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Introduction
Detecting signing voice in a piece of music work (soundtrack) has been studied for many 
years because this technique is the foundation for many advanced applications [1]. In the 
following, we briefly describe some of the applications. Firstly, if we intend to remove 
the vocal sound from a singing soundtrack for karaoke singers, the pre-processing step 
certainly needs to pin point the audio segments with singing voice [2]. Second, we know 
that the most well-known portion of a western popular song is usually on the verse part, 
which almost always contains singing performance. Therefore, the work of music sum-
marization [3] as well as melody extraction [4] can also benefit from knowing the seg-
ments with signing voice. Next, if we want to identify the singer in a music work, we 
need to have the singing segments before conducting recognition [5]. In addition to the 
above applications, if we intend to perform a lyrics-to-melody conversion [6], we also 
need to know the signing segments. From the above examples, we know that singing 
voice detection is a fundamental pre-processing step for many applications.

There are two types of problems in detecting singing voices in a piece of audio work. 
The first type is to mark the starting and ending points of all vocal segments on the 
soundtrack, referred to as the singing voice segmentation problem. The second type is 
to determine whether a short audio clip (e.g., 2 s) contains any human-perceivable vocal 
sound, including the vocal sound of the background vocalists. This type of problem is 
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referred to as the singing voice detection problem. At a first thought, it seems that the 
singing voice segmentation problem is more difficult than the detection problem. How-
ever, the segmentation problem has the entire soundtrack available; therefore, some 
post-processing steps, such as smoothing [7], could be conducted to correct some error 
labeling by using the information of the preceding and succeeding pieces of music. Such 
a technique, however, could not be applied to the singing voice detection problem. In 
this paper, we focus on the second type of problem. As these two types of problems are 
somewhat different, the accuracy measure reported for one type of problem may not be 
compared with that of the other.

Recently, new types of neural network structures have been widely applied to many 
difficult problems [8, 9]. For example, the CNN structure nowadays is widely used in 
the image recognition problems [10, 11]. Therefore, it is a natural extension to apply the 
CNN structure to the singing voice detection problem. Conceptually, if we construct 
the spectral-temporal features of an audio clip as a two-dimensional feature plane, we 
should be able to use CNN structures originally proposed for images in this problem. 
One well-known spectral-temporal feature is the MFCC (mel-frequency cepstrum coef-
ficients) [12]. However, there are also other types of spectral-temporal features avail-
able, such as the spectrogram based on STFT (short-time Fourier transformation). In 
addition, directly applying raw PCM (pulse code modulation) samples to a CNN-based 
structure [13] is also a possible alternative. With all these possibilities, it is useful to 
know which type of features yields better accuracy. To have a fair and meaningful com-
parison, preferably the classifiers are all based on CNN and have similar structures. This 
issue is the first subject we would like to investigate in this paper.

As there are many different types of neural networks available in the literature, it is 
also important to investigate whether one particular type of neural networks has higher 
accuracy than others. For example, it is known that the LSTM-based neural network is 
also effective for audio genre classification problems [14]. Thus, LSTM may also perform 
well in singing voice detection. In addition to the conventional LSTM, we also investigate 
one of LSTM variations, called convolutional LSTM [15], which combines the convolu-
tion layer into the LSTM structure to adapt to both spacial and temporal features. This 
network structure may also be a good candidate for singing voice detection. In addition, 
we also attempt to use the capsule network (capsulenet) [16] to this problem. Overall, we 
will report the results of using CNN, LSTM, convolutional LSTM, and capsulenet in this 
paper.

Finally, it is well-known that the ensemble learning can improve the detection accu-
racy in many instances. Thus, we would like to study if this approach can still work for 
singing voice detection problem. In this paper, we apply the ensemble learning with 
three different approaches, namely, voting, post-classifier, and fusion for singing voice 
detection problem and report the respective accuracy. Overall, the goal of this paper is 
to present a comprehensive comparison of relative accuracy performance among vari-
ous types of features, network models, and ensemble learning techniques for the singing 
voice detection problem, so that researchers and practicing engineers facing this prob-
lem could follow our findings without repeating all sorts of experiments again.

This paper is organized as follows. “Related work” section is the literature survey, cov-
ering related papers with the reported accuracy. “Neural network structures with various 
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types of features” section describes all of the network structures and ensemble learn-
ing approaches to be used in the experiments with various spectral-temporal features. 
“Experiments and results” section covers experimental setting, the used datasets, and 
the experimental results. Finally, “Conclusion” section is the conclusion.

Related work
To locate singing voice segments, researchers usually extract one or more types of fea-
tures from the audio signal and then use a classifier for detection. One widely used 
feature for audio applications is the MFCC (Mel Frequency Cepstral Coefficient). To 
investigate whether this type of feature is better than others, Kim et al. [17] compared 
MFCC with MPEG-7 ASP (Audio Spectrum Projection) features, and found that MFCC 
was better. Similarly, Rocamora and Herrera [18] had the same finding, but their accu-
racy was only around 78%. To further increase the accuracy, Dittmar et al. [19] proposed 
to combine MFCC features with vocal variation and Flutogram variation. When using 
random forest as the classifier, the F-measure could reach 87%.

Other than the MFCC features, Berenzweig and Ellis [6] used the statistical features 
and the HMM (Hidden Markov Model) as the classifier. They reported an accuracy of 
around 80%, indicating that the statistical features may not be much better than the 
MFCC feature.

Another attempt to improve the accuracy for singing voice segmentation problem is 
through the post-processing step. To this end, Lukashevich et al. [7] proposed to use the 
ARMA (autoregressive moving average) smoothing model as the post-processor. With 
this technique, they had an average accuracy of 82.5%. Vembu and Baumann [20] also 
combined several features with a smoothing technique. They yielded an accuracy of 84% 
for singing voice segmentation.

Nwe et  al. [21] proposed the bootstrapping technique to further improve the accu-
racy of singing voice segmentation. They incorporated the musical features and musical 
structure as features and used a Multi-Model HMM as the classifier. With the bootstrap-
ping technique, they had an accuracy of 86.7%.

In terms of classifiers, Leglaive et  al. [22] compared a neural network model called 
BLSTM (Bidirectional Long Short-term Memory) with traditional classifiers, such 
as SVM (support vector machine) for singing voice segmentation. In their setting, the 
features are MFCC-like features derived from two HPSS (Harmonic/Percussive Source 
Separation) layers. According to their simulations, BLSTM was better, with the F-meas-
ure reaching 91%.

On the singing voice detection problem, Schluter and Grill [23] proposed a model 
using three-layer convolutional neural networks (CNN) for signing voice detection. The 
features to the CNN are 2-D spectral-temporal feature plane, obtained with a procedure 
similar to that of the MFCC. When applying data augmentation, they reached an accu-
racy of 91%.

To remove the need of feature extraction for singing voice detection, Dieleman and 
Schrauwen [13] used a unified network for both feature extraction and classification. 
Hypothetically, using a learnable network for feature extraction should be able to extract 
better features than existing ones, as suggested by Humphrey et al. [24]. However, sim-
ulation results in Dieleman and Schrauwen’s report showed that this type of unified 
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networks did not provide higher accuracy when compared with networks using tradi-
tional features, such as MFCC. Recently, Lee et al. proposed a new end-to-end network 
model [25] with many layers of small filters. The authors claimed that their model was 
better than the conventional end-to-end model given in [13]. As their experiments did 
not cover singing voice detection, whether this structure is better in this particular prob-
lem is not concluded.

Neural network structures with various types of features
This section describes all network structures studied in this paper. To have a fair com-
parison, we try our best either to use the same type of features for some network struc-
tures, or similar network structures for different types of features.

CNN with MFCC features

Figure 1 shows the CNN structure for the MFCC feature, called MCNN in the following. 
In fact, using MFCC-like features followed by a CNN is widely applied to various audio 
classification problems, such as audio events [26]. In our structure, the input is an MFCC 
plane with a size of 80 × 63, where 80 denotes the number of MFCC bands, excluding 
DC, and 63 is the number of MFCC frames in the audio clip. The number of MFCC 
bands and the window hop size for successive bands have previously been determined 
by experiments [27]. In the MFCC structure, the first convolution layer has 16 kernels 
with a size of 4 × 3. Thus, after this layer, we have 16 internal planes with each one hav-
ing a size of 77 × 61 without using zero padding. In our previous study [27], we used a 
convolution kernel of 3 × 3. But we later found that a kernel of 4 × 3 had slightly better 
accuracy. Please note that Wu et al. [28] also reported that non-square kernels provided 
slightly better accuracy in audio applications. The second layer is again a convolutional 
layer with 16 kernels sized 4 × 3, producing planes with a size of 74 × 59. In the convo-
lutional layers, the activation function is ReLU (Rectified Linear Unit). The second con-
volutional layer is followed by a pooling layer to pick the maximum value within a scope 
of 2 × 2. After the third convolutional layer and the second pooling layer, we use 128 sets 
of 17 × 13 × 16 filters to convert the 2-D polling layer into a one-dimensional structure. 
Finally, this one-dimensional layer connects two output nodes. The activation function 
for the one-dimensional layer is a sigmoid function, and the output layer uses the soft-
max function.

CNN with FFT features

The second type of the feature plane is the spectrogram [29]. In this type of features, 
the incoming audio signal is multiplied by a hamming window. The window length was 

Fig. 1  MCNN structure
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experimentally determined as 2048 and the hop size as 512. The windowed signal is then 
transformed to spectral domain by a short-time Fourier transformation (STFT). As the 
STFT coefficients are complex-valued, we take their modulus before sending to CNN for 
processing. In order to be realizable in network structure, the windowed signal is multi-
plied by weights containing sine and cosine coefficients. There are 1024 sets of weights, 
with each one having 2048 coefficients, as shown in Fig. 2. At the output of the SQRT 
(square root) layer, we obtain a spectrogram of size of 63 × 1024, where 1024 represents 
the frequency bins and 63 represents the time instances.

In Fig. 2, we use the square layer to take squares of the outputs from sin MYP1D and 
cos MYP1D, and then take the squared roots of the added values. The reason of taking 
square is to avoid producing negative values. Basically, point wise convolving the input 
signal with a sine or cosine function may produce either a positive or a negative number, 
depending on the phase of the input signal. In our case, we are not concerned with the 
phase of the signal, but only the relative “strength” (energy) of the signal. Therefore, we 
use the square function. Actually, we have tried removing the square and the square-
root functions in the experiments, but the accuracy with such an arrangement was much 
lower.

The CNN structure to host the spectrogram is shown in Fig. 3. Although similar to 
Fig. 1, due to the big size of the input plane, the sizes of the convolution and pooling 
kernels are enlarged. To have a fair comparison, however, we do not increase the number 
of layers or change the sequence of the layers. In the following, this structure is called 
SCNN indicating that it is a CNN structure with inputs derived from STFT.

CNN with raw PCM

The third case in our investigation is applying PCM samples to the CNN without any 
pre-processing steps [27], also known as end-to-end processing, as proposed in [13]. In 
this paper, to be able to perform a meaningful and fair comparison, we still use a general 

Fig. 2  Network structure to compute spectrogram

Fig. 3  SCNN structure. The input is a spectrogram
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structure similar to Figs. 1 and 3. To this end, the PCM samples in the audio clip are con-
verted into an internal 2-D representation through 40 filters, as shown in Fig. 4, where 
each filter has 1024 coefficients and the coefficients are obtained by learning instead of 
designing. To fit into the general CNN structure, we use a stride length of 512. That is, 
the distance between successive multiplication-add (MLA) operations is 512 samples 
instead of one sample in the conventional convolution. In Fig. 4, two black dashed rec-
tangles represent the covered portions of successive MLA operations and produce two 
real values on the left. The red dashed window indicates a different filter in use to pro-
duce another series of filtered values. In our setting, each filter produces 250 values. So, 
the feature plane has a size of 250 × 40.

The end-to-end CNN is shown in Fig.  5. To reflect the actual connections, Fig.  4 is 
included in Fig. 5 for completeness. In this CNN, the general structure is similar to the 
previous two for fair comparison. To save space, these meta-parameters are given in the 
figure without additional explanation. In the following, this structure is called ECNN.

LSTM for singing voice detection

We mentioned in “Related work” section that the LSTM network has been applied to 
singing voice segmentation problem with satisfactory results [22]. Thus, we also include 
this structure in the comparison. As the LSTM is widely used nowadays, we omit its gen-
eral description here to save space and only concentrate on its usage. The LSTM struc-
ture used in the experiment is given in Fig. 6. The inputs to the LSTM network are slices 
of the spectrogram. That is because the sliced spectrogram feature yields slightly better 
accuracy than that of the MFCC used for CNN structure, to be discussed in “Experi-
ments and results” section. Overall, 63 sets of coefficients are sent to the network during 
training before resetting the memory cells. In the network, the first layer is an LSTM 
layer with 1024 inputs and 128 nodes (internal outputs). The second layer, having also 
128 nodes, takes the outputs from the first layer. Then, the 128 s-layer outputs connect 
to fully connected layers for decision making. In the following, this structure is called 
SLSTM.

.... 

Fig. 4  Mapping from PCM samples to internal 2-D representation [27]

Fig. 5  End-to-end CNN structure [27]
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Convolutional LSTM

As the LSTM network only accepts one-dimensional arrays as inputs, the convolutional 
layer could not be utilized. To take advantage of the convolutional layer, the convolu-
tional LSTM was proposed [15]. In the following, we refer the convolutional LSTM as 
CLSTM. As the CLSTM takes several two-dimensional planes as inputs, conceptually it 
could perform better than the traditional LSTM network with the spectrogram inputs. 
In our initial setting, the structure of the CLSTM network is depicted in Fig. 7, where 
the entire spectrogram for the 2 s audio is divided into three consecutive sub-planes as 
the input sequence. To speed up the training, batch normalization is utilized between 
convolutional LSTM layers. However, we find that the accuracy of using three sub-
planes is almost the same as keeping the entire spectrogram as one plane to the network, 
as shown in Fig. 8. Therefore, we decide to keep this structure and report its accuracy. 
In this regard, the main difference between the CLSTM and SCNN in the experiments 
mainly lies on the type of processing nodes (ReLU vs LSTM) in the convolutional layers.

Fig. 6  LSTM network with sliced spectrogram as inputs

Fig. 7  Initial CLSMT network for trials

Fig. 8  Final CLSMT network used in the experiments
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Capsule network

Sabour et  al. proposed a new type of network, called capsule net, in 2017 [16]. The 
unique feature of the capsule network is that the internal representations are arranged 
in vectors, instead of scalars. In their paper, they showed some advantages of using this 
type of network. To see if this type of network is suitable for singing voice detection, 
we followed the structure in their paper with necessary modifications in hyper-param-
eters. The capsule net used in the experiments is shown in Fig. 9. In this structure, due 
to the large amount of processing units, we are unable to use the spectrogram as the 
input plane. Therefore, we use the MFCC plane as the input instead. In our implementa-
tion, however, we do not implement the reconstruction network, as Sabour et  al. did, 
because it is much more difficult to reconstruct a real-valued plane than a binary (black-
and-white) plane in a simple fully connected network. To save space, we label all hyper-
parameters in the figure without additional explanations. The interested reader should 
refer to the original paper [16] discussing the capsule net for details.

Ensemble learning by stacking

It is known that ensemble learning generally can improve the accuracy for many predic-
tion (classification) problems. There are many different types of ensembles for machine 
learning. In this paper, we consider only the stacking type of ensemble learning. In this 
subsection, we briefly describe the used methods in the experiments.

Voting

The simplest stacking type of ensembles is voting. For example, if we have trained three 
classifiers, we can use a simple voting to determine the final decision, as shown in Fig. 10. 

Fig. 9  The capsule net used in the experiments

Fig. 10  Illustration of voting as a type of stacked ensembles
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In the experiments, we will use the decisions of either five or three classifiers as basis to 
vote and present the accuracy.

Post‑classifier

The voting mechanism can be considered as a degenerated type of post classifier with 
equal weights for each binary classifier output. In a more general form, the weight for 
each classifier can be different to account for different capabilities of the classifiers. To 
do so, we use another simple neural network with the sigmoid activation function as the 
post-classifier, as shown in Fig. 11. Note that it is also possible to include an additional 
intermediate (hidden) layer in front of the post-classifier output layer. However, our 
simulation results show that this additional hidden layer does not improve the accuracy. 
Thus, we only report the accuracy results using the arrangement in Fig. 11.

Fusion

The post-classifier approach, in a sense, can be further generalized to adapt weights in 
each individual classifier in addition to weights in the post-classifier. Doing so could 
possibly achieve a higher level of optimization, hopefully leading to better accuracy in 
the stacked decision. To this end, we combine several network models together as a 
mega network, as shown in Fig. 12, and use the same training algorithm (back propa-
gation) to train the weights of this mega network. It can be readily recognized from 
Fig. 12 that the top network model is MCNN, the middle one is SCNN, and the bot-
tom one is CLSTM. Conceptually, this approach should yield better accuracy. How-
ever, we have the convergence problem during training, and thus this approach may 
not be so much useful in practice. The details are given in the experiments (“Experi-
ments and results” section).

Fig. 11  A post classifier for stacking type of ensembles
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Experiments and results
This section covers the experimental procedures and results. To ease reading, we divide 
the experimental results into two subsections, one for accuracy for each type of network 
models, and the other one for results using stacked ensembles.

Experimental datasets

As mentioned previously, each sample used in the experiments is an audio clip with 
duration of 2 s. The network models are trained to detect whether any vocal sound (sing-
ing voice) is present in the clip or not. Note that we consider that as long as the presence 
of vocal signal is distinguishable, it could only be in a portion of the audio clip. Further-
more, audio clips containing vocal sounds from backing vocalists are also classified as 
vocal clips. In the experiments, the ground truth (vocal or non-vocal status) of the sam-
ples is annotated by human listeners.

In the experiments, we use two datasets to assess the accuracy. The first dataset is the 
Jamendo dataset [30], containing 93 soundtracks, and equivalent to 6 h of playing time. 
The soundtracks are divided into training, validation, and testing sets, each with 61, 16, 
and 16 soundtracks. One advantage of the Jamendo dataset is that the singing segments 
in each soundtrack have been manually annotated. Therefore, all we need to do is to 
partition each soundtrack into many 2  s audio clips. In the experiments, the training 
audio clips are from both the training and validation sets, leaving only the testing set 
for testing audio clips. Overall, we have about 13,000 training samples and 3000 testing 
samples. The training set has 8480 vocal segments and 7868 non-vocal segments, and 
the test set has 1487 vocal segments and 1499 non-vocal segments.

The second dataset is derived from the FMA (free music archive) website [31]. The 
site contains more than 100,000 contributed soundtracks. In the experiments, we ran-
domly pick about 18,000 soundtracks covering all types of music genres. Since the FMA 
dataset is not balanced in terms of music genre, the genre types of Rock, Electronic, and 
Experimental (out of 20 + genres specified in FMA website) cover about 60% of the cho-
sen soundtracks.

Fig. 12  Fusion type of stacked ensembles
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For each soundtrack, we randomly take a 2-s excerpt as one sample for experiments. 
In this arrangement, no two audio clips in this dataset are from the same soundtrack. 
As the FMA dataset does not contain any annotation about the vocal/non-vocal infor-
mation, we obtain the ground truth by human listeners. Specifically, we have more 
than 10 graduate students involved in the listening work. Each student is given around 
1500 excerpted (2 s) segments. After listening to a segment, he/she is asked to identify 
whether the segment contains vocal or not. If in doubt, he/she is allowed to listen to the 
segment repeatedly. If the listener still cannot determine whether the segment is vocal 
or not, this segment is labeled as “undetermined,” and it is not used in the experiments. 
With such a procedure, we finally have 4783 vocal segments and 7451 non-vocal seg-
ments in the training set, and 1660 vocal segments and 2485 non-vocal segments in the 
testing set. The annotated dataset is available in [32].

Experimental setting and environment

The experiments are conducted on top of the Tensorflow framework [33], with the 
use of the Keras library [34]. To increase the processing speed, we use GPUs (graphic 
processing unit) for training and testing computation. The experimental environment 
is listed in Table  1. The Tensorflow framework provides supports to efficiently use 
GPUs for training and testing. Therefore, we do not need to write low-level code, such 
CUDA, to use the GPUs. To further reduce the training time, we use three graphics 
cards and split the training work evenly into these cards. The training time for some 
of the network models used in the experiments can be accomplished within a couple 
hours using three graphic cards for 200 training epochs. Other network models do 
require substantially longer training time, up to several days.

In terms of training, we use the back propagation algorithm with ADADELTA [35] 
to adapt the learning rate. In addition, to avoid overfitting, we also use dropout regu-
larization [36] for all layers, except the output layer, in the CNN structures. The prob-
ability for dropout is set to 0.5.

The format of the source audio clips is stereo audio with a sample rate of 44.1 ks/s. 
The pre-processing steps for the clips include down-mixing to one channel (mono) 
and downsampling to 16 ks/s. After the pre-processing, different types of features are 
extracted according to the used network models given previously.

During experiments, we obtain the accuracy for each model with respect to the 
number of training epochs, up to 200. Then, the reported accuracy is the highest 

Table 1  Experimental environment

Component Model

CPU i7-6850k

Motherboard x99T-ws

Memory 32G

Graphics card 1080ti × 3

OS Ubuntu 16.04

Tensorflow v1.0.1

Keras 2.1.2
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accuracy observed during training, as shown in Fig. 13. Since the accuracy of a model 
varies with re-initialization (i.e., assigning a new set of initial weights), we report the 
average accuracy based on 10 trails (10 training/testing processes with re-initializa-
tion) to reduce the accuracy fluctuation.

Experimental results for various network models

This section contains experiments intend to (a) compare the detection accuracy for 
various types of models given in the previous section, (b) observe the accuracy influ-
enced by the unequal number of segments in vocal and non-vocal classes, and (c) 
evaluate the generalization capability of the studied networks when trained in one 
dataset and tested in another dataset. In this experiment, the training and testing 
samples are either from the Jamendo dataset or from the FMA dataset.

As a baseline, the network models mentioned previously are trained and tested 
using the Jamendo dataset. The accuracy results are given in Table  2. From Table  2 
we know that SCNN has higher accuracy. On the other hand, the end-to-end model 
(ECNN) yields very low accuracy and also required extremely long training time. 

Fig. 13  The determination of the accuracy in one trail

Table 2  Accuracy for  various network models trained and  tested using the  Jamendo 
dataset

Network model Average 
accuracy (10 
trials) (%)

MCNN 88.2

SCNN 91.8

ECNN 77.1

SLSTM 87.7

CLSTM 90.4

Capsule net 82.5
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One possible reason for the low accuracy for the ECNN model is due to overfitting, 
because the highest accuracy appears after 20 or 30 epochs and then the accuracy 
declines with more training epochs [27]. As the number of weights in this network 
model is extremely large, it seems that overfitting is inevitable without significantly 
increasing the size of the training set. However, as the accuracy of this model is more 
than 10 percent lower than other models, we would need at least four to eight times 
more training data to successfully train this model. Having running out of available 
training data, we are unable to improve the accuracy of the ECNN model.

As mentioned in “Related work” section, a new deep network structure for end-to-
end audio recognition with many small filters was proposed [25]. The authors showed 
that their model was better than the conventional end-to-end model given in Fig. 5. 
When using this deep structure in the experiments, the average accuracy did increase 
from 77% to around 82%. But, it is still significantly lower than that of the SCNN 
structure. Due to the low accuracy and prolonged training time, we decide not to fur-
ther investigate the end-to-end approach in the following experiments.

Other than the ECNN, we also notice that the capsule net has relatively lower accu-
racy. This phenomenon could be partially due to sub-optimal hyper-parameters of the 
network model. We have also tried several different sets of hyper-parameters; unfortu-
nately, we are still unable to find a good set of hyper-parameters for this particular type 
of model. We still report our results, hoping that other researchers may benefit from our 
findings.

When comparing the SLSTM and CLSTM models, we notice that CLSTM is slightly 
better. This result seems to indicate that using convolutional layers is beneficial for 2-D 
feature planes, such as spectrograms.

Since the MCCN and SCNN have similar network structures, the performance differ-
ence is mainly due to the type of input features. Generally speaking, the spectrogram is a 
lower level of spectral-temporal features than that of the MFCC. Therefore, the spectro-
gram possesses more information for the CNN to explore, if training is successful. This 
result confirms the common conjecture that lower level features usually are preferable as 
the CNN inputs.

Finally, when comparing the accuracy between SCNN and CLSTM, the SCNN is bet-
ter although both use convolutional layers. Because the SCNN structure has more lay-
ers, the simulation results, in a sense, indicate that the network architecture is more 
important than the processing power of each node.

To check if the order of accuracy among the models remains the same for other data-
sets, we repeat the above experiment using the FMA dataset mentioned previously. The 
experimental results are shown in Table 3. Because the ECNN has a low accuracy, this 
model is not tested with the FMA dataset. When comparing the accuracy order of the 
models in Tables 2 and 3, we know the order almost remains the same except MCNN 
and SLSTM, although the actual accuracy of all models is relatively lower. Because all 
audio clips in this dataset are all from different soundtracks, such an arrangement avoids 
the possibility of having two samples in the dataset to have strong correlation. In this 
regard, we know that the FMA dataset is more difficult than the Jamendo dataset in 
terms of vocal detection.
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Since our datasets do not have equal number of vocal and non-vocal segments, it is 
worthwhile to investigate whether the class imbalance affects the detection accuracy. To 
this end, we also report the number of mis-classified segments for various network mod-
els to detect the FMA dataset in Table 4. Again, the average numbers over 10 trials are 
given in the table. Recall that the FMA training set has 7451 non-vocal segments and 
only 4783 vocal segments. However, the results show that there is not a specific type of 
error dominating the overall error segments in most of the studied networks. Therefore, 
it seems safe to claim that most network models are not sensitive to the problem of hav-
ing unequal number of vocal and non-vocal segments.

It is also useful to understand if different datasets affect the generalization capability 
of the networks. To do so, the network models are trained in one dataset and tested with 
another dataset. The results are given in Table 5. To save space, only the results of three 
models are reported. It can be seen that a network trained with Jamendo dataset does 
not give a very good result for the vocal detection of FMA dataset. On the contrary, a 
network trained with FMA dataset performs better when tested with Jamendo dataset. 
In a sense, it implies that the FMA training set has better generalization capability than 

Table 3  Accuracy for various network models trained and tested using FMA dataset

Network model Average 
accuracy (10 
trials) (%)

MCNN 83.7

SCNN 88.2

SLSTM 84.3

CLSTM 85.8

Capsule net 74.9

Table 4  Results of misclassification for various network models using FMA dataset

Misclassify vocal as non-vocal Misclassify non-
vocal as vocal

MCNN 463.4 211.4

SCNN 238.6 249.4

SLSTM 304.8 347.8

CLSTM 361.4 227.9

Capsule net 579.3 462.3

Table 5  Accuracy for interchanging training and testing dataset

Training: Jamndo
Testing: FMA (%)

Training: FMA
Testing: Jamendo (%)

MCNN 76.48 85.72

SCNN 81.69 89.62

Capsule net 70.37 73.36
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the Jamendo training set. Therefore, the FMA dataset is a better dataset for vocal detec-
tion experiments.

Simulation results for ensemble learning

Experimental results for voting

To test the detection accuracy using voting, we perform the following experiment with 
two settings. One with all five models involved in voting, whereas the other one with 
only three models with higher accuracy (namely, SCNN, MCNN, and CLSTM). The 
experimental results are shown in Table 4. During this experiment, the weights of the 
models are obtained directly from the previous experiment. As the weights initialization 
introduces accuracy fluctuations, a fair comparison would be to reuse previously trained 
weights. When comparing the accuracy of individual model with voting accuracy, we 
notice that voting can effectively improve the accuracy by 2.4% for Jamendo dataset 
and 0.7% for FMA dataset, respectively. It is also interesting to know that the accuracy 
improvement with voting is related to the dataset. The accuracy of FMA dataset appears 
to be more difficult to improve even with the voting type of stacked ensembles.

Experimental results for post classifier

We also follow similar experimental steps to conduct experiments for the post classifier 
method. To train the post classifier, we tried two approaches. Approach one is to reuse 
the training dataset to train the post classifier. For this approach, the advantage is that 
no additional new training samples are needed to train the post classifier. However, the 
downside is that the trained classifiers are extremely accurate when classifying the previ-
ously seen training samples, typically around 99%. Thus, rendering the post classifier lit-
tle room to judge which classifier is more reliable in a certain type of data when making 
the final decision.

With this consideration, we also tried an alternative method. In this alternative 
approach, we use only 90% of the training samples to train each individual model, and 
leave the rest 10% for training the post classifier. The experimental results are shown in 
Table 6. The results reveal that leaving 10% training samples for the post classifier does 
not always yield better accuracy. In addition, the post classifier method does not outper-
form the voting approach for all datasets, and thus is not computationally cost-effective.

Table 6  Accuracy for voting and post-classifier types of stacked ensembles

Stacking method Jamendo dataset FMA dataset 
(%)

Voting, 5 models 94.2% 88.9

Voting, 3 models 93.8 88.6

Post classifier, 5 model, approach 1 94.3% 88.7

Post classifier, 3 model, approach 1 93.8% 88.9

Post classifier, 5 model, approach 2 94.3% 89.1

Post classifier, 3 model, approach 2 93.0% 88.5
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Experimental results for fusion

Another type of stacked ensembles studied in this paper is fusion. In this approach, 
because the models need different types of feature planes, we must be careful not to 
shuffle the sequence of the audio clips when computing the feature planes. When trying 
to train this mega network, despite spending very long period of training time, we find 
that sometimes the training fails. As shown in Fig.  14, some training trials yield high 
accuracy after 100 epochs, such as trial 7 with accuracy of 92.4%. However, some other 
trials have very low accuracy, even down to 73%. When closely examining the loss func-
tion, we find that the trials with low accuracy are accompanied with early (after only a 
couple epochs) loss function increase. It is a signal of training fail. We tried many meth-
ods to overcome this problem, such as reducing the learning rate, but none is effective to 
solve this problem. Eventually, the training time becomes very long, and we are unable to 
afford such a long waiting for training. In terms of datasets, we tried both Jamendo and 
FMA datasets. Both have similar tendency to fail in training. For the successful training 
trails, unfortunately, we are not able to observe any accuracy advantage over the simple 
voting algorithm either. Therefore, it seems safe to claim that the fusion approach is not 
(computationally) cost-effective at all when compared with the simple voting approach.

Conclusions
In this paper, we study six different models, namely MCNN, SCNN, ECNN, SLSTM, 
CLSTM, and capsule net, for singing voice detection. In addition, we also study voting, 
post classifier, and fusion types of stacked ensembles. The simulation results show that 
the end-to-end approach (ECNN) has lower accuracy than other models presented in 
this paper, possibly due to insufficient training samples. Among the network models, the 
SCNN yields the best accuracy. In addition, a simple voting based on the decisions of 
five models can increase the accuracy up to 2.4% for the Jamendo dataset. In conclusion, 
if the accuracy is the top concern, then using multiple network structures with voting is 
a promising method. In the present study, networks involved in voting are heterogene-
ous. In the future, we plan to study whether higher accuracy could be achieved by voting 
with multiple identical network structures, where each structure is trained with either 
different frequency resolution or a subset of the entire training dataset.

Fig. 14  Accuracy of fusion for various trials
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