
A symbolic model checking approach
in formal verification of distributed systems
Alireza Souri1†  , Amir Masoud Rahmani1*†, Nima Jafari Navimipour2† and Reza Rezaei3†

Introduction
Today, distributed systems have developed complex components more and more [1, 2].
By increasing performance of complex systems such as service composition [3], task
scheduling [4] and fault tolerance [5], simulation analysis cannot evaluate entire of the
system levels [6, 7]. Also, the simulation results are rested to some design under test
platforms [8] that omit the part of the existing state space of the system [9]. Formal veri-
fication is a mathematically correctness provable approach for the complex distributed
systems which is well-suitable for NP-hard problems [10, 11]. Recent scientific studies
analyzed their case studies using mathematical verification approaches such as model

Abstract 

Model checking is an influential method to verify complex interactions, concurrent
and distributed systems. Model checking constructs a behavioral model of the system
using formal concepts such as operations, states, events and actions. The model check-
ers suffer some weaknesses such as state space explosion problem that has high mem-
ory consumption and time complexity. Also, automating temporal logic is the main
challenge to define critical specification rules in the model checking. To improve the
model checking weaknesses, this paper presents Graphical Symbolic Modeling Toolkit
(GSMT) to design and verify the behavioral models of distributed systems. A behavioral
modeling framework is presented to design the system behavior in the forms of Kripke
structure (KS) and Labeled Transition System (LTS). The behavioral models are created
and edited using a graphical user interface platform in four layers that include a design
layer, a modeling layer, a logic layer and a symbolic code layer. The GSMT generates a
graphical modeling diagram visually for creating behavioral models of the system. Also,
the temporal logic formulas are constructed according to some functional properties
automatically. The executable code is generated according to the symbolic model
verifier that user can choose the original model or reduced model with respect to a
recursive reduced model. Finally, the generated code is executed using the NuSMV
model checker for evaluating the constructed temporal logic formulas. The code
generation time for transforming the behavioral model is compared to other model
checking platforms. The proposed GSMT platform has outperformed evaluation than
other platforms.

Keywords:  Model checking, Temporal logic, Reduced model, Kripke structure, Labeled
Transition System

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4
https://doi.org/10.1186/s13673-019-0165-x

*Correspondence:
rahmani@srbiau.ac.ir
†Alireza Souri, Amir Masoud
Rahmani, Nima Jafari
Navimipour and Reza Rezaei
contributed equally to this
manuscript
1 Department of Computer
Engineering, Science
and Research Branch, Islamic
Azad University, Tehran, Iran
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-8314-9051
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-019-0165-x&domain=pdf

Page 2 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

checking [4, 12–18], process algebra [19–24], formal concept analysis [25] and theorem
proving [26–29] methods.

Among the mentioned approaches, model checking [30] is a well-known verification
technique to evaluate the functional properties of a distributed system automatically [31,
32]. The main goal of the model checking is to find the property violations and limita-
tions in the system behavior with the counterexamples [33]. However, there are some
limitations for model checking such as state space explosion and temporal logic design
[34]. For improving these limitations, the symbolic model checking [35, 36] with Binary
Decision Diagram (BDD) has been presented by McMillan [34]. Some industrial tools
such as NuSMV [37], PAT [38], Spin [39], and UPPAAL [40] are well-known for analyz-
ing the system behavior correctness [41–43]. But, these tools have some limitations such
as weak graphical user interface, the complexity of programming language and generat-
ing the automated temporal specification rules for verifying the system behavior [44–47].
To illustrate the temporal logic formulas, some model checkers such as NuSMV have
supported the generated specification rules in forms of Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) [17, 37, 48–50]. Also, creating a critical specifica-
tion rule for checking in the generated state space of the system behavior is an important
challenge for model checkers. When the state space increases exponentially, checking
and discovering the critical specification rules to measure the correctness of the system
is confused [51, 52]. As yet, model checkers do not guarantee automated specification
rules generation [53, 54]. In addition, a model checker needs to automated formal design
that supports the Kripke structure (KS) and Labeled Transition System (LTS) modeling
methods. In model checking, some characteristic points consolidate an irrefrangible
relationship between integrated abstract model and the concrete system behavior. The
characteristic points include specifying descriptive features, designing precise model,
configuring desired feature selection, and generating comprehensive specification rules.
This relationship is confident that the correctness of the integrated abstract model using
model checking is very reliable to evaluate concrete system behavior. If we emphasize
some characteristic points for designing and modeling system behavior [55], then the
accurate verification results are obtained from model checking.

This paper presents an easy to use and user-friendly Graphical Symbolic Modeling
Toolkit (GSMT) to simplify model checking the system behavior. We advocate the use
of fully automated designing methods to check the correctness of the system behavior.
The refinement of design, modeling and verification levels lead the behavior correctness
procedure to increase the accuracy. An integrated architecture is also designed for each
level according to the simple relationship among the existing objects of the proposed
framework. This framework not only follows the contributions of the existing model
checkers but also adds some important points to verify the system behavior using model
checking. The contributions of this research are as follows:

•	 Presenting a graphical model checking framework to facilitate the system behavior
design.

•	 Providing a modeling platform to support the KS and LTS models.
•	 Generating the LTL and CTL specification rules of the system model according to

the functional properties such as deadlock, reachability, and safety conditions.

Page 3 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

•	 Presenting a high-level order of recursive reduced Kripke and labeled models to ame-
liorate the state space explosion problem.

•	 Facilitating the verification procedure using NuSMV.

The paper structure is organized as follows, “Related work” section illustrates a brief
review of the presented related frameworks and toolsets. In “GSMT framework” sec-
tion, we address a conceptual explanation of the GSMT framework. Also, this section
introduces the current four layers in the automated verification approach. Moreover, the
formal descriptions of the system behavior are illustrated to handle the model checking
the specification rules. “Experimental analysis” depicts a descriptive case study to evalu-
ate the verification procedure for the proposed framework with the other approaches
according to some experimental results. Finally, “Conclusion and future work” provides
the conclusion and some open subjects on this topic as the future works.

Related work
In this section, some related studies are discussed briefly which contain modeling
and descriptive translators and automated verification frameworks according to some
important features and challenges.

Castelluccia et al. [56] presented a formal framework to design web applications
according to the UML method. The key feature of this framework is based on LTS model
checking and CTL formulas. First, a design of the model is generated in forms of the
UML-based platform with the XMI format. Then, the framework translated the pro-
posed UML-based platform to the extensible SMV codes.

Li et al. [54] proposed a translator framework to exchange Programmed Logic Con-
trollers (PLC) for executable verification codes using utility block chart language. The
framework presented a formal modeling approach to specifying the model structure
using a Boolean explanation method. The model is translated to some modules of SMV
codes. This translator supports just CTL formulas to embed in code generation. Design-
ing the model structure is not automatic because the extensibility of the model check-
ing approach is covered. Also, this framework supports a command-line authentication
to avoid invalid inputs according to its powerful editor environment. The main disad-
vantages of this framework are as follows: the requirement patterns as the specification
rules are input manually; the LTL formulas are not supported; the framework has not
illustrated the correctness of the functional properties such as reachability and deadlock.

Abdelsadiq [57] presented a high-level modeling framework for Contractual Business-
to-Business relations (CB2B) to apply e-contract models in the e-business management
system. The CB2B models support a set of the conceptual model that includes truths,
actions, responsibilities and exclusions for checking contract agreement. First, the
designed model translated to Event–Condition–Action (ECA) structure according to
Process Metalanguage (Promela) language. Then, a set of simple LTL formulas is gener-
ated manually. Both temporal specifications and ECA model are translated to executable
codes for the Spin model checker. The main limitations of this framework are as follows:
(1) the design level of the formal modeling is omitted; (2) specification rules are very
simple; (3) an editable platform for user interface has not been indicated.

Page 4 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

Caltais et al. [58] proposed a framework conversion to interact between the System
Modelling Language (SysML)-based models and NuSMV symbolic model checker.
The SysML-Ja is a toolset that translates the structural SysML-based models in forms
of block diagrams and state diagrams to symbolic modules of SMV codes. This trans-
lation is retrieved from the LTS model by some events and actions. The relationships
between each block/state diagram are converted to a transition command in SMV code.
Some specification rules are input at the end of the SMV codes manually. There are some
limitations in this framework as follows: (1) the generation of specification rules has not
been considered in the structure of the framework; (2) the graphical modeling stage is
omitted in this framework.

Furthermore, Deb et al. [59] have presented an inherent sequence state transition
modeling transformation framework for concurrent systems. They used the Naive algo-
rithm to handle the rise of the state space. First, requirements are translated to the LTS
model with respect to a set of sequences states. In the editor environment, the LTS
model is converted according to the Multi-dimensional Lattice Paths (MLP) to the SMV
codes. The framework can add a simple CTL formula to the generated SMV code to ver-
ify it. However, when a large model is loaded in this framework, the state space has been
increased highly. When the system behavior has a multi-tenant structure, the translated
modules cannot interact with them by transition methods. In addition, the functional
properties have not been verified in this framework using NuSMV.

Meenakshi et al. [60] have presented a converter environment between Simulink
models and input language of model checkers automatically. The system engineers can
develop the structural models in Simulink environments such as MATLAB informally.
Hence, this converter tool can be useful to transform the Simulink model as the input to
a formal description approach in forms of NuSMV model checker codes. The proposed
tool covers all of the block diagrams that organize the structural model of the Simulink.
There are some limitations in this tool compared with the other instruments: the LTL
specifications are not considered in this tool to translate into SMV codes; a graphical
modeling diagram is not illustrated to avoid the state space examination. In addition, the
practical feature of this model does not support a complex industrial model for translat-
ing to the SMV codes.

Vinárek et al. [61] proposed a translator framework between use case models and
NuSMV model checker. The authors described a formal explanation of the Formal verifi-
cation of Annotated Models (FOAM) framework using a user/actor model. The use case
model is converted to a textual behavior automaton based on a priority connection. The
textual behavior automaton is translated to a configurable LTS model [62]. The main dis-
advantages of this tool are as follows: first, this translator has not the editor environment
to illustrate code generation; second, this tool has not covered the LTL specifications for
checking the correctness of the use case models. There is just a demo environment for
this tool rather than a practical translator environment.

Szwed [63] presented a translator plugin to convert a business model to executa-
ble model checking code. This plugin specifies all of the direct elements of the busi-
ness model that connect with each symbolic state in the business layer. In translation
procedure, a set of the business processes are specified as the atomic states and the
business tasks are specified as the events. The CTL formulas are added by the user

Page 5 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

manually. A graphical model is presented after translating SMV codes. Some limita-
tions of this plugin are as follow: The verification method is executed without any cor-
rectness procedure; also, the LTL formulas are not supported. However, the execution
time and reachability states are not compared with the other frameworks.

Jiang and Qiu [64] have proposed an Spin2NuSMV (S2N) converter framework
between Spin models and NuSMV codes. This framework presents a conversion pro-
cedure for transforming a high-level model in forms of Promela language into a low-
level model as a state transition system in SMV code. Each process in the Spin model
has been translated to a state with events coverage asynchronously. However, this
framework cannot support the temporal logic transformation since NuSMV covers
both LTL and CTL logics and Spin just generates LTL logic in the opposite. In addi-
tion, when a complex model is transformed into the SMV codes, some channels con-
nection between processes are omitted.

Szpyrka et al. [65] have presented a translator framework to convert state graph of
a colored Petri-net model to an executable SMV code. Each net is converted to a state
and each guard is transformed into an atomic proposition. The translated model is
shown in forms of a Kripke model in NuSMV. A graphical reachability graph is gen-
erated after the translation procedure that is very confused and irregular. Also, the
translated model is not displayed as a graphical model. This tool has a simple environ-
ment that imports a Petri-net model and translates to the SMV code in editor envi-
ronment. The temporal logic formulas are added to end of the code manually. Also,
the timed-Petri-net models cannot translate to SMV codes.

According to the discussed and reviewed translator frameworks in model check-
ing approach, the comparison of the related frameworks has illustrated in Table 1.
The main factors of this view include existed case study, the modeling method, design
method, temporal logic provision, and model checker interaction. All of the transla-
tor frameworks added the temporal specifications to the SMV code manually. Our
presented framework generates all of the temporal logics in forms of the embedded
specification rules in SMV code. In addition, NuSMV supports two temporal logics to
design the specification rules of the system.

Table 1  Comparison of the related frameworks according to the verification structure

Framework Case study Modeling Design Temporal logic/
generation

Model checker

WAVer [56] Web applications LTS UML CTL/manual NuSMV

FBD [54] Industrial controllers LTS Not supported LTL/manual NuSMV

PLC [57] E-Business system LTS Not supported LTL/manual Spin

SysML-ja [58] Concurrent system LTS UML Not supported NuSMV

IStar [59] Concurrent system LTS Not supported CTL/manual NuSMV

SimuLink [60] Concurrent system LTS Not supported CTL/manual NuSMV

FOAM [61] Concurrent system LTS UML CTL/manual NuSMV

ArchiMate [63] Concurrent system LTS UML CTL/manual NuSMV

S2Nusmv [64] Concurrent system LTS Not supported LTL/manual NuSMV

Petrinet2smv [65] Concurrent system KS Petri net CTL/manual NuMSV

Our approach Concurrent system LTS/KS UML/graph LTL-CTL/automatic NuSMV

Page 6 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

To the best of our knowledge, all related frameworks proposed a translator to provide
both code generation/execution. Also, editor platforms support just one modeling tem-
plate such as LTS or KS and one temporal logic formula for the system behavioral model.
At complementing with them, our GSMT framework presents (1) automated design
approach for formal descriptions of the system, (2) a compositional behavioral mode-
ling for system behavior in forms of LTS and KS models, (3) generating the visual model
diagram of the designed behavior, (4) constructing detailed temporal logic formulas in
terms of CTL and LTL, and (5) symbolic automated verification approach using NuSMV.

GSMT framework
This section provides a conceptual description of the proposed framework with some
key explanations. The important feature of the GSMT is its flexible modeling and check-
ing capability that represents the common collaboration between two main steps of the
formal verification approach. This flexibility is the prominent point of a translator frame-
work that supports all technical features of the behavioral correctness of a complex sys-
tem. In this section, the framework architecture is explained comprehensively. Also, the
presented recursive reduction approach is illustrated in this section.

GSMT behavioral models

The GSMT navigates the behavioral model to a complete design, actual modeling, and
automated translation approach. Figure 1 displays a conceptual architecture of GSMT.
The GSMT architecture includes four dependent layers as follow: design, modeling,

Fig. 1  The GSMT architecture

Page 7 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

logic and symbolic code. After designing the proposed model, a behavioral model
is constructed by the framework. The behavioral model is translated to an LTS or KS
model. The translated model can get two results for converting to the final SMV code
that includes the original model and reduced model. Concurrently in the logic layer, the
specification rules are generated automatically. Then, the final generated code is exe-
cuted in NuSMV to check the generated specification rules automatically.

Design layer is an interactive level to navigate the fundamental of behavioral model
features. This layer has performed following three obligations:

•	 Specifying design type of the behavioral model in forms of KS or LTS.
•	 Creating the structural features of the behavioral model such as states, actions, and

atomic propositions.
•	 Creating the system exploration according to the relationship between the features.

Figure 2 illustrates a flowchart diagram that describes the design layer in the GSMT
framework. First, the design method is specified for constructing a behavioral model.
Depending on the state-based or action-based model checking approaches, two meth-
ods can be chosen for this procedure in terms of KS and LTS. When the design method
is specified, the basic features of the behavioral model such as states, transitions and

Fig. 2  The flowchart diagram of the design layer

Page 8 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

actions should be initialized. We address a formal description of the existing methods
briefly.

For the KS model, there are some features according to Kripke structure definition [66,
67]. The method is a state-based framework and the states are labeled with a name. The
user can input a set of states and atomic propositions for the initialization section.

Definition 1  A Kripke structure is a five-tuple KS  = (Q, I, P, R, L) where [68]:

•	 Q is a set of states.
•	 I is the set of initial states: I ∈ Q.
•	 P is a set of atomic propositions.
•	 R is a set of transition relations R ⊆ Q × Q.
•	 L is a state labeling function L : Q → 2p.

In the above definition, a path can be defined on the behavioral model as follow:

Definition 2  A Kripke path KP is a finite sequence of the states and transitions start-
ing from the state q1 and finishing at the state qn that (q1 and qn ∈ Q, p ∈ P) denoted
as [69]:

In the next method, the model is constructed as an LTS model that is the event-based
framework and the transitions are labeled with a name [70, 71]. The user can initialize a
set of states and actions to design the behavioral model.

Definition 3  A Labeled Transition System LT is a 4-tuple LT = (S, M, A, T) where:

•	 S is a set of states.
•	 M is the set of initial state: M ∈ S.
•	 A is a set of actions.
•	 T is a total transition relation: T ⊆ S × A× S.

This means, the relation s1
a
→ s2(s1, s2 ∈ S and a ∈ A) is used for stating that

(s1, a, s2) ∈ T .
Also, in the second method, a path on the behavioral model is described as follow:

Definition 4  A Labeled path LP in the second method is a finite sequence of the events
and actions starting from the state s1 and finishing at the state sn(s1 and sn ∈ S) denoted
as [72]:

By using the Kripke Path KP and the Labeled Path LP, we create the state space explora-
tion for the proposed behavioral models in model checking.

KP = q1(p1) → q2(p2) → q3(p3) . . . qn−1(pn−1) → qn(pn)

such that ∀
(

i, j
)

: (qi, pi) ∈ L and
(

qi, qj
)

∈ R.

LP = s1
a1
→ s2

a2
→ s3 . . . sn−1

an−1
→ sn such that ∀(k, v) :

(

sk , av , sk+1

)

∈ T .

Page 9 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

Modeling layer is a visual interaction level illustrating the graphical models of the
behavioral model. This layer is classified to the following three steps:

•	 Configuring the transition relations between the expected attributes in the behavio-
ral model.

•	 Translating the configurable relations to the graph-based relation machine.
•	 Generating a graphical state exploration diagram according to the graph-based rela-

tion machine.

Figure 3 shows the modeling layer architecture for generating a visual state explora-
tion diagram in the GSMT framework. First, each transition relation in the behavioral
model is constructed according to the formulated paths in the above definitions. Due to
the importance of the relation handling between expected states, transmitting the states
by each event or an atomic proposition is done automatically. In this situation, any tran-
sition relation is not omitted in a complex behavioral model. After configuring the for-
mal transition relations, a graph-based relation machine is translated for mapping on the
state space exploration. This translation is based on the GraphViz1 tool as a visual mod-
eling software. Finally, a graphical state exploration diagram for the designed behavioral
model has generated automatically. The generated output model is produced in form of
dot format that has a hierarchical drawing architecture for modeling the system behav-
ior. We prepare the editable version of the modeling format for the user that can save it
to the other viewable formats like an image. Due to having the simple language structure
in GraphViz, this platform is chosen for increasing the flexibility.

Fig. 3  The modeling layer architecture of the GSMT framework

1  http://www.graph​viz.org/.

http://www.graphviz.org/

Page 10 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

The logic layer is a formal descriptive level to demonstrate the temporal logic formulas
in verification of the behavioral model. This layer has the following features:

•	 Extracting the transition relations as a set of specification rules.
•	 Converting the specification rules to a formula-based platform in forms of the LTL

and CTL.
•	 Generating the existent permutation temporal formulas for all of the specification

rules.

Figure 4 shows the logic layer architecture to the automated construction of the tem-
poral logic specifications in terms of reachability, deadlock, liveness, and safety condi-
tions. Initially, the set of states, atomic propositions and actions are extracted to the
permutation of the transition relations in a Finite State Machine (FSM). According to
the following descriptions of the temporal logics, the conversion procedure is done for
each property checking which includes deadlock condition, reachability asset, safeness
property and liveness condition. For showing the specification properties, we explain
CTL and LTL briefly.

The CTL syntax is described as follows [16]:

•	 True is a true proposition.
•	 The p is an atomic proposition where the α formula can hold atomic proposition p

with a sentence or statement according to following syntax α (p) which is both true
or false value.

•	 The α is ranged over CTL formulas.
•	 The ¬α (not), α ∧ α′ (and) and α ∨ α′ (or) are logical syntaxes on the formulas.
•	 A (always) and E (eventually) are the general quantifiers on all of the paths.

α ::= True|p|¬α|α ∧ α′|α ∨ α′|AXα(p)|AGα(p)|AFα(p)|EGα(p)|EXα(p)|EFα(p)

Fig. 4  The logic layer architecture of the GSMT framework

Page 11 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

•	 G (globally), X (next state) and F (in the future) are contracted in the entire of each
path.

Also, LTL syntax is explained as follow [73, 74]:

•	 True is a true proposition.
•	 The q is an atomic proposition where a β formula gets atomic proposition q with a

declarative statement according to following syntax β (q) which is both true or false
value.

•	 The β is a range over LTL formulas.
•	 The ¬β (not), β ∧ β ′ (and) and β ∨ β ′ (or) are logical syntaxes on the formulas.
•	 G (globally), X (next state) and F (in the future) are contracted in the entire of each

path.
•	 The βUβ ′ means that β is true and enabled until β ′ is activated.

According to the specified temporal syntaxes, three categorizations are performed to
generate all of the expected specification rules in the system behavior automatically. The
user can select each property according to the model analysis. The generated temporal
properties are added to the end of the code. For example, we have the simple template of
some specification properties for the LTS model as follows:

•	 (Deadlock freedom) AG !(state & action);
•	 (Liveness) AG (state & action) → AF (state & action);
•	 (Reachability) AG (EF(state & action → state & action));

Symbolic code layer is a fully automated verification approach for executing the gener-
ated symbolic codes in the NuSMV interactive model checker. This layer navigates the
following tasks:

•	 Translating the expected attributes to the hierarchically structured programming
platform.

•	 Transforming the hierarchically structured platform to the SMV codes.
•	 Adding the generated specification formulas to the end of the code.
•	 Reducing the expected attributes to ameliorate the state space explosion.
•	 Confirming the reduced behavioral model as the optimally generated SMV code.
•	 Generating the executable SMV code for automated verification in NuSMV.

Figure 5 displays the symbolic code layer architecture to automated verification of
the behavioral model. First, the modeled structure is translated to a hierarchical-based
platform to preserve the expected transition relations. Then, the hierarchical-based plat-
form is transformed into the SMV code configuration. In this position, the user has two
methods for producing final code. The original SMV code of the behavioral model via
the expected specification rules are generated automatically. Also, the user can request
the reduced behavioral model to ameliorate the state space explosion in a complex sys-
tem. The GSMT generates a reduced SMV code for executing in the NuSMV. In the

β ::= True|q|¬β|β ∧ β ′|β ∨ β ′|Gβ(q)|Fβ(q)|Xβ(q)|βUβ ′

Page 12 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

verification phase, the NuSMV reads the generated code and transforms it into a flat
hierarchical model. Then, the existing variables are encoded for constructing Ordered
Binary Decision Diagram (OBDD) [75] platform. Finally, the constructed model is built
for checking the behavioral correctness of the system.

After describing the GSMT architecture, we present the recursive reduction approach
for the GSMT.

Recursive reduced model

The reduced model generally is based on a linear reduction in some related
approaches [70, 76–78]. The complex systems have a set of impermissible states that
are composed of the parallel relational processes. The similarity of the attributes and
transition relations increase the number of state space size. Whatever the number of
states and transitions are decreased, the state space is compacted because the size of

Fig. 5  The symbolic code layer architecture of the GSMT framework

Page 13 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

the state space has been increased exponentially. We use a vicinity matrix for recur-
sive reduced model. To describe the state space reduction, the first step is ordering
the vicinity matrix of the state space according to the transition relations. After gen-
erating the vicinity matrix, a recursive reduced algorithm is executed for refining the
state space. According to the reduction algorithms [76, 77], we have a minimization
equivalence method that the model size is defined for comparing the minimality and
reduced model [76].

Definition 5  Model size is shown by |Sm| with the number of states and transitions. In
other words, we conclude |Sm| ≤

∣

∣S′m
∣

∣ if and only if the number of all attributes (states
and transitions) of the Sm is smaller than S′m [79].

Definition 6  The Sm is an original model and SR is its reduced model. A minimal
equivalence Me is an equal relation, when |SR| ≤ | Sm| (the size of the reduced model is
smaller than the original model), then Sm ≡ SR (the original model is equivalence with
reduced model) if and only if the minimal equivalence SR ≈ Me ≈ Sm is established.
Consequently, the reduced model SR is replaced on the original model Sm for ameliorat-
ing the state space explosion [67].

Figure 6a is the original KS model by a set of states (S0, S1, S2, S3, S4, S5, S6) and
Fig. 6b is a reduced KS model. In the original Kripke model, there are three states S3,
S4 and S5 by same atomic proposition {x} in the KS model that are merged together
in set of labeling functions ((S0, {x}), (S1, {z}), (S2, {y}), (S3, S4, S5, {x}), (S6, {z})). First, a
vicinity matrix is created for the original Kripke model.

Figure 7 depicts the design of the vicinity matrix for the original and reduced mod-
els. For a sample, in the original matrix (Fig. 7a), there are two neighborhood values
according to the transition relation method. When the value of S1S3 is equal to the
value of S1S4 (PSi, j = PSi, j+1) that means there is a same proposition for the proposed
states, then the reduced approach is applied. Initially, the S4 and S5 are transmitted to

Fig. 6  a The original model. b The reduced model of the GSMT reduction algorithm

Page 14 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

the S′3 and the proposition {x} is omitted for them. Second, each inputted edge to the
S4 and S5 is inputted to the S′3 and each outputted edge from the S4 and S5 is outputted
from the S′3 . Then, the remaining Kripke model is mapped to the new Kripke model
as a reduced model (Fig. 7b) by set of states ( S′0 , S

′
1 , S

′
2 , S

′
3 , S

′
4 ) and set of labeling func-

tions ((S′0 , {x}), ( S′1 , {z}), ( S′2 , {y}), ( S′3 , {x}), ( S′4 , {z})). The number of two states and
three edges are deleted from the original Kripke model. Finally, the relation of mini-
mal equivalence between KOriginal and K′

Reduced is established as follows:
The size of the reduced Kripke model is lower than original Kripke model | K′

Reduced |
≤ | KOriginal | and the original Kripke model is equivalence with reduced Kripke model
KOriginal ≡ K′

Reduced.
Figure 8 depicts the recursively reduced algorithm based on the vicinity matrix of

labeling functions. This algorithm provides two conditions for the reduced model for

Fig. 7  The vicinity matrix of a original Kripke model, b reduced Kripke model

1. For all of the matrix n-arrays (i=1; i =<n ; i++);
2. {
3. For the matrix n-arrays (j=1; j=<n ; j++);
4. {
5. If (= (+1)) then
6. Delete array Si (j+1)
7. Each relation (x, Sj+1) transmitted to (x, Sj) where x is the existing atomic

proposition of Sj+1.
8. Each relation (Sj+1, y) transmitted to (Sj, y) where y is the existing atomic

proposition of Sj+1.
9. The Sj replaced to deleted Sj+1
10. If (=)
11. Delete array Sji
12. Each relation (Sj, x) transmitted to (Sj, x)
13. Each relation (y, Sj) transmitted to (y, Si)
14. The Sii replaced to deleted Sj
15. }
16. }

Fig. 8  The recursive reduction algorithm of the GSMT

Page 15 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

searching each matrix array. First, both neighbor values by a vicinity condition are speci-
fied if S(i, j) =  S(i, j + 1), then the reduction procedure is applied. Second, each loop
condition occurs for two states if S(i, j) =  S(j, i), then the reduction procedure is applied.
Searching matrix arrays are done until there is no array that applies in two conditions.

Experimental analysis
This section illustrates some experimental case studies to evaluate the GSMT frame-
work. First, a brief exploration of the GSMT environment is presented. Then, some case
studies are illustrated to demonstrate the performance evaluation of the framework.
Finally, the verification results are shown in this section.

User interface of GSMT

The framework consists of three main windows that include modeling method selection,
KS model window, and LTS model.

In Fig. 9, a Kripke model platform is shown for creating Example 1 as a case study.
Following sections illustrate the important regions in KS platform. At the first stage,
the designer can input initial information for the behavioral model. The reduction
method, generating temporal logics and generating SMV codes are done automatically.
In the main text, all the existing layers have been illustrated with manual or automatic
conditions.

•	 Add propose state: the user inputs a set of existing states on Add propose state but-
ton. The defined states are listed in the state list manually.

•	 Add initial state: the user should select an initial state from the state list which the
initial state is displayed in the First state box manually.

Fig. 9  The KS window in the GSMT framework

Page 16 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

•	 Add transition relation: it shows the transition relations that are constructed in
forms of From/To structure. All of the transition relations are listed in transition
relation list box. The interaction simplicity is a key point for users and engineers
to design and model a complex system using GSMT manually.

•	 Add AP: it specifies the atomic propositions of each state using Add AP button
manually.

•	 Generate behavioral model: it consists of a button which generates a graphical
state transition diagram in form of the GraphViz output based on own structure
codes automatically.

•	 Generate symbolic code: it is a symbolic code generation for constructing the final
SMV code in the following textbox. This textbox is an editable platform for copy-
ing and modifying the SMV code. When the checkbox reduce is checked, then the
model is reduced according to the reduction approach and the reduced final SMV
code is generated. Also, the framework generates the new graphical diagram for
reduced model automatically.

•	 Specification generators: by selecting the specification rules, the GSMT produces
the temporal formulas automatically. In the column of CTL specification generator,
there are 4 specification rules for adding to the end of the SMV code automatically.

•	 For example, the deadlock and reachability properties are selected to generate and
add in the code. In addition, the LTL specification generator column has three spec-
ification rules. In Fig. 9, all of the properties are selected to add the end of the code.

Example 1  This example illustrates a translation procedure for a Kripke model to the
SMV code. A verification approach is done based on the NuSMV model checker auto-
matically. According to Definition 1, the formal description of the Kripke structure of
Example 1 is as follow:

•	 Set of the states Q = (S1, S2, S3, S4, S5, S6).
•	 The initial state I = S1.
•	 The set of atomic propositions P = (p, q, r).
•	 The set of transition relations R = {(S1, S2), (S2, S3), (S2, S4), (S3, S5), (S4, S6)}.
•	 The state labelling functions L = ((S1, {p}), (S2, {q}), (S3, {q}), (S4, {p, q}), (S5, {p, r}),

(S6, {p, r}).

Figure 10 shows the graphical state transition diagram of Example 1 that is generated
automatically using GSMT. After modeling the proposed behavioral model of the Exam-
ple 1, the final SMV code is generated according to the symbolic code platform. The veri-
fication results of the Example 1 are as follows:

•	 The execution time of this model is 158.5 ms,
•	 Generating 18 deadlock-free properties,
•	 Generating 180 reachability properties,
•	 Generating 180 liveness properties,
•	 Generating 720 safety properties.

Page 17 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

Figure 11 illustrates the executed SMV code in NuSMV for Example 1 automatically.
In this figure, there is no deadlock problem in the example. The existing reachable
states of the proposed model is 64 with system diameter 5. The numbers of allocated
OBDD states are 297. After checking the CTL specifications, the 50% of the generated

Fig. 10  The generated graphical transition diagram of Example 1 in the GSMT framework

Fig. 11  The automated model checking environment of the Example 1

Page 18 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

deadlock properties is true, the 77% of the reachability properties is true, the 100% of
the liveness properties is true, and the 92% of the safety properties is true. The total
number of the generated CTL properties of the Example 1 is 1098.

Figure 12 shows the LTS window for constructing the Example 2 as the suggested
case study. According to the specified numbers of Fig. 12, the translation procedure of
the LTS to the final SMV code is shown.

•	 Add propose state: the user inputs a set of existing states on Add propose state
button. The defined states are listed in the state list manually.

•	 Add initial state: the user should select an initial state from the state list which the
initial state is displayed in the First state box manually.

•	 Add action: the user inputs a set of existing actions on Add propose action button
manually.

•	 Add initial action: the user selects an initial action from the action list which the
initial action is shown in the First action box manually.

•	 Add transition relation: it shows the transition relations that are constructed in
forms of From/To/By structure. All of the transition relations are listed in transi-
tion relation list box manually.

•	 Generate a behavioral model: it consists of a button which generates a graphical
state transition diagram in form of the GraphViz output automatically.

•	 Generate symbolic code: it is a symbolic code generation for constructing the final
SMV code in the following textbox. This textbox is an editable platform for copy-
ing and modifying the SMV code. When the checkbox reduce is checked, then the
model is reduced according to the reduction approach and the reduced final SMV
code is generated. Also, the framework generates the new graphical diagram for
reduced model automatically.

Fig. 12  The LTS window in the GSMT framework

Page 19 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

•	 Specification generators: by selecting the specification rules, the GSMT produces
the temporal formulas automatically. In the column of CTL specification genera-
tor, there are 4 specification rules for adding to the end of the SMV code automati-
cally.

Example 2  This example illustrates a translation procedure for a labeled model to the
SMV code. A modeling and verification approach is done based on the NuSMV model
checker automatically. According to Definition 3, the formal description of the LTS of
Example 2 is as follow:

•	 Set of the state S = (S1, S2, S3, S4, S5, S6).
•	 The initial state M = S1.
•	 The set of atomic propositoins A = (a1, a2, a3, a4, a5, a6).

Fig. 13  The generated graphical transition diagram of Example 2 in a original and b reduced model

Page 20 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

•	 The set of transition relations T = {(S1, a1, S2), (S2, a2, S3), (S2, a2, S4), (S3, a3, S5),
(S4, a4, S6), (S5, a5, S6), (S5, a3, S3), (S6, a6, S1)}.

Figure 13 shows the graphical state transition diagrams for Example 2 that is gener-
ated automatically using GSMT. Figure 13a shows the original LTS model and Fig. 13b
depicts the reduced LTS model after applying the reduce approach on the original
model. After modeling the proposed behavioral model of the Example 2, the final SMV
code is generated according to the symbolic code platform. The verification results of the
Example 2 are as follows:

•	 The execution time of this model is 328.9 ms;
•	 Generating 42 deadlock-free properties;
•	 Generating 1260 reachability properties;
•	 Generating 1260 liveness properties;
•	 Generating 3450 safety properties.

Figure 14 illustrates the executed SMV code of Example 2 in the NuSMV automati-
cally. In this figure, there is no deadlock problem. The existing reachable states of the
proposed model is 2680 with system diameter 5. The numbers of allocated OBDD states
are 296. After checking the CTL specifications, the 55% of the generated deadlock prop-
erties is true, the 75% of the reachability properties is true, the 100% of the liveness
properties is true, and the 94% of the safety properties is true. The total number of the
generated CTL properties of the Example 2 is 6012.

Performance evaluation

For comparing the performance of GSMT and the other translator frameworks, some
test case examples are analyzed. In this experiment, an Intel® Core™ i5-6200U @
2.30 GHz CPU, and 8 GB memory in Windows 10 have been used.

Fig. 14  The automated model checking environment of the Example 2

Page 21 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

The first level of the performance evaluation is analyzing the verification time of the
original and reduced models that we perform some test cases to analyze the GSMT
framework. The details of these test cases are illustrated in Table 2. These case studies
are generated randomly.

Figure 15 demonstrates the verification time for ten test cases (10 to 100,000 state
explorations) in forms of original and reduced models. This result specifies that the
reduced model of the GSMT provides a substantial performance in the verification time.
When the number of the state space attributes are increased, the verification time of the
state exploration is grown. In this situation, the reduced model can significantly decrease
the verification time of system verification.

Also, Table 3 shows the number of states and transitions of 10 test cases of Table 2 in
order to the percentage of state space reduction using the proposed recursive reduced
model of the GSMT framework. The reduction average of the state space using GSMT
is 18.54%. The reduced models have minimal equivalency relations with the original
models.

Table 2  Test cases of the GSMT analysis

Test case No. states No. Trans

Case 1 10 8

Case 2 50 70

Case 3 100 150

Case 4 500 650

Case 5 1000 1250

Case 6 5000 5700

Case 7 10,000 13,500

Case 8 20,000 27,000

Case 9 50,000 65,000

Case 10 100,000 155,000

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

100000

10 50 100 500 1000 5000 10000 20000 50000 100000

V
er

ifi
ca

tio
n

tim
e

(S
ec

on
ds

)

Number of states

Original model Reduced model
Fig. 15  Verification time of test cases verification in original and reduced models

Page 22 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

The second level of the performance analysis is to compare the code generation time
for ten test cases (10 to 100,000 state explorations). We implemented the existing case
studies in three famous translator frameworks SysML-ja [58], IStar [59], and FOAM [61]
to compare with the performance of the GSMT framework. Since the selected frame-
work supports just the LTS model, the structure of existing examples has been consid-
ered in forms of LTS for a fair measurement. Figure 16 depicts the code generation time
for specifying the case studies. By increasing the number of the states and transitions
in each example, the generation time is grown exponentially. As the result, the GSMT
framework generates the final code by minimum time.

Table 3  Comparison of the state space reduction for the test cases in GSMT

Case study Model State space
reduction %

Original model Reduced model

No. states No. Trans No. states No. Trans

Case 1 10 8 8 13 17.65

Case 2 50 70 41 57 18.3

Case 3 100 150 77 120 23

Case 4 500 650 410 554 18.5

Case 5 1000 1250 832 1021 18.25

Case 6 5000 5700 4078 5287 18.1

Case 7 10,000 13,500 8268 11,752 18.9

Case 8 20,000 27,000 16,378 26,274 17.5

Case 9 50,000 65,000 42,680 61,723 18.2

Case 10 100,000 155,000 84,727 148,316 18.1

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

10 50 100 500 1000 5000 10000 20000 50000 100000

C
od

e
G

en
er

at
io

n
tim

e
(m

s)

Number of states

SysML IStar FOAM GSMT
Fig. 16  Generation time of final code in translator frameworks

Page 23 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

Discussion

Some model checking converters follow up a standard translation architecture such as a
design code structure, the specification properties definition, and an executive verifiable
code. The proposed framework not only supports the standard platforms but also rep-
resents a specification rules generator, behavioral model generation, and space reduc-
tion approach. However, interconnecting some verification approaches such as process
algebraic methods and theorem proving tools is a key challenge in complex software and
hardware development. The experimental results acquired via some individual test cases
obviously demonstrate that the recursive reduction method improves significantly the
execution and verification time. Nevertheless, the increasing of the generated specifica-
tion rules can influence code generation complexity and rise to check the time of the
properties negatively, and enhancement of the system correctness positively. The limita-
tions of the GSMT framework can be improved with applying the evolutionary algo-
rithms in the model checking approach. For example, the reduction time of the reduced
model can significantly be decreased using greedy algorithms. For analyzing the com-
pleteness and soundness of a complex system, the model checking approach is time-
consuming and the theorem proving frameworks such as Isabelle2 and SPASSD3 tools
can influence to prove these problems. Also, middleware converters between the con-
crete and the verifiable model are very useful to correctness evaluation of the complex
systems. The important challenge of these converters is the approximation of the verifi-
able model to the implementation model. Table 4 shows the comparison of the related
frameworks and the GSMT according to the verification environment factors in terms
of code generation mode, editor layer, graphical modeling creation, property generation
section, and reduction approach. In this evaluation, the GSMT support all of the verifi-
cation environment factors automatically.

Conclusion and future work
In this research, a GSMT is presented with respect to simplifying the behavioral mod-
eling software systems. It consists of the behavioral modeling in form of the LTS and the
KS, generating a graphical state exploration diagram of the behavioral model, generating
the expected specification rules automatically, translating the behavioral model to the
SMV codes, and reduction of the state space. The important functionality of the GSMT
is the implementation of the syntactic reduced approach that ameliorates the state space
explosion. Also, the framework generates the specification rules for proofing the correct-
ness of the model automatically. In order to use the NuSMV, the GSMT supports both
the LTL and CTL formulas to add the final code for execution in the interactive environ-
ment. The experimental results of the GSMT shown that this framework has usability
and simplicity for behavioral modeling software and hardware systems. In comparison
analysis, the reduction approach can significantly decrease the execution time for model
verification. In addition, the framework has a sufficient execution time for generating
final executable SMV code rather than the other translation model checking frame-
works. In checking the generated specification properties for each model in average, the

2  http://isabe​lle.in.tum.de/.
3  http://www.spass​-prove​r.org/.

http://isabelle.in.tum.de/
http://www.spass-prover.org/

Page 24 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

Ta
bl

e 
4 

A
ss

es
sm

en
t p

ri
nc

ip
le

s
fo

r r
el

at
ed

 fr
am

ew
or

ks
 in

 th
e

ve
ri

fic
at

io
n

en
vi

ro
nm

en
t

Fa
ct

or
To

ol

G
SM

T
W

aV
er

 [5
6]

FB
D

 [5
4]

PL
C

[5
7]

Sy
sM

L-
ja

 [5
8]

IS
ta

r [
59

]
Si

m
uL

in
k

[6
0]

FO
A

M
 [6

1]
A

rc
hi

M
at

e
[6

3]
S2

N
 [6

4]
Pe

tr
in

et
2s

m
v

[6
5]

Co
de

 g
en

er
at

io
n

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
Ed

ito
r l

ay
er

✓
✓

✓
–

✓
✓

✓
–

✓
–

✓
G

ra
ph

ic
al

 m
od

el
 g

en
er

at
io

n
✓

–
✓

–
–

–
–

–
✓

–
–

Pr
op

er
ty

 g
en

er
at

io
n

✓
–

–
–

–
–

–
–

–
–

–
Re

du
ct

io
n

ap
pr

oa
ch

✓
–

–
–

–
–

–
–

–
–

–

Page 25 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

55% of the generated deadlock properties is true, the 73.5% of the reachability properties
is true, the 100% of the liveness properties is true, and the 93% of the safety proper-
ties is true. In the future work, we will add some key features such as contracting the
formal specification using pi-calculus and model checking in an integrated framework,
improving the specification rules generation according to behavioral model satisfactory,
refining the state space reduction percentage for the complex systems, and applying the
multi-action transition associations for decreasing the state space complexity.
Authors’ contributions
All authors read and approved the final manuscript.

Author details
1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. 2 Depart-
ment of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran. 3 Department of Computer Engineer-
ing, Saveh Branch, Islamic Azad University, Saveh, Iran.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Funding
No funding was received.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 September 2018 Accepted: 5 January 2019

References
	1.	 Mitsch S, Passmore GO, Platzer A (2014) Collaborative verification-driven engineering of hybrid systems. Math Com-

put Sci 8:71–97
	2.	 Li Y, Tao F, Cheng Y, Zhang X, Nee AYC (2017) Complex networks in advanced manufacturing systems. J Manuf Syst

43:409–421
	3.	 Vakili A, Navimipour NJ (2017) Comprehensive and systematic review of the service composition mechanisms in the

cloud environments. J Netw Comput Appl 81:24–36
	4.	 Keshanchi B, Souri A, Navimipour NJ (2017) An improved genetic algorithm for task scheduling in the cloud envi-

ronments using the priority queues: formal verification, simulation, and statistical testing. J Syst Softw 124:1–21
	5.	 Glaßer C, Pavan A, Travers S (2011) The fault tolerance of NP-hard problems. Inf Comput 209:443–455
	6.	 Higashino WA, Capretz MAM, Bittencourt LF (2016) CEPSim: modelling and simulation of complex event processing

systems in cloud environments. Future Gener Comput Syst 65:122–139
	7.	 Suh Y-K, Lee KY (2018) A survey of simulation provenance systems: modeling, capturing, querying, visualization, and

advanced utilization. Hum Centric Comput Inf Sci 8:27
	8.	 Dill DL (1998) What’s between simulation and formal verification? (extended abstract). In: Presented at the proceed-

ings of the 35th annual design automation conference, San Francisco, California, USA
	9.	 Li K, Liu L, Zhai J, Kosgoftaar TM, Shao M, Liu W (2017) Reliability evaluation model of component-based software

based on complex network theory. Qual Reliab Eng Int 33(3):543–550
	10.	 Khan W, Ullah H, Ahmad A, Sultan K, Alzahrani AJ, Khan SD et al (2018) CrashSafe: a formal model for proving crash-

safety of Android applications. Hum Centric Comput Inf Sci 8:21
	11.	 Kim J, Won Y (2017) Patch integrity verification method using dual electronic signatures. J Inf Process Syst 13
	12.	 Hu K, Lei L, Tsai W-T (2016) Multi-tenant verification-as-a-service (VaaS) in a cloud. Simul Model Pract Theory

60:122–143
	13.	 Jafari Navimipour N (2015) A formal approach for the specification and verification of a Trustworthy Human

Resource Discovery mechanism in the Expert Cloud. Expert Syst Appl 42:6112–6131
	14.	 Jafari Navimipour N, Habibizad Navin A, Rahmani AM, Hosseinzadeh M (2015) Behavioral modeling and automated

verification of a Cloud-based framework to share the knowledge and skills of human resources. Comput Ind
68:65–77

	15.	 Souri A (2016) Formal specification and verification of a data replication approach in distributed systems. Int J Next
Gener Comput 7(1):18–37

	16.	 Souri A, Jafari Navimipour N (2014) Behavioral modeling and formal verification of a resource discovery approach in
Grid computing. Expert Syst Appl 41:3831–3849

Page 26 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

	17.	 Souri A, Norouzi M, Safarkhanlou A, Sardroud SHEH (2016) A dynamic data replication with consistency approach in
data grids: modeling and verification. Balt J Mod Comput 4:546

	18.	 Shen VRL, Wang Y-Y, Yu L-Y (2016) A novel blood pressure verification system for home care. Comput Stand Inter-
faces 44:42–53

	19.	 Rezaee A, Rahmani AM, Movaghar A, Teshnehlab M (2014) Formal process algebraic modeling, verification, and
analysis of an abstract Fuzzy Inference Cloud Service. J Supercomput 67:345–383

	20.	 Ruiz MC, Cazorla D, Pérez D, Conejero J (2016) Formal performance evaluation of the Map/Reduce framework within
cloud computing. J Supercomput 72:3136–3155

	21.	 Hermanns H, Herzog U, Katoen J-P (2002) Process algebra for performance evaluation. Theoret Comput Sci
274:43–87

	22.	 Tini S, Larsen KG, Gebler D (2017) Compositional bisimulation metric reasoning with probabilistic process calculi.
Log Methods Comput Sci 12(4):2627

	23.	 Chen X, Wang L (2017) Exploring fog computing based adaptive vehicular data scheduling policies through a
compositional formal method-PEPA. IEEE Commun Lett. 2017

	24.	 Challenger M, Mernik M, Kardas G, Kosar T (2016) Declarative specifications for the development of multi-agent
systems. Comput Stand Interfaces 43:91–115

	25.	 Hao F, Sim D-S, Park D-S, Seo H-S (2017) Similarity evaluation between graphs: a formal concept analysis approach.
JIPS 13:1158–1167

	26.	 Sardar MU, Hasan O, Shafique M, Henkel J (2017) Theorem proving based formal verification of distributed dynamic
thermal management schemes. J Parallel Distrib Comput 100:157–171

	27.	 Srikanth A, Sahin B, Harris WR (2017) Complexity verification using guided theorem enumeration. In: Proceedings of
the 44th ACM SIGPLAN symposium on principles of programming languages, pp 639–652

	28.	 Xue T, Ying S, Wu Q, Jia X, Hu X, Zhai X et al (2017) Verifying integrity of exception handling in service-oriented
software. Int J Grid Util Comput 8:7–21

	29.	 Copet PB, Marchetto G, Sisto R, Costa L (2017) Formal verification of LTE-UMTS and LTE–LTE handover procedures.
Comput Stand Interfaces 50:92–106

	30.	 Edmund J, Clarke M, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge
	31.	 Leitner-Fischer F, Leue S (2013) Causality checking for complex system models. In: Giacobazzi R, Berdine J, Mastroeni

I (eds) Proceedings of verification, model checking, and abstract interpretation: 14th international conference,
VMCAI 2013, Rome, Italy, January 20–22, 2013. Springer Berlin Heidelberg, Berlin, pp 248–267

	32.	 Merelli E, Paoletti N, Tesei L (2017) Adaptability checking in complex systems. Sci Comput Program 115–116:23–46
	33.	 Baier C, Katoen J-P (2008) Principles of model checking (representation and mind series). The MIT Press, Cambridge
	34.	 McMillan KL (1993) Symbolic model checking. Kluwer Academic Publishers, Norwell
	35.	 Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic model checking: 1020 states and beyond. Inf

Comput 98:142–170
	36.	 Souri A, Norouzi M (2015) A new probable decision making approach for verification of probabilistic real-time

systems. In: 2015 6th IEEE international conference on software engineering and service science (ICSESS), pp 44–47
	37.	 Cimatti A, Clarke E, Giunchiglia F, Roveri M (2000) NuSMV: a new symbolic model checker. Int J Softw Tools Technol

Transfer 2:410–425
	38.	 Sun J, Liu Y, Dong JS (2008) Model checking CSP revisited: introducing a process analysis toolkit. In: International

symposium on leveraging applications of formal methods, verification and validation, pp 307–322
	39.	 Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23:279–295
	40.	 Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W (1995) UPPAAL—a tool suite for automatic verification of real-time

systems. In: International hybrid systems workshop, pp 232–243
	41.	 Podivinsky J, Cekan O, Lojda J, Zachariasova M, Krcma M, Kotasek Z (2017) Functional verification based platform for

evaluating fault tolerance properties. Microprocess Microsyst 52:145–159
	42.	 Wang S, Huang K (2016) Improving the efficiency of functional verification based on test prioritization. Microprocess

Microsyst 41:1–11
	43.	 Balasubramaniyan S, Srinivasan S, Buonopane F, Subathra B, Vain J, Ramaswamy S (2016) Design and verification of

Cyber-Physical Systems using TrueTime, evolutionary optimization and UPPAAL. Microprocess Microsyst 42:37–48
	44.	 Kaufmann P, Kronegger M, Pfandler A, Seidl M, Widl M (2015) Intra- and interdiagram consistency checking of

behavioral multiview models. Comput Lang Syst Struct 44(Part A):72–88
	45.	 López-Fernández JJ, Guerra E, de Lara J (2016) Combining unit and specification-based testing for meta-model

validation and verification. Inf Syst 62:104–135
	46.	 Amálio N, Glodt C (2015) A tool for visual and formal modelling of software designs. Sci Comput Program 98(Part

1):52–79
	47.	 Holzmann GJ, Joshi R, Groce A (2008) New challenges in model checking. In: Grumberg O, Veith H (eds) 25 years of

model checking: history, achievements, perspectives, Springer Berlin Heidelberg, Berlin, pp 65–76
	48.	 Bozzano M, Villafiorita A (2006) The FSAP/NuSMV-SA safety analysis platform. Int J Softw Tools Technol Transfer 9:5
	49.	 Głuchowski P (2016) NuSMV model verification of an airport traffic control system with deontic rules. In: Zamojski W,

Mazurkiewicz J, Sugier J, Walkowiak T, Kacprzykj (eds) Dependability engineering and complex systems: proceed-
ings of the eleventh international conference on dependability and complex systems DepCoS-RELCOMEX. June
27–July 1, 2016, Brunów, Poland, Springer International Publishing, Cham, pp 195–206

	50.	 Safarkhanlou A, Souri A, Norouzi M, Sardroud SEH (2015) Formalizing and verification of an antivirus protection
service using model checking. Procedia Comput Sci 57:1324–1331

	51.	 Ngo VC, Legay A (2018) Formal verification of probabilistic SystemC models with statistical model checking. J Softw
Evol Process 30:e1890

	52.	 Li W, Hayes JH, Antoniol G, Guéhéneuc Y-G, Adams B (2016) Error leakage and wasted time: sensitivity and effort
analysis of a requirements consistency checking process. J Softw Evol Process 28:1061–1080

	53.	 Mercorio F (2013) Model checking for universal planning in deterministic and non-deterministic domains. AI Com-
mun 26:257–259

Page 27 of 27Souri et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:4

	54.	 Li J, Qeriqi A, Steffen M, Yu IC. Automatic translation from FBD-PLC-programs to NuSMV for model checking safety-
critical control systems. 2016

	55.	 Sharma PK, Ryu JH, Park KY, Park JH, Park JH (2018) Li-Fi based on security cloud framework for future IT environ-
ment. Hum Centric Comput Inf Sci 8:23

	56.	 Castelluccia D, Mongiello M, Ruta M, Totaro R (2006) WAVer: a model checking-based tool to verify web application
design. Electron Notes Theor Comput Sci 157:61–76

	57.	 Abdelsadiq A (2013) A toolkit for model checking of electronic contracts
	58.	 Caltais G, Leitner-Fischer F, Leue S, Weiser J (2016) SysML to NuSMV model transformation via object-orientation
	59.	 Deb N, Chaki N, Ghose A (2016) Extracting finite state models from i* models. J Syst Softw 121:265–280
	60.	 Meenakshi B, Bhatnagar A, Roy S (2006) Tool for translating Simulink models into input language of a model checker
	61.	 Vinárek J, Ŝimko V, Hnĕtynka P (2015) Verification of use-cases with FOAM tool in context of cloud providers. In: 2015

41st euromicro conference on software engineering and advanced applications, pp 151–158
	62.	 Simko V, Hauzar D, Hnetynka P, Bures T, Plasil F (2015) Formal verification of annotated textual use-cases. Comput J

58:1495–1529
	63.	 Szwed P (2015) Verification of ArchiMate behavioral elements by model checking. In: Saeed K, Homenda W (eds)

Computer information systems and industrial management: 14th IFIP TC 8 international conference, CISIM 2015,
Warsaw, Poland, September 24–26, 2015, proceedings, Springer International Publishing, Cham, pp 132–144

	64.	 Jiang Y, Qiu Z (2012) S2N: model transformation from SPIN to NuSMV. In: Presented at the PROCEEDINGS of the 19th
international conference on Model Checking Software, Oxford, UK

	65.	 Szpyrka M, Biernacka A, Biernacki J (2014) Methods of translation of petri nets to NuSMV language. In: CS&P, pp
245–256

	66.	 Browne MC, Clarke EM, Grümberg O (1987) Characterizing Kripke structures in temporal logic. In: presented at the
The International Joint Conference on theory and practice of software development on TAPSOFT ‘87, Pisa, Italy

	67.	 Reniers MA, Willemse TAC (2011) Folk theorems on the correspondence between state-based and event-based
systems. In: Černá I, Gyimóthy T, Hromkovič J, Jefferey K, Králović R, Vukolić M, et al. (eds) SOFSEM 2011: theory and
practice of computer science: 37th conference on current trends in theory and practice of computer science, Nový
Smokovec, Slovakia, January 22–28, 2011. Proceedings, Springer Berlin Heidelberg, Berlin, pp 494–505

	68.	 Ghobaei-Arani M, Rahmanian AA, Souri A, Rahmani AM (2018) A moth-flame optimization algorithm for web service
composition in cloud computing: simulation and verification. Softw Pract Exp 48:1865–1892

	69.	 Souri A, Nourozi M, Rahmani AM, Navimipour NJ (2018) A model checking approach for user relationship manage-
ment in the social network. Kybernetes. https​://doi.org/10.1108/K-02-2018-00920​92

	70.	 Bouneb M, Saidouni DE, Ilie JM (2015) A reduced maximality labeled transition system generation for recursive Petri
nets. Formal Aspects Comput 27:951–973

	71.	 Sibay GE, Braberman V, Uchitel S, Kramer J (2013) Synthesizing modal transition systems from triggered scenarios.
IEEE Trans Softw Eng 39:975–1001

	72.	 Souri A, Rahmani AM, Jafari Navimipour N (2018) Formal verification approaches in the web service composition: a
comprehensive analysis of the current challenges for future research. Int J Commun Syst 31:1–27

	73.	 Rozier KY (2011) Linear temporal logic symbolic model checking. Comput Sci Rev 5:163–203
	74.	 Zhao Y, Rozier KY (2014) Formal specification and verification of a coordination protocol for an automated air traffic

control system. Sci Comput Program 96(Part 3):337–353
	75.	 Bollig B (2016) On the minimization of (complete) ordered binary decision diagrams. Theory Comput Syst

59:532–559
	76.	 Sharma A (2012) A two step perspective for Kripke structure reduction. arXiv preprint arXiv​:1210.0408
	77.	 Gradara S, Santone A, Villani ML, Vaglini G (2004) Model checking multithreaded programs by means of reduced

models. Electron Notes Theor Comput Sci 110:55–74
	78.	 Flanagan C, Godefroid P (2005) Dynamic partial-order reduction for model checking software. In: Presented at the

proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on principles of programming languages, Long Beach,
California, USA

	79.	 Reniers MA, Schoren R, Willemse TAC (2014) Results on embeddings between state-based and event-based systems.
Comput. J 57:73–92

https://doi.org/10.1108/K-02-2018-0092092
http://arxiv.org/abs/1210.0408

	A symbolic model checking approach in formal verification of distributed systems
	Abstract
	Introduction
	Related work
	GSMT framework
	GSMT behavioral models
	Recursive reduced model

	Experimental analysis
	User interface of GSMT
	Performance evaluation
	Discussion

	Conclusion and future work
	Authors’ contributions
	References

