
Classifying 3D objects in LiDAR point 
clouds with a back‑propagation neural network
Wei Song1*†  , Shuanghui Zou1†, Yifei Tian2†, Simon Fong2† and Kyungeun Cho3†

Introduction
Autonomous driving technologies enable motor vehicles to drive themselves safely and 
reliably, and are being widely researched for smart cities and urban services [1]. The abil-
ity to perceive their surroundings is essential for unmanned ground vehicles (UGVs) to 
achieve autonomous driving [2]. Autonomous UGVs need to obtain a large amount of 
accurate environmental data to support automatic object avoidance and local path plan-
ning [3].

Several types of environment sensors, such as fisheye, binocular, and depth cameras, 
are widely used to obtain real-time information about a vehicle’s surroundings so it can 
be aware of its environment [4–6]. Compared with these, the clearest advantage of Light 
Detection and Ranging (LiDAR) is that it can rapidly collect high-precision, wide-range 
point clouds [7]. Classifying and recognizing the features of individual objects based on 
these point clouds is a crucial challenge, and involves exploiting their unique properties, 
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such as their non-uniform densities and non-structural distributions [8]. In traditional 
point cloud analysis methods, the accuracy and speed performance are interfered by the 
unorganized distribution features of LiDAR point cloud [9]. Besides, uniformity density 
is also a difficult bottleneck for computer to allocate memory in point cloud storage [10]. 
To analyze the types of obstacles found in outdoor scenes, highly efficient pre-process of 
point cloud is urgent before executing classification and recognition steps [11].

In object recognition domain, machine learning algorithms are widely used in sensor-
based object classifying and recognizing to increase the accuracy rate [12]. Thus, this 
paper proposes an urban object feature extraction and classification method that uses a 
back-propagation neural network (BPNN) to partition the original LiDAR point cloud 
into individual objects. In most urban environments, objects are always perpendicular 
to the ground surface, a feature we exploit. After filtering out the ground points from 
the LiDAR data, the remaining non-ground points are projected onto the x–z plane and 
clustered into different objects. This plane is rasterized to divide it into neatly-arranged 
cells containing the corresponding scattered points. By grouping connected cells 
together, the disorganized 3D points are split into different objects with unique labels 
by an inverse mapping from the x–z plane. This way, the redundant iteration in object 
segmentation is avoided through in the proposed method. In addition, the objects in the 
training and testing datasets are manually labelled with their categories.

During training, the BPNN model receives the objects’ features and their labels as 
input and the parameters of all neurons in all layers are adjusted by back-propagation 
[13]. After a large number of training iterations, the parameters (namely the weights and 
bias) have been optimized and training is considered to be complete. Our non-linear 
classifier’s recognition accuracy is then evaluated on the testing dataset by comparing 
the predicted and true object categories. Here, we consider five object types, namely 
trees, bushes, pedestrians, poles, and walls. The proposed feature extraction and clas-
sification method can be utilized in most urban environments to support UGV decision-
making and hence realize autonomous driving in unknown environments.

The remainder of this paper is organized as follows. “Related works” section gives an 
overview of related work. “Feature extraction and object classification system” section 
describes our object feature extraction and classification method, including how we 
extract basic object characteristics, train the BPNN model, and test it. “Experiments” 
section presents our experimental results. Finally, “Conclusions” section concludes the 
paper.

Related works
Accurate object recognition and classification information was crucial for UGVs to 
understand their environments and make driving decisions via automatic traversable 
road planning [14]. In outdoor environments, different obstacles had different spatial 
distributions (meaning, for example, different sizes, shapes, and topologies), which were 
important features for distinguishing object types [15]. To obtain accurate object rec-
ognition and classification results, UGVs sensed their surroundings by using LiDAR to 
collect 3D point clouds.

The most common urban environments UGVs encounter were streets, which include 
buildings and other infrastructure, trees, brushes, pedestrians, and vehicles [16]. Before 
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classifying these objects, semantic segmentation was applied as a pre-processing step 
to divide the full point cloud for the current scene into individual parts [17]. However, 
the disorganized feature distributions in LiDAR point clouds hindered the accuracy and 
speed of traditional segmentation methods [9].

Indexing and pooling methods were used prior to object segmentation to order the 
original point cloud, but the labelling process required a large number of iterations [18, 
19]. Yang et al. [20] developed a semantic object registration system that calculates the 
parameters of vertical lines extracted from pole-like and planar objects in 3D point 
clouds. Based on both geometric and semantic constraints, the extracted vertical lines 
provided important information about the external environment. They were used to 
assess objects’ characteristics, which were recorded in a hash table with several descrip-
tive attributes. Based on the hash table, specific objects containing vertices, straight 
lines, and planes were perceived after several scans from different static views. As an 
initial step, before object classification and recognition, this LiDAR point cloud registra-
tion process provided UGVs with basic perception information. By storing the LiDAR 
point clouds in a structured way, it dealt with the dispersed and non-sequential nature of 
their spatial distributions. Broggi et al. [21] used a stereo camera to capture point clouds 
around an unmanned car, and then grouped them into clusters with a flood fill method. 
This method employed a linear Kalman filter to analyze the movement and orientation 
of obstacles, classifying them as either moving or stationary. Due to only considering 
neighboring points when analyzing the large-scale dataset, this approach required for 
rapid iteration and traversal.

Next, the point clouds were split into groups representing individual objects for cat-
egorization. One method of extracting the objects’ characteristics involves analyz-
ing the outlines, edges, and vertical spatial distribution of each group [22]. Geometric 
properties and density distributions could also be used as basic object features for clas-
sification. Zhao et al. [23] installed multiple sensors, including camera and LiDAR, on 
an unmanned vehicle to collect 2D images and 3D point clouds of its surroundings. 
Then, they segmented the ground points by extracting geometrical features from the 3D 
LiDAR points while simultaneously utilizing color and texture information captured by 
the cameras to categorize the objects in detail. To deal with incorrect results caused by 
measurement error, they employed a Markov random field model to reduce detection 
mistakes when combining the data from multiple sensors.

Recognition algorithms used these extracted basic features to classify objects into 
types, such as planes, poles, or balls [24]. Several categorization methods exploited 
specific descriptions to find certain object types in the scenes [25, 26]. Wang et al. [27] 
developed a 3D object matching system that used an octree structure to describe the 
spatial distributions of the unstructured point clouds representing each separate object. 
They applied principal component analysis algorithm to each octree node to compute 
the eigenvectors and eigenvalues based on an icosahedron model. This enables them to 
extract the objects’ features so as to divide the objects into different categories. Zeng 
et al. [28] proposed a kind of novel multiscale 3D keypoint detection method by using 
the double Gaussian weighted dissimilarity measure. The shape index value and the 
Gaussian weighted value of each 3D point were computed to select the most suitable 3D 
multi-scale key points. In this method, key points of uniform distribution were obtained 
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with excellent anti-noise ability. But, the method cost lots of time consumption in the 
multi-scale key point selection process so that the algorithm is not time efficiency to 
support environment information for UGV’s automatic driving.

Subdivision was essential for object recognition to implement local path planning 
without collisions [29]. Compressing adjacent points with the same distance made less 
accurate in different object features identifying. After identifying certain LiDAR point 
orders, the approach of Choe et al. [30] abstracted geometrical features from the points 
to classify them into four types, namely horizontal, slope, vertical, and scatter. They then 
clustered points of the same type based on a nearest neighbors rule and trained a Gauss-
ian mixed model to estimate the confidence levels when classifying the objects into types 
such as buildings, trees, cars, and other urban objects. However, the limited coverage 
of 2D LiDAR meant only two sides of the vehicle were in the detection domain and the 
front was ignored.

Combining these techniques with machine learning algorithms had significantly 
improved the accuracy and speed of semantic perception in urban areas [31, 32]. Wang 
et  al. [25] developed a real-time pedestrian perception and tracking method using 
LiDAR point clouds collected from moving UGVs. This method first projected the point 
cloud onto a horizontal plane and then divided the plane into regular grid of cells. It then 
clustered connected cells into groups, considers all points in a given group to belong to 
the same object, and used this to recognize and classify the object. This method used 
a support vector machine (SVM) to separate the points into clusters and classify the 
grouped points. To determine whether or not a cluster represents a pedestrian, all the 
points in the cluster were input to the trained SVM model. This approach therefore rec-
ognized pedestrians from LiDAR point clouds using a trained model.

Zeng et al. [33] proposed a multi-feature fusion learning approach to 3D object rec-
ognition that used a convolutional neural network (CNN). This computed the heat and 
wave kernel signature descriptors to describe the 3D objects’ shape geometry distribu-
tions, then used the CNN to learn fused features based on these descriptors to describe 
the objects’ features. However, unlike with their high-resolution test model, the LiDAR 
point cloud’s spatial distribution was so diffuse that it was difficult to describe the 3D 
surfaces accurately using these descriptors.

To improve object type recognition accuracy, this paper proposed an urban object fea-
ture extraction and classification method that identified different object categories from 
LiDAR point clouds. A BPNN model was trained to classify five common object types 
found in urban areas based on geometrical features extracted from segmented point 
clusters.

Feature extraction and object classification system
The proposed urban object feature extraction and classification method uses 3D LiDAR 
point clouds to enable dynamic environment perception for autonomous UGV deci-
sion-making. As illustrated by Fig.  1, our method consists of five steps, namely point 
cloud segmentation, feature extraction, model initialization, model training, and model 
testing.

To gain information about the road conditions in urban areas, the UGV utilizes high-
precision LiDAR to generate raw 3D point clouds. Since most of the objects in urban 
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regions are perpendicular to the ground surface, segmenting them in the x–z plane is a 
reliable and reasonable approach. Here, the ground points form a connected plane, so all 
the objects would be recognized as a single connected component without ground filter-
ing. Thus, we use a histogram-based threshold in the x–z plane to filter out the ground 
points [34]. To segment all the non-ground points into separate connected clusters, 
the projected points are rasterized into identically-sized square cells, and the cells are 
grouped into separate objects. Then, we apply an inverse projection to these clusters to 
form 3D objects with corresponding labels.

From the m-point sub-cloud D corresponding to a given object, we extract geometri-
cal features including the volume, density, and eigenvalues in the three principal direc-
tions as a basis for classification. Here, the object’s volume is computed by multiplying 
its length, width, and height together. The object’s density is the quotient of its total 
effective point count and the effective count for the projected grid cells in the rasterized 
2D plane, as illustrated above. The three eigenvalues are obtained by decomposing the 
point cloud’s covariance matrix, providing estimates of the object’s distribution in each 
dimension. Thus, by comparing these three eigenvalues, we can divide the objects into 
three different types based on their distributions.

In the object point cloud D, the values of each point in x, y, z coordinates are stored 
in the matrix X. This consists of n rows and m columns, where m is the number of 3D 
points in the object and n is the number of data dimensions, i.e., 3 (x, y, and z). To sim-
plify the eigenvalue calculations, we normalize X to create X’ by subtracting the mean 
values of the three coordinates.

Using the normalized matrix X′, we obtain the covariance matrix H as

Fig. 1  Proposed urban object detection and classification framework
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The diagonal elements of H are the variances of x, y, and z, and the other elements are the 
covariances. Because H is symmetric, the eigenvalues and eigenvectors can be calculated 
using the eigen decomposition method. The three resulting pairs of eigenvectors and eigen-
values represent the principal directions and the object’s dimensions in these directions, 
respectively. The three eigenvalues thus roughly describe the object’s point distribution, and 
are important features for object classification.

Next, we create a BPNN model that uses these three extracted features to recognize dif-
ferent object types. As illustrated in Fig. 2, the model has three layers, namely a 5-neuron 
input layer, a 20-neuron hidden layer, and a 5-neuron output layer. The BPNN model is 
trained via feed-forward and back-propagation steps.

During the feed-forward step, all the hidden and output neurons x′ are updated according 
to the weights wi and values xi of the neurons in the previous layer, as follows:

where n is the number of neurons in the previous layer and b is the bias of neuron x′. 
We use a sigmoid activation function, obtaining the neuron’s output y′. Next, the BPNN 
model’s output vector Y′ (y′·Y′) as the prediction is computed using Eqs.  (2) and (3). 
Here, the model has five output neurons, so the vectors Y and Y′ are five dimension vec-
tors. The error is calculated by comparing the prediction Y′ with the true output vector 
Y as follows:
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Fig. 2  Structure of the BPNN model
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Back-propagation is then utilized to minimize the error by iteratively modifying the 
model’s weight and bias parameters. Finally, after the weight and bias parameters have 
been optimized, the training process is complete. A testing dataset is then used to evalu-
ate the model’s object recognition accuracy using these basic geometric and spatial dis-
tribution features.

Experiments
Figure  3a shows our UGV, equipped with a roof-mounted LiDAR scanner to gather 
information about the urban environment within 70 m. The LiDAR device (Fig. 3b) col-
lected about seven hundred thousand 3D points per second. The developed system ran 
on a PC with a 3.20  GHz Intel Core i5-5200 CPU @ 2.20  GHz, an NVIDIA GeForce 
GTX 770 GPU, and 4 GB RAM.

Figure  4 shows object segmentation results for 3D LiDAR point clouds recorded in 
urban environments, where different types of non-ground object, and their correspond-
ing bounding boxes, are rendered in different colors. The objects in most urban environ-
ments typically consist largely of trees, pedestrians, walls, poles, and bushes. Thus, we 
aimed to classify the objects into these five types, as this is considered to be the main 
challenge for UGVs to sense their surroundings. Figure 5 illustrates the spatial distribu-
tions of point clouds corresponding to these five object types.

Fig. 3  LiDAR-equipped environment perception platform

Fig. 4  Object segmentation results for an urban scene
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Based on the segmentation results, the object features, namely the volume, density, 
and eigenvalues in the three principal directions, were extracted by traversing all the 
object points. The training and testing datasets were created by collecting and manu-
ally labelling data for 1000 objects from 20 LiDAR scans taken in different urban envi-
ronments. These consisted of 286 walls, 109 poles, 43 pedestrians, 416 trees, and 146 
bushes. Of these, 800 objects were utilized for training and the other 200 for testing the 
BPNN model, distributed as shown in Fig. 6.

Fig. 5  Spatial distributions for the five types of objects in urban areas

Fig. 6  Numbers of objects in the training and testing datasets
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The BPNN training process was iterated 10,000 times. Figure 7a shows the trained 
BPNN’s object recognition accuracies for each of the 20 scans on the testing dataset; 
its average accuracy was 91.5%.

Figure 7b shows the BPNN’s performance for the different object types. Our data-
sets included many more trees and walls than pedestrians, so the model recognized 
trees more accurately than pedestrians. In addition, the simple and similar structures 
of poles meant they were identified relatively accurately despite the low number of 
training examples.

Figure 8 compares the object recognition results of our BPNN and an SVM. Here, 
poles, pedestrians, vegetation, and walls are supposed to be render in yellow, red, 
green, and black, respectively. Without the benefit of back-propagation, the SVM 
(Fig. 8b) found it hard to classify the pedestrian and vegetation objects, as their sur-
face shapes were complex and variable.

For comparison, we also evaluated the performance of Decision Tree (DT) and Sup-
port Vector Machine (SVM) algorithms on our experimental datasets. Figure 9 com-
pares the object recognition accuracies of the three methods (BPNN, DT, and SVM). 
This shows that our BPNN algorithm was the most accurate, achieving an average 

Fig. 7  Object recognition performance on the testing dataset
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accuracy of about 91.5%, compared with 89% and 67.5% for the DT and SVM algo-
rithms, respectively.

Conclusions
In this paper, we have developed an object feature extraction and classification system 
that enables UGVs to analyze and perceive their environment. Our system uses LiDAR 
to scan the UGV’s surroundings and gather information about the urban environment. 
Then, it segments the 3D point cloud data and extracts geometrical and distribution-
related features (the volume, density, and eigenvalues in three principal directions) from 
the resulting object clouds. Training data that combines these features with manual 

Fig. 8  Comparison of object recognition results for a our BPNN and b an SVM

Fig. 9  Object recognition accuracies for the BPNN, DT, and SVM algorithms
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labels is used to train a BPNN to recognize five types of outdoor objects, namely walls, 
poles, pedestrians, trees, and bushes. The BPNN model has 5 input neurons, 20 hidden-
layer neurons, and 5 output neurons. After 10,000 training iterations, the model’s object 
classification accuracy averaged 91.5% on our testing dataset. In comparison, DT and 
SVM algorithms yielded accuracies of 89% and 67.5% respectively, indicating that our 
BPNN was more suitable for the UGV object classification task. In future work, we plan 
to increase recognition accuracy by gathering more manually-labelled object feature 
datasets to better train our BPNN model.
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