests 
show that ICA BSS provides higher mean performance across all datasets (NMI: µICA-ON = 0.783 ± 0.174 and 
µICA-OFF = 0.716 ± 0.20, p < 0.05; ACC: µICA-ON = 0.745 ± 0.133 and µICA-OFF = 0.653 ± 0.165, p < 0.001). MANOVA 
also showed there was significant difference in clustering method (Pillais’ Trace = 0.54, F(6,166) = 8.14, 
p < 0.001). GNMF, SPC-RW, SPC-SYM, and ICA-SYM had the higher mean performance compared to all 
other clustering methods (all comparisons p < 0.001), but there was no statistical difference among these 
four methods. The UFL processing component was significant at the less stringent p = 0.1 level (Pillais’ 
Trace = 0.063, F(2,166) = 2.14, p < 0.1). Post-hoc pairwise t-tests at the p < 0.05 level show that the NMI 
performance is higher with RICA (µUFL-RICA = 0.774 ± 0.137) and SFT (µUFL-SFT = 0.786 ± 0.144) feature learning 
in comparison to the absence of feature learning (µUFL-OFF = 0.706 ± 0.238). All post hoc pairwise t-tests were 
corrected using the False Discovery Rate
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(NMI = 0.946, ACC = 0.912) compared to its baseline GNMF clustering perfor-
mance (NMI = 0.913, ACC = 0.844).

• • COIL100: The best clustering performance (NMI = 0.962, ACC = 0.897) was 
obtained with GNMF clustering using RICA feature learning and ICA BSS. 
Without feature learning and ICA BSS, GNMF performance is (NMI = 0.9, 
ACC = 0.713). The addition of the RICA feature learning increases the per-
formance to (NMI = 0.926, ACC = 0.74). The application of ICA BSS to GNMF 
using only L2-normalized features increases the clustering performance to 
(NMI = 0.914, ACC = 0.784).

• • CMU-PIE: Clustering performance obtained with SPC-SYM and ICA BSS is 
(NMI = 0.947, ACC = 0.879), which is an improvement over the baseline SPC-SYM 
implementation (NMI = 0.941, ACC = 0.85). However, when the simpler method of 
clustering on the PCA reduced representation of the pixels, followed by ICA BSS, 
K-means clustering provides the top performance (NMI = 0.985, ACC = 0.937). 
Without any ICA BSS, clustering in the PCA representation provides only 
(NMI = 0.534, ACC = 0.231) performance. The best clustering performance using 
feature learning was obtained with SFT combined with ICA BSS using SPC-SYM 
(NMI = 0.866, ACC = 0.774), which is still lower than baseline SPC-SYM perfor-
mance.

• • USPS: The best clustering performance was obtained with RICA feature learning 
and GNMF (NMI = 0.868, ACC = 0.926). The baseline GNMF performance was 
(NMI = 0.854, ACC = 0.828), which was higher than the baseline SPC-SYM per-
formance (NMI = 0.842, ACC = 0.814). When the ICA BSS was applied to GNMF, 
the performance of the NMI increased, but the accuracy decreased (NMI = 0.854, 
ACC = 0.810).

• • MNIST: The best clustering performance was obtained with SPC-SYM/SPC-
RW using ICA BSS (NMI = 0.824, ACC = 0.882). The performance of the base-
line SPC-SYM and SPC-RW were (NMI = 0.779, ACC = 0.756) and (NMI = 0.757, 
ACC = 0.67), respectively. When RICA feature learning was applied to SPC-SYM, 
the performance increased to (NMI = 0.79, ACC = 0.828). When ICA BSS was com-
bined with RICA feature learning for SPC-SYM, the performance decreased slightly 
(NMI = 0.787, ACC = 0.822). With GNMF clustering, the baseline performance 
(NMI = 0.774, ACC = 0.787) improved when ICA source was applied (NMI = 0.813, 
ACC = 0.845). Improvement to the GNMF baseline performance was also achieved 
when SFT feature learning was combined with ICA BSS (NMI = 0.794, ACC = 0.853).

• • REUTERS-10K: When PCA dimension reduction followed by ICA BSS is applied 
directly applied to the tf-idf matrix, K-means clustering provides the top clustering 
performance (NMI = 0.46, ACC = 0.714). Without ICA BSS, PCA dimension reduc-
tion provides an accuracy of (NMI = 0.446, ACC = 0.656). The next best clustering 
performance was provided by NMF without (NMI = 0.318, ACC = 0.546) and with 
ICA BSS (NMI = 0.428, ACC = 0.638).

The results from this study are compared to state-of-the-art deep learning-based and 
non-deep learning-based clustering methods given in Table  4. The implementation of 
ICA BSS and/or unsupervised feature learning with graph-based clustering algorithms 
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outperformed all other state-of-the-art non-deep learning clustering methods (Table 4). 
With respect to deep learning-based clustering algorithms, our methodology performed 
second best after the JULE algorithms (JULE-SF and JULE-RC) in three out of six data-
sets (COIL20, COIL100, and CMU-PIE).

The main comparison results from Table 4 for each of the six datasets are summa-
rized below:

• • COIL20: Our SPC-SYM with SFT feature learning was 3.5 percentage points (p.p.) 
less than JULE (both JULE-SF and JULE-RC had perfect NMI) in NMI perfor-
mance. The JULE algorithms denoted by JULE-SF and JULE-RC, are the same 

Table 4  Comparison of  clustering performance across  different datasets and  clustering 
techniques

a   The maximum clustering performance obtained by the processing components proposed in this study is provided for 
each dataset. When available, both NMI and ACC are presented in each cell, where the first value is the NMI. If the cell is 
blank then the clustering method was not used on the dataset. Italic font within a row indicates the maximum performance 
obtained for a dataset. The full names and references of the compared methods are: Deep Embedding Network (DEN) [11], 
Discriminatively Boosted Clustering (DBC) [55], Infinite Ensemble Clustering (IEC) [56], Autoencoder-based Clustering (AEC) 
[10], Deep Embedded Clustering (DEC) [8], Deep Clustering Network (DCN) [13], Deep Convolutional Embedded Clustering 
(DCEC) [57], Deep Embedded Regularized Clustering (DEPICT) [14], Variational Deep Embedding (VaDE) [15], autoencoder 
with K-means clustering (AE + K-means) [8], Information Maximizing Self-Augmented Training (IMSAT) [58], NMF with Deep 
learning model (NMF-D) [59], Joint Unsupervised Learning (JULE) “-SF” and “-RC” [16], Task-specific Deep Architecture for 
Clustering (TSC-D) [60] Graph Degree Linkage-based Agglomerative Clustering (AC-GDL) [61] and Agglomerative Clustering 
via Path Integral (AC-PIC) [62], Spectral Embedded Clustering (SEC) [63], and Local Discriminant Models and Global 
Integration (LDMGI) [52]

Baseline Performance of applied processing on different datasets (NMI, ACC)

COIL20 COIL100 CMU-PIE USPS MNIST REUTERS-10K

Method

 K-means 0.735, 0.597 0.822, 0.615 0.532, 0.239 0.659, 0.694 0.527, 0.553 0.356, 0.541

Deep learning

 AE+K-means (2016) –, 0.818 –, 0.666

 NMF-D (2014) 0.692, – 0.719, – 0.920, 810 0.287, 0.382 0.152, 0.75

 TSC-D (2016) 0.928, 0.899 0.651, 0.692

 DEN (2014) 0.870, 0.725

 DBC (2017) 0.895, 0.793 0.905, 0.775 0.724, 0.743 0.917, 0.964

 IEC (2016) 0.787, 0.546 0.641, 0.767 0.542, 0.609

 AEC (2013) 0.651, 0.715 0.669, 0.760

 DCN (2016) 0.810, 0.830

 DEC (2016) 0.924, 0.801 0.586, 0.619 –, 0.818 –, 0.722

 DCEC (2017) 0.826, 0.790 0.885, 0.890

 DEPICT (2017) 0.974, 0.883 0.927, 0.964 0.917, 0.965

 JULE-SF (2016) 1.000,– 0.978, – 0.984, 0.980 0.858, 0.922 0.906, 0.959

 JULE-RC (2016) 1.000, – 0.985, – 1.000, 1.000 0.913, 0.950 0.913, 0.964

 VaDE (2016) –, 0.945 –, 0.798

 IMSAT (2017) –, 0.984 –, 0.719

 SpectralNet (2018) 0.924, 0.971

Non-deep learning

 AC-GDL (2012) 0.865, – 0.797, – 0.934, 0.842 0.824, 0.867 0.017, 0.113

 AC-PIC (2013) 0.855, – 0.840, – 0.902, 0.797 0.840, 0.855 0.017, 0.015

 SEC (2011) 0.511, 0.544 0.779, 0.804

 LDMGI (2010) 0.563, 0.580 0.802, 0.842

Oursa 0.965, 0.93 0.962, 0.897 0.986, 0.937 0.868, 0.926 0.824, 0.882 0.460, 0.714
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method except that the “–RC” is the fine-tuned version of the “straight-forward” 
“-SF” version [16]. Overall, SPC-SYM with SFT ranked 2nd (out of 6) compared to 
5 other deep clustering methods.

• • COIL100: GNMF with RICA feat learning and ICA BSS performed 1.6 p.p. and 2.3 
p.p. less than JULE-SF and JULE-RC, respectively, in NMI. GNMF with RICA and 
ICA BSS ranked 2nd (out of 5) compared to 4 other deep clustering methods.

• • CMU-PIE: The simple combination of PCA with ICA BSS performed almost on par 
with the much more complex JULE algorithm, which uses a combination of recur-
rent and convolutional neural networks. Specifically, before any model fine-tuning 
is applied to the JULE algorithm (JULE-SF), our PCA and ICA combination was 0.2 
p.p. higher in NMI performance. However, this advantage is lost once the JULE algo-
rithm is fine-tuned (JULE-RC). PCA with ICA BSS ranked 2nd (out of 5) compared 
to 4 other deep cluster methods.

• • USPS: Using RICA with GNMF performed third best after the JULE-RC and 
DEPICT algorithms, outperforming seven deep learning clustering methods. This 
new combination even outperformed JULE-SF by 1 p.p. in NMI and 0.4 p.p. in ACC. 
Overall, RICA with GNMF ranked 3rd (out of 9) compared to 8 other deep cluster-
ing methods.

• • MNIST: Our clustering algorithm performed better than seven other deep learning 
clustering algorithms by simply using ICA BSS after eigenvector decomposition of 
the normalized Laplacian used in SPC-SYM. However, it ranked 8th (out of 15) com-
pared to 14 other deep clustering methods. Nonetheless, it performed better than 
the popular algorithms of DEC by 0.8 p.p. in NMI and 3.8 p.p. in ACC and DCN by 
1.4 p.p. in NMI and 5.2 p.p in ACC.

• • REUTERS-10K: Our implementation of clustering in the PCA space with ICA BSS, 
performed better than AE+K-means by 4.8 p.p. in NMI, however it did not exceed 
any other deep learning clustering algorithms, ranking 4th (out of 5) in comparison 
to 4 other deep learning methods. Nonetheless, our PCA and ICA combination per-
formed on par with the DEC and IMSAT algorithms, which were 0.5 and 0.8 p.p. in 
NMI, respectively, better than our clustering performance.

The running times for the new clustering algorithms using the different processing 
components are found to be similar to other studies. For the largest dataset, (MNIST), 
the running time for our best performing algorithm (SPC-SYM with ICA BSS) is 20 min. 
With feature learning, such as SFT, in addition to graph-based clustering, the running 
increases to 5 h for GNMF and 4.9 h for SPC-SYM. These times are comparable to JULE-
SF (4.4 h) and JULE-RC (8.3 h) and DEPICT (2.8 h) [14]. For the USPS dataset (the sec-
ond largest dataset), our best result using RICA feature learning with GNMF clustering 
took 18 min to run. Adding a separate ICA BSS (~ 0.5 s), does not noticeably increase 
the running time because clustering time is reduced by one second on the ICA compo-
nents. Clustering with JULE (either SF or RC), and DEPICT takes about 28 min to run 
on the USPS dataset [14].
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Discussion
It is demonstrated that standard clustering techniques, especially graph-based methods, 
can be used to achieve equivalent or better clustering performance than deep learning 
clustering algorithms when ICA blind source separation and unsupervised feature learn-
ing algorithms are applied. ICA BSS applied to either the PCA features vectors or to the 
graph-embedding vectors increased the saliency of the class-specific feature embedding. 
This is the first study to apply ICA BSS as an improvement to the multiclass problem in 
graph-based clustering algorithms. UFL using RICA and SFT helped build an improved 
similarity graph representation of the original input data, which is critical in graph-
based clustering algorithms such as spectral clustering and GNMF.

In Fig. 3a, ICA BSS separates the CMU-PIE face signals into distinct sources, which 
are indicated by a step function-like feature in each signal. Whereas the PCA signals 
(Fig.  3b) do not exhibit any distinct feature across the different class source signals. 
With PCA, the majority of the source signal information is carried in the first few com-
ponents, thus confusing the different class information. Surprisingly, in the CMU-PIE 
dataset, PCA with ICA BSS and K-means clustering performed better than the more 
advanced graph-based clustering algorithms that used UFL extracted features. This 
may be due to the fact that UFL may be extracting noisy features thus decreasing the 

Fig. 3  CMU-PIE ICA blind source separation. The first 20 signals are shown from a total of 68, which is the 
total number of possible clusters. a Each of the ICA sources on the top panel has a distinct signal. b The PCA 
sources do not show much separation, which is the reason for its poor clustering performance
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similarity graph’s representation efficacy. This may be the case when UFL feature extrac-
tion has the undesired effect of decreasing baseline clustering performance for any of the 
clustering algorithms.

Furthermore, limiting the number principal components to only the number of classes 
in K-means combined with PCA, helped to extract only the pertinent class-specific fea-
tures. First, PCA captures only the necessary variance by eliminating the extra informa-
tion, and then BSS using ICA separates the signals pertaining to each class. Although 
unexpected, clustering success in the REUTERS-10K text document dataset is not alto-
gether surprising. Since, ICA has been shown to perform reasonably well on text docu-
ments in the task of topic classification and information retrieval [64–66].

Fig. 4  Visualization of the USPS clusters using multidimensional scaling. (MDS). MDS is performed on 
the similarity matrix of the observations, which is also used in GNMF clustering. a Clusters based on RICA 
extracted features are more distinct and homogeneous. b Clustering on the pixels only after applying 
L2-normalization did not provide sufficient separation of the clusters
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Figure 4 plots the estimated clusters obtained from GNMF for the USPS dataset using 
both the L2-normalized and RICA features. The L2-normalized features used for cluster-
ing fail to highlight distinct groupings (Fig. 4b) in the USPS digit data, while the RICA 
features provide much more compact clusters (Fig. 4a), which is also evidenced by the 
higher clustering NMI and ACC. This shows that employing UFL for feature extraction 
is better able to capture the underlying structure in data, which is important for building 
an accurate similarity matrix [8]. Furthermore, without any hyper-parameter search in 
the feature learning procedure, high clustering performance better than many advanced 
deep clustering techniques is achieved. In fact, by using only a consumer-level 6-core 
CPU (AMD-FX-6300) we are able to achieve equivalent computation times with respect 
to deep clustering algorithms that require high-end video cards (NVIDIA Titan X Pas-
cal) [14, 16], which have many more GPU cores than standard video cards.

The limitations of the clustering methodology presented in our study are mainly due to 
the processing speed of the similarity graph and the matrix factorizations [23]. However, 
the speed limitation of the matrix factorization is due to the initial eigendecomposition 
and NMF computations. Otherwise, once the k basis vectors or eigenvectors have been 
obtained, the ICA computation is fast since the dimensionality of these vectors are small. 
Nonetheless, as a simple and effective boost to spectral clustering and GNMF, ICA blind 
source separation can be used alongside UFL with RICA or SFT.

Given the multiple stages of processing in the proposed clustering pipeline, guidelines 
for its recommended usage are provided. Initially, PCA with the number components 
set to the number of classes and ICA BSS using K-means should be applied as a sim-
ple baseline. This should be an effective baseline for text documents. In image datasets, 
another effective baseline would be to use GNMF or SPC-SYM using ICA BSS. GNMF 
or SPC-SYM using UFL with RICA and SFT for feature extraction can also be used as 
alternate clustering algorithm. Finally, GNMF or SPC-SYM using ICA BSS and UFL fea-
ture extraction can be used as a last attempt to obtain high clustering performance.

The proposed pipeline is effective for small (1000–2000 observations, such as COIL20, 
COIL100 and CMU-PIE) to medium-large datasets (10,000–50,000 observations, such 
as USPS and REUTERS10-K). Beyond 50,000 observations, deep clustering methods 
may be more suitable due to computation time of the similarity graphs, basis vectors, 
and eigenvectors [23]. The pipeline can be very useful for medical data, specifically in 
the analysis of electronic health records, where the number of observed patients is typi-
cally ~ 1000 [67], due to the difficulty of collecting pertinent patient data. On a dataset 
with less than 50,000 observations, deep clustering algorithms may require too much 
overhead in terms of hyper-parameter setup, without providing a large improvement in 
terms of clustering performance.

Conclusions
From the new cluster processing pipeline presented in this study, the three main meth-
odological findings are:

• • Graph-based clustering performance can easily be improved by applying ICA blind 
source separation during the graph Laplacian embedding step.
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• • Applying unsupervised feature learning to input data using either RICA or SFT, 
improves clustering performance.

• • Surprisingly for some cases, high clustering performance can be achieved by sim-
ply performing K-means clustering on the ICA components after PCA dimension 
reduction on the input data. However, the number of PCA and ICA signals/compo-
nents needs to be limited to the number of unique classes.

The main clustering results from the new processing pipeline compared to other clus-
tering studies are:

• • Compared to state-of-the-art non-deep learning clustering methods, ICA BSS and/
or UFL with graph-based clustering algorithms outperformed all other methods.

• • With respect to deep learning-based clustering algorithms, our new pipeline 
obtained the following rankings on the six different datasets: (1) COIL20, 2nd out of 
5; (2) COIL100, 2nd out of 5; (3) CMU-PIE, 2nd out of 5; (4) USPS, 3rd out of 9; (5) 
MNIST, 8th out of 15; and (6) REUTERS-10K, 4th out of 5.

These findings demonstrate the robustness of standard clustering methods when 
implemented with careful processing. Instead of developing complex deep learning 
clustering implementations, equivalent results can be achieved from existing standard 
techniques with the modifications presented herein. Furthermore, the new clustering 
implementation presented in this study may also be used as an empirical baseline to 
justify use of sophisticated deep clustering learning networks and to reduce computa-
tion times. For future studies, increasing the speed of building the k nearest neighbor 
graph used in spectral clustering and GNMF will be investigated. Also, application of the 
clustering pipeline to handwritten image data in another language such as Korean [68], 
would help to demonstrate the generalizability of the methods provided herein.
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