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Abstract 

In data center companies, cloud computing can host multiple types of heterogene-
ous virtual machines (VMs) and provide many features, including flexibility, security, 
support, and even better maintenance than traditional centers. However, some 
issues need to be considered, such as the optimization of energy usage, utilization 
of resources, reduction of time consumption, and optimization of virtual machine 
placement. Therefore, this paper proposes an alternative multiobjective optimization 
(MOP) approach that combines the salp swarm and sine-cosine algorithms (MOS-
SASCA) to determine a suitable solution for virtual machine placement (VMP). The 
objectives of the proposed MOSSASCA are to maximize mean time before a host 
shutdown (MTBHS), to reduce power consumption, and to minimize service level 
agreement violations (SLAVs). The proposed method improves the salp swarm and the 
sine-cosine algorithms using an MOP technique. The SCA works by using a local search 
approach to improve the performance of traditional SSA by avoiding trapping in a 
local optimal solution and by increasing convergence speed. To evaluate the quality of 
MOSSASCA, we perform a series of experiments using different numbers of VMs and 
physical machines. The results of MOSSASCA are compared with well-known meth-
ods, including the nondominated sorting genetic algorithm (NSGA-II), multiobjective 
particle swarm optimization (MOPSO), a multiobjective evolutionary algorithm with 
decomposition (MOEAD), and a multiobjective sine-cosine algorithm (MOSCA). The 
results reveal that MOSSASCA outperforms the compared methods in terms of solving 
MOP problems and achieving the three objectives. Compared with the other methods, 
MOSSASCA exhibits a better ability to reduce power consumption and SLAVs while 
increasing MTBHS. The main differences in terms of power consumption between the 
MOSCA, MOPSO, MOEAD, and NSGA-II and the MOSSASCA are 0.53, 1.31, 1.36, and 
1.44, respectively. Additionally, the MOSSASCA has higher MTBHS value than MOSCA, 
MOPSO, MOEAD, and NSGA-II by 362.49, 274.70, 585.73 and 672.94, respectively, and 
the proposed method has lower SLAV values than MOPSO, MOEAD, and NSGA-II by 
0.41, 0.28, and 1.27, respectively.
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Introduction
Currently, the evolution and spread of technology double the quantity of data several 
times every minute; therefore, traditional data centers, which store these data locally, 
do not work as efficiently as before and have become unsuitable for many companies. 
Thus, traditional data centers should be improved to overcome several issues, including 
high maintenance costs, wasted floor space, high energy consumption, security, and high 
human resource costs. In addition, quality of service (QoS) requires companies to intro-
duce high-quality services for their clients, including sending tasks to resources, task 
scheduling, and output satisfying results in an appropriate amount of time [1]. These 
problems can be approached by cloud computing servers.

Cloud computing can help the owners of datacenters overcome several issues through 
its flexibility, security, high scalability, QoS, and improved maintenance and support [1]. 
Cloud computing has the ability to host multiple types of heterogeneous servers; these 
servers host thousands of virtual machines (VMs); and each machine is provided with 
suitable resources (e.g., CPU, RAM, and storage) to be able to run all processes. Some 
cloud computing servers hold only one VM, while most servers host multiple VMs. This 
structure may cause overloading problems in some servers, which can reduce the perfor-
mance of the servers and consume a large amount of energy [2].

VMs have also different workload types and resource specifications; thus, this may 
result in an imbalance in resource usage and high energy consumption [1]. Therefore, 
many issues need to be considered, such as the utilization of all resources, reduction 
of time consumption, and optimization of energy usage. The consumption of energy 
leads to increases in operating costs and it is related to resource utilization in datacent-
ers. In this context, the energy cost of Amazon’s datacenters consumed more than 40% 
of its total operating costs [3]. In addition, the increase in energy consumption causes 
an increase carbon dioxide emissions and ecological problems [3]. Therefore, if energy 
consumption is reduced, the operating costs of datacenters will be reduced. An effec-
tive technique to achieve this goal is to apply and optimize the VM placement (VMP) 
process [4].

VMP relates to the allocation of VMs to a relevant physical machine (PM). This pro-
cess is considered to be an important problem in managing datacenter resources. It 
should be done in real-time without large time consumption. If this process consumes 
more time, it will reduce its main benefits of being applied in a real environment. This 
research topic has several optimization criteria that can be effective in achieving highly 
positive economic and ecological results. For this reason, resource allocation in cloud 
computing platforms has attracted increasing attention and has been widely studied by 
many researchers [5–8].

The advantages of meta-heuristic algorithms in solving many machine learning opti-
mization issues has led several studies to successfully employ them in different fields, 
such as image processing, feature selection, classification, and prediction [9–12]. In 
the same way, several meta-heuristic methods have been introduced, such as thermal 
exchange optimization [13], that depend on Newton’s law of cooling. The law assumes 
there is a relationship between the rate of a body’s heat loss and the temperature differ-
ence between the body and its surroundings. This algorithm is used in some applications 
such as solving global optimization [13] and structural damage identification [14]. Selfish 
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herd optimizer (SHO) [15] is another meta-heuristic that emulates selfish herd behavior. 
The SHO is used to solve global optimization problems [15], and there is another version 
of SHO that depends on the opposite-based learning method and that applied this algo-
rithm to an optimization function [16]. The tree-seed algorithm (TSA) has been applied 
to address continuous optimization problems [17]. The TSA simulates the relationship 
between trees and their seeds. This algorithm has several applications: large-scale binary 
optimization [18], optimal power flow problem [19], and similarity and logic gate binary 
optimization [20].

Therefore, we introduce an alternative method called MOSSASCA to find a suitable 
solution for the VMP problem. MOSSASCA is a multiobjective salp swarm algorithm 
(SSA) using sine-cosine algorithms (SCAs) as local operators.

SSA is a recently developed optimization method that simulates the natural behav-
ior of salp, barrel-shaped plankton (family Salpidae) that are mostly water by weight. 
In addition, they move in the same way as jellyfish. SSA was proposed to solve differ-
ent kinds of optimization issues [21]. SCA is an evolutionary method proposed to pro-
vide various solutions to different problems. It uses the mathematical model of sine and 
cosine functions and switches between them to obtain the optimal solution [22]. These 
methods were used in many previous studies and have shown good results [23–25].

The objectives of the proposed MOSSASCA are to maximize the mean time before a 
host shutdown, to reduce the power consumption and to minimize service level agree-
ment violations (SLAVs). The proposed method starts by generating an integer popula-
tion that represents solutions for the VMP and evaluates the quality of each solution by 
computing the objective functions. Then, the nondominated (ND) solutions are deter-
mined and saved in the archive. The next step uses the leader selection method to choose 
the best solution from the archive that is applied to update other solutions. Thereafter, 
the solutions in the current population are updated using the modified version of SSA, 
based on SCA. In MOSSASCA, the operators of SCA are used as local operators to 
improve the solutions of SSA and preventing them from becoming stuck at a local opti-
mal point. All solutions updated by MOSSASCA are added to the archive. ND solutions 
are found and then are updated based on the size of the archive. The previous steps are 
executed until reaching stop conditions.

The rest of this study is organized as follows. “Related work” section lists the related 
works and problem formulation. “Background” secion describes the background of the 
methods used in this study. “Proposed MOSSASCA for VMP method” section explains 
the proposed method. The experiments and results are explained in “Results and discus-
sion” section. The conclusion and future work are illustrated.

Related work
The massive numbers of data centers consume a substantial amount of power resources; 
this situation negatively affects the stability and extension of these centers. Therefore, 
this issue should be considered when designing cloud computing platforms [3, 26, 27]. 
In this context, various studies have been performed to overcome the problems of VMP 
such as power consumption, network traffic minimization, resource utilization, and per-
formance maximization [28–32].
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The techniques that can be applied to solve the problem of VMP resource allocation 
can be defined as multiobjective (MO) or single-objective. The process of finding the 
solution for more than one objective function simultaneously with different criteria is 
considered a multiobjective optimization problem (MOP).

Different types of meta-heuristic (MH) techniques are applied to solve the problem 
of single-objective VMPs. For example, Gabay et  al. [33] applied first-fit decreasing, 
best-fit decreasing, and worst-fit techniques to locate destination PM for placing VMs. 
The authors reported that their proposed method is flexible, fast, and appropriate to be 
applied to real-life problems.

The authors of [34, 35] introduced simulated annealing (SA) algorithm-based VM con-
solidation algorithm.

However, single-objective methods are not suitable in the case of balancing between 
different objectives; therefore, multiobjective (MOP) methods are used to find solutions 
that balance between the objectives.

MOP methods have been applied to different applications, such as restructuring traf-
fic networks [36], data mining methods for knowledge discovery [37], multiple sequence 
alignment [38], wind turbine blade geometry design [39] and others [40, 41].

Several MOP methods have been proposed, including in [42], a multiobjective method 
based on the grasshopper optimization algorithm (GOA). This algorithm simulates the 
navigation behavior of grasshoppers in nature. The authors of [43] proposed an MO ver-
sion of the ant lion optimizer (ALO) and applied it to solve engineering design problems. 
In [44], the multiobjective flower pollination algorithm is proposed, which simulates the 
behavior of plant flowers’ proliferation role. For finding solutions for constrained MOP 
problems, a modified water cycle algorithm has been proposed [45].

With all of this attention on MOP methods, minimal efforts have been exerted toward 
the optimization of multiobjective VMP problems by MH and hybrid-heuristic algo-
rithms. For example, the authors of [2] applied biogeography-based optimization (BBO) 
as an optimization method in order to determine a solution for the VMP problem con-
sidering server loads, inter-VMs, power consumption, resource wastage, and storage 
network traffic. In addition, the authors of [3] introduced a hybrid genetic algorithm 
(GA) to solve the VMP problem in a communication network and PMs in a data center. 
Gao et al. [46] proposed an MO ant colony optimization (ACO) algorithm to deal with 
VMP issues; it was applied to determine efficient ND solutions that minimize power 
consumption and resource usage. Other studies proposed intelligent models to decrease 
the power consumption in a cloud environment such as [47–51].

However, these models suffer from slow convergence and become stuck in local 
optima. In addition, the no free lunch (NFL) theorem [52] assumes that the optimization 
method does not have the ability to solve all problems with the same quality. Therefore, 
this consideration motivated us to propose an alternative multiobjective VMP method 
that can overcome the limitations of other methods.

The proposed MOP VNP method depends on improving the traditional SSAs using 
the operators of the SCA. The SSA has demonstrated its performance in several fields; 
for example, the SSA is used to determine the suitable parameters of the solar cell [53, 54] 
and parameters of PEM fuel cells [23]. In addition, SSA is applied to improve classification 
through selecting relevant features [24, 25, 55–57]. In [58], the authors presented a method 
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based on SSA for practical considerations in radial distribution systems that determine 
optimal conductor and hosting capacity. For the fractional order proportional-integral-
derivative (FOPID) controller problem, the SSA is used [59]. In [60], the authors presented 
an alternative job shop scheduling problem, whereas [61] presented training neural net-
works using SCA for improving pattern classification.

In general, the contributions of this study can be formulated as follows:

–	 Proposing an alternative optimization approach that uses the multiobjective optimiza-
tion concept to enhance the properties of SSA based on SCA as a local search.

–	 Applying the MOSSASCA method to solve the problem of VMP and allocating 
resources in cloud computing platforms.

Background
Problem formulation of VMP

Physical cloud computing structures consist of many PMs. They contain the physical layers, 
or infrastructure, of cloud computing and they contain many components such as storage, 
RAM, CPUs, GPUs, and network connectors [8]. Therefore, cloud computing would not 
work without PMs. Each PM contains multiple VMs, where each VM can run an independ-
ent operating system (OS) and applications. VMs require many resources include CPU 
time, memory space, and storage. Therefore, a VM obtains these resources from its PM. 
Figure 1 illustrates the VMP problem.

Figure 1 contains four servers that run four VMs. Four virtualized applications are hosted 
on the system. The following points describe the process of VMP.

Fig. 1  VMP problem
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1.	 For each PM, calculate the requirement of the application’s resource through the sta-
tistics of the usage of the server’s resource in a period of time.

2.	 Select a proper PM with the comparable type of CPU, compatible software, storage, 
and similar network properties.

3.	 Assign VM1 to the PM1 in step 2, and assign VM2 to the PM1 if it has sufficient 
resources.

4.	 Repeat this mechanism until each VM is assigned to a suitable PM and, if required, 
add a new PM to build the structure of a server farm.

The following subsections describe the PMs, VMs, constraints, and objective function.

Physical machine

The PMs consist of more than one machine, and all these machines have physical layers, as 
shown in the following equation:

where NP describes the total number of PMs. Each PM has the following:

where PMi, (i = 1, 2, . . . ,NP) defines the number of the current PMs. PMpmax
i  is the 

maximum power consumption of the ith PM in units of [W]. The PMCPU
i ,PMram

i  and 
PMhdd

i  are the processing resources (in [ECU]), the memory resources (in [GB]), and the 
storage resources (in [GB]) of the PMi.

Virtual machine

The VMs consist of one or more VMs, as shown in the following equation:

where NV  describes the total number of VMs. Each VM has the following resources:

where j is the current VM’s number. VMCPU
j ,VMram

j  , and VMhdd
j  represent the process-

ing, memory, and the storage requirements of the jth VM, respectively.

Objective functions

In this section, the three objective functions are defined below:

–	 Energy consumption: The servers consume a large volume of power when they are 
in an idle state. 

(1)PM = [PM1,PM2,PM3, . . . ,PMNP ],

(2)PMi = (PMCPU
i ,PMram

i ,PMhdd
i ,PM

pmax
i ),

(3)VM = [VM1,VM2,VM3, . . . ,VMNV ],

(4)VMj = (VMCPU
j ,VMram

j ,VMhdd
j ), j = 1, 2, . . . ,NV ,

(5)f Energy =

NV
∑

i=1

((PM
pmax
i − PM

pmin
i )×UCPUi(g)+ PM

pmin
i )× Yi(g),
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where f Energy represents the total power consumption of the PMs, while 
PM

pmin
i = PM

pmax
i × 0.6 [62, 63] defines the minimum power consumption of PMi . 

UCPUi(g) represents the utilization ratio of resource utilized by PMi at instant t, while 
Yi(g) ∈ [0, 1] is equal to 1 if the PMi is turned on; otherwise, Yi(g) = 0.

–	 SLAV: The infrastructure of cloud computing and hosts try to meet QoS require-
ments, which are modeled in the SLAV form to maximum response time or mini-
mum throughput. SLAV can be caused by a host, as defined in the following equa-
tions. 

where SLAO represents the average ratio of the period in the case the host experi-
ences CPU utilization of 100% and is defined as follows: 

where Tai is the active time of i-th host, and Tsi represents the total time when the i-
th host experiences 100% SLAV utilization. Moreover, the SLAM represents the deg-
radation in the performance due to the migration of VMs and is defined as follows: 

where Crj indicates the total CPU utilization needed by the VMj , and Cdj represents 
the degradation in the performance that results from VM migration.

–	 Mean time before a host shutdown (MTBHS): This time is measured in seconds, and 
the average is calculated as follows. 

where hi represents the host shutdown time.

Constraints:

(6)f SLAV = SLAO × SLAM,

(7)SLAO =
1

NP

NP
∑

i=1

Tsi

Tai
,

(8)SLAM =
1

NV

NV
∑

j=1

Cdj

Crj
,

(9)
f MTBHS
j =

1

NP

NP
∑

i=1

hi,

(10)
NP
∑

i=1

Bji(g) ≤ 1 ∀j ∈ {1, . . . ,NV },

(11)
NP
∑

i=1

VMcpuj × Bji(g) ≤ PMCPUi ,

(12)
NP
∑

i=1

VMramj × Bji(g) ≤ PMrami ,
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where Bji = 1 when the VMj allocates on PMi ; otherwise Bji = 0 . In constraint (10), VMi 
should be executed on a single PMj and when its SLAVi is lowest priority (in this work, 
s = 2). Here, it should not allocated to any PM. In constraints (11)–(13), the current PM 
( PMj ) must have sufficient resources to be able to work properly and serve all its VMs at 
instant t.

Multiobjective optimization

The MOP problems are optimization problems that need solutions with more than one 
objective function [64]. However, this kind of problem is considered to be an NP hard prob-
lem because it contains a set of conflicting objectives. In general, the MOP is given as [64]:

where fm(x) and Ω are the m-th of the objective function and of the search domain, 
respectively. The Lj and Uj are lower and upper boundaries of i-th solution, respec-
tively. The inequality and the equality constraints are represented by Gj(x) and hj(x) , 
respectively.

To find the optimal solution that balances all conflicting objective functions, we use 
the concept in MOPs known as Pareto optimal dominance. Based on this concept, we 
consider that the solution x has better results than another solution y if (and only if ) 
it has objective function values better than the other objective values of (y). This can 
be formulated as

Therefore, the solution x that satisfied Eq. (17) is said to dominate y.
From the previous definition of the dominated solution, there exists a set of solu-

tions called Pareto optimal (PF; also called nondominated solutions) where no solu-
tion can dominate them. The set of all PF solutions is represented as follows:

In addition, the values of the solutions that belong to the Pareto set in the objective 
domain is called Pareto front and represented as follows:

Salp swarm algorithm

Salp swarm algorithm (SSA) is a new meta-heuristic method, introduced by [21]. SSA 
emulates the behavior of salps of the family Salpidae. They move like jellyfish, and a 
high percentage of their weight is water [65]. The working mechanism of SSA starts 
by producing a random set of NS solutions (X) with dimension D. The X is split into 
two sets based on the location of salps in the population. A salp in front of the food 

(13)

NP
∑

i=1

VMhddj × PMji(g) ≤ PMhddi ,

(14)min f (x) = [f1(x), . . . , fM(x) ], x = [x1, . . . xn] ∈ Ω ,

(15)subject to : hj(x) = 0, j = 1, 2, . . . ,Nh,

(16)Gl(x) ≥ 0, (l = 1, 2, . . . ,NG),

(17)∀j : fj(x) ≤ fj(y) and ∃i : fi(x) < fi(y).

(18)Pareto set = {x|x ∈ Ω and x is Pareto optimal}.

(19)Pareto front = {f (x)|x ∈ Pareto set and f (x) ∈ RM}.
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chain will be in the leader group; the rest will be in the followers’ group. The leader 
group x1 states the solution to the problem. It is updated using the following Eq. [21]:

where x1j (g) and xbj (g) define the leader’s position and the food source in the j-th dimen-
sion at iteration g, respectively. ubj and lbj define the upper and lower bounds of dimen-
sion j, respectively. α2 and α3 represent random values in [0, 1] that maintain the search 
space [21]. To give balance to the exploitation and exploration phases, the α1 is updated 
at each iteration g depending on the maximum number of iterations gmax as follows [21]:

Then, the position of the followers’ solution xi is updated using Eq. (22) [21]:

Algorithm 1 shows all steps of the SSA [21].

Algorithm 1 steps of SSA
1: Produce a random set of NS solutions X.
2: while (g < gmax) do
3: For each solution compute its objective functions.
4: Define the leader (xb).
5: Calculate r1 with Eq. (21)
6: for each solution xi, i = 1, ..., NS do
7: if (i == 1) then
8: Use Eq. (20) to update the leader’s position or
9: else
10: Use Eq. (22) to update the followers’ position.
11: end if
12: end for
13: end while
14: Output the leader position (xb).

Sine‑cosine algorithm

The sine-cosine algorithm (SCA), presented by [22], is based on the mathematical model 
of the sine and cosine functions to improve its population and obtain the solution for the 
problem. It switches between these models to achieve the best result.

The working mechanism of SCA begins by randomly producing an initial set of NS 
solutions X with D dimensions. Afterward, for each solution, it calculates the fitness val-
ues. The solution with the best fitness value ( fb ) is considered as the best solution ( xb ). 
The xb and the parameters βi, i = 1, 2, 3, 4 are used to update the solutions as in Eq. (25). 
SCA repeats these steps until the stop condition is met, shown in Algorithm 2.

SCA updates its population using the sine function as follows [22]:

and updates its population using the cosine function as follows [22]:

(20)x1j (g + 1) =

{

xbj (g)+ α1((ubj − lbj)× α2 + lbj) α3 ≤ 0,

xbj (g)− α1((ubj − lbj)× α2 + lbj) α3 > 0,

(21)α1 = 2e
−

(

4g
gmax

)2

,

(22)xij(g + 1) =
1

2
(xij(g)+ xi−1

j (g)), i = 2, . . . ,NS

(23)xi(g + 1) = xi(g)+ β1 × sin(β2)× |β3xb(g)− xi(g)|

(24)xi(g + 1) = xi(g)+ β1 × cos(β2)× |β3xb(g)− xi(g)|
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The SCA uses a parameter β4 to switch between these equations as shown in the follow-
ing [22]:

where |.|, xb(g) , and xi(g) define the absolute value, the target and the current solu-
tions at iteration g, respectively. The βi, i = 1, 2, 3, 4 represent random variables of [0, 1] 
[22]. β2 defines the path of the next solution’s movement either toward or away from xb . 
β3 represents a random number that adds weight to xb to check whether it stochasti-
cally preserves (when β3 > 1 ) or ( β3 < 1 ) the influence of desalination upon finding the 
domain. β1 is applied to switch between exploration and exploitation in order to define 
the optimal part for the next solution. This part may be higher than the upper bound or 
lower than the lower bound, Thus, it is updated as follows [22]:

where g, σ , and gmax define the current iteration, a constant, and the iterations number, 
respectively.

Algorithm 2 The steps of SCA
1: Produce a set of solutions X.
2: while (g < gmax) do
3: Compute the fitness value f for each solution.
4: Define xb that has the best fitness value fb.
5: Update β1, β2, β3, and β4 values.
6: Use Eq. (25) to update X.
7: end while
8: Output xb.

Proposed MOSSASCA for VMP method
The section discusses the main steps of the multiobjective VM placement method that 
combines the improvement of the behavior of the SSA using the SCA. Therefore, the 
proposed method is called MOSSASCA. The goal of the proposed method is to search 
for the optimal set of approximate Pareto front (PF), which represents the optimal solu-
tions for minimizing SLAV, reducing power consumption and maximizing time before a 
host shutdown [as shown in Eqs. (5)–(9)].

In general, the proposed MOSSASCA begins by receiving the parameters (i.e., the 
number of VMs ( NV  ), the number of hosts ( NP ), the number of solutions ( NS ), and the 
max number of iterations. Afterwards, the next steps are to generate a random popula-
tion that contains a set of solutions, each of which represents the index of VM. Subse-
quently, the performance of each solution is measured by computing objective functions, 
and the best solution is selected using concepts of dominance. Therefore, each solution 
is changed and updated by the SSASCA, where SCA is applied to improve the SSA by 
working as a local search technique. The nondominated (ND) solutions in the archive 
are updated by comparing them with the ND solutions from the updated population. 
This sequence is executed until reaching a maximum number of iterations.

(25)xi(g + 1) =

{

xi(g)+ β1 × sin(β2)× |β3xb(g)− xi(g)| if β4 < 0.5

xi(g)+ β1 × cos(β2)× |β3xb(g)− xi(g)| if β4 ≥ 0.5

}

(26)β1 = σ − g
σ

gmax
,
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The previously mentioned steps of the proposed MOSSASCA can be classified into 
three phases: (1) initialization, (2) updating the population using SSASCA, and (3) 
updating the archive of ND solutions. These phases are discussed in detail in the follow-
ing subsections.

Initialization

In this phase, the MOSSASCA starts by initializing a set of NS solutions X where the 
value of each solution Xi, (i = 1, 2, . . . ,NS) form the index of the VM and the dimension 
equal to the total number of VMs ( NV  ). The solution is generated using the following 
equation:

where NP represents the number of PMs, LP is the minimum number of PMs (set to 
one), and floor is a function used to convert the real number to an integer value. To 
clarify this definition, we consider the NP = 5 , and NV = 8 , then Xi = [2 5 3 3 3 1 2 4] . 
This representation means that the first and seventh VMs are allocated to the second 
PM and the second VM is allocated to the fifth PM. The third to fifth VMs are allocated 
to the third PM, and the sixth and eighth VMs are allocated at the first and fourth PMs, 
respectively.

The next step is that the objective function is calculated for each solution using the fol-
lowing equation:

where f SLAV , f Energy , and f MTBHS are defined in Eqs. (5)–(9). Thereafter, the ND solu-
tions are allocated and are stored in archive AR.

Algorithm 3 Initialization Stage
1: Put t = 0, archive AR = []
2: for i = 1 to N do
3: Generate Xij using Equation (27).
4: Compute the objective function for xi using Equation (28).
5: end for
6: Update the ND solutions in AR.

Update the population using SSASCA

In this phase, the solutions X are updated by using the hybrid SSA and SCA. The aim 
of using the SCA algorithm is to give the SSA the capability of skipping the local point. 
The hybrid SSASCA algorithm starts by determining the best solution. However, this 
process is different from the single-objective optimization, where each solution has only 
one function. That in MOP has more than two objective values. Therefore, the leader 
selection mechanism (LSM) is applied to the nondominated solutions in archive AR (see 
[66] for more details) to select the best solution ( Xb ). The LSM uses the roulette-wheel 
method to choose Xb based on the probability ( ProbSel ), which is computed as follows:

where Nsegi represents the number Pareto optimal solutions of the crowded segment i, 
while C > 1 is a constant number.

(27)Xij = floor(LP + rand × (NP − LP)), j = 1, . . . ,NV

(28)Min F = [f Energy; f SLAV ; f Meantime]T ,

(29)ProbSel = C × Nsegi,
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Therefore, to switch between SSA and SCA, we compute the probability (Pr) of the 
power fitness function as follows:

If the current solution has Pri ≥ η ( η ∈ [0, 1] ), then the SSA is used to update Xi ; other-
wise, the SCA is used to update Xi . The next step is to convert the updated solution into 
an integer solution using the floor function (i.e., Xi = floor(Xi) ); then, the objective func-
tions are calculated for each solution.

Algorithm 4 Update stage
1: Determine xb using the leader selection method (LSM) using Equation (29).
2: for i = 1 to N do
3: Calculate the Pri value of Xi.
4: if (Pri ≤ η) then
5: Use Equation (25) to update Xi,
6: else
7: if i ≤ N/2 then
8: Use Equation (20) to update Xi (leader),
9: else
10: Use Equation (22) to update Xi (follower).
11: end if
12: end if
13: end for

Update the archive

This stage begins by combining the current population with the archive AR, followed by 
the determination of ND solutions. This process is critical to improve convergence to the 
true PF and preserve the population’s diversity by using the density estimation informa-
tion [67–70].

In general, the archive AR is updated by comparing its ND solutions with each solu-
tion in the population (i.e., Xi ∈ X ) using the Pareto dominance concepts. Here, the 
solution Xi will swap any solution XA in AR when Xi dominates XA , and if there is a set 
of solutions in AR is dominated by Xi , then this set will be removed from AR, and Xi will 
be added to AR. However, if Xi must be added to AR and the size of AR is full, then the 
crowded segment method is used. The segmentation of the objective space is rearranged 
by using the grid mechanism, and the most crowded segment is determined to delete the 
solution from AR. Thereafter, the Xi will be combined with the least crowded segment to 
improve the PF’s diversity. In addition, solution Xi is not appended to AR when any solu-
tion dominates it (i.e., Xi ) [71]. The final step in this phase is to enhance the population X 
by selecting the best NS solutions from AR.

Algorithm 5 Stage of Updating Archive AR
1: In: Updated X,
2: Add X to the ND solution in AR.
3: Determine the ND solutions of AR.
4: Check the size of AR and choose only the best NS ND solutions.
5: Return: Archive AR.

(30)Pri =
f1

∑NS
i=1

f1
.
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Full description of MOSSASCA method

The remaining parts of the proposed MOSSASCA method for VMP are presented in 
Algorithm 6. Here, the current generation is represented by g and the maximum num-
ber of iterations is given by gmax . The proposed MOSSASCA starts by determining the 
input to the initialization phase (as described in Algorithm 3) and receiving the output 
(i.e., population X and archive AR) from it. The next step is to update X based on the 
hybrid SSASCA algorithm (as described in 4). Then, Algorithm 5 is used to find the NDS 
and update AR. The steps of two algorithms (i.e., Algorithm 4, Algorithm 5) are repeated 
until the terminal conditions are satisfied.

Algorithm 6 Multiobjective salp swarm algorithm based on sine-cosine algorithm
(MOSSASCA).
1: Input: number of VMs and PMs, population size NS , and maximum number of generations gmax

2: Output: nondominated solutions saved in archive AR.
3: Use Algorithm 3 to generate the population X.
4: repeat
5: Use Algorithm 4 to update the solutions.
6: Use Algorithm 5 to update the nondominated solutions saved in archive AR and update the

population X.
7: g = g + 1
8: until g <= gmax.

Complexity of MOSSASCA method

The complexity of the MOSSASCA method depends on several items, for example, the 
dimension of the tested problem, the number of solutions NS , the number of objectives 
M, the maximum number of iterations tmax . Therefore, the complexity of MOSSASCA is 
given by

where Nprob1 and Nprob1 represents the number of solutions updated using the SSA and 
SCA respectively. cof is the cost of objective function.

Results and discussion
A set of experiments are performed to assess the performance of the MOSSASCA as a 
multiobjective VMP method to find the optimal solution to the VM allocation problem. 
In addition, the results of MOSSASCA are compared with those of other approaches, 
such as NSGAII [72], MOEA-D [73], MOPSO [74], and MOSCA [75].

Environment description

In this section, the description of the environment is explained, where the CloudSim 
toolkit simulation framework is used to simulate the cloud computing environments 
[76]. The experimental setup used in this study simulates the real configurations of cloud 
computing infrastructure, which includes 160 IBM Server x3250 and Intel Xeon 3480 
CPU, 160 IBM Server x3250 and Intel Xeon 3470 CPU model, 160 HP ProLiant ML110 

(31)
O(MOSSASCA) =O(tmax(NV × (NS × Nprob1 + NS × Nprob2)

+ cof × NS +M × N 2
S )),
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G3, 160 HP ProLiant ML110 G4, and 160 HP ProLiant ML110 G5. Table 1 shows a set of 
parameters used in the experiments for VM simulations.

In addition, the workload data are extracted from the project of CoMon data [77, 78]. 
Statistical values of the utilization (shown in %) of data (daily) are given in Table 2.

The performance of the MOSSASCA is compared with other algorithms, such as 
NSGAII, MOEAD, MOPSO, and MOSCA. To evaluate the performance of these meth-
ods, we use different numbers of VMs (25, 75, and 100) and hosts (50, 150, and 200), 
where 50 VMs are assigned to 25 hosts, 150 VMs are assigned to 75 hosts, and 200 VMs 
are assigned to 100 hosts.

All algorithms are implemented using jMetal java framework, which is installed on 
Windows 10 (64-bit).

Performance measures

The proposed method is evaluated on the basis of MOP performance measurements, 
including hypervolume (HV), spread (SP), generational distance (GD), epsilon (EPS), 
and inverted generational distance (IGD) [79].

1.	 HV: It is applied to evaluate the nearness and variety of PF by computing the area 
size dominated by its solutions. If the HV of X > B , then X Pareto optimal converges 
to be greater than B. 

Table 1  The Parameters of VM simulation

Parameter Value

VM types 2, 4

VM RAM 870, 1740 MB

VM bandwidth 100 to 200 Mbit/s

VM MIPS 2500, 100

Number of VMs 50, 100, 150, 200

VM PES 1,1

Table 2  Properties of the workload

Data Standard deviation (SD) (%) Mean (%) The number 
of VMs

03/03/2011 17.09 12.31 1052

06/03/2011 16.83 11.44 898

09/03/2011 15.57 10.70 1061

22/03/2011 12.78 9.26 1516

25/03/2011 14.14 10.56 1078

03/04/2011 16.55 12.39 1463

09/04/2011 15.09 11.12 1358

11/04/2011 15.07 11.56 1233

12/04/2011 15.15 11.54 1054

20/04/2011 15.21 10.43 1033
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2.	 SP: It is used to evaluate the extent of spread achieved between the solutions and 
compute the nonuniformity in the distribution of solutions, and it is defined as 

where di represents the Euclidean distances between the set of solutions that have 
the mean value d̄ , and where dei  represents the distance between the extreme solu-
tions and PF∗ . M and |Q| are the total number of objective functions and the num-
ber of solutions in PF∗ , respectively. The smaller Spread value indicates that the algo-
rithm is better than others.

3.	 GD: GD defines the average distance between the true Pareto front and the estimated 
front. Equation (34) defines this measure: 

In Eq. (34), n = |fp| defines the number of elements of the ND solutions, and di 
defines the Euclidean between the closest front’s solution of Pareto optimal in the 
objective space and reference solution (RP).

4.	 IGD: It is applied to compute the nearness between the reference optimal solution 
(RP) and the archived Pareto solution. Equation (35) defines this measure: 

The smaller IGD value indicates better performance.
5.	 EPS: It is used to find the minimum value where the approximation PF is mapped to 

the objective space that dominates the true PF. 

where r and a are the solutions in the true PF and the approximate PF, respectively. 
The algorithm with the smallest EPS is considered to be the better one.

Experimental results analysis

Comparison with other algorithms

The comparison results between the MOSSASCA and the other algorithms in order to 
determine the optimal solution for the VMP in cloud computing are given in Table  3 
and Figs. 2, 3, 4. The results show that the proposed MOSSASCA method performs bet-
ter than the other methods. Specifically, the proposed method has lower minimum and 
maximum power consumption in all tested problems. The standard deviation of the 

(32)HV = volume





|PF |
�

i=1

ai





(33)Spread =

∑M
i=1 d

e
i +

∑|Q|

i=1
|di − d̄|

∑M
i=1 d

E
i + |Q|d̄

,

(34)GD(fp, fp∗) =

√

∑n
i=1 d

2
i

n
.

(35)IGD =

∑

r∈RP d

|RP|
, d = ||a− r||2, ∀a ∈ PF , r∀RP.

(36)EPS = max
r∈PFt

min
a∈A

max
i=1,2,...,M

(ai − ri),
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proposed method is smaller than all other methods except the MOEAD in the VM200-
PM100 problem.

In addition, the minimum value of SLAV is achieved using the proposed method and 
by using the MOSCA, MOPSOA, and MOEAD algorithms in problems VM50-PM25 
and VM150-PM75, but the proposed method achieves the best value in the VM200-
PM100 problem. The proposed method has better maximum SLAV value than the other 
methods. However, the NSGA-II algorithm has the best standard deviation in problem 

Table 3  The comparison of results among the algorithms in each tested VMP problem

MOSSASCA MOSCA MOPSO MOEAD NSGAII

Power consumption

 VM50-PM25

  Min 4.22 4.24 4.77 4.77 4.41

  Max 6.25 8.25 6.78 6.78 7.68

  Std 0.55 0.97 0.62 0.66 0.73

VM150-PM75

  Min 11.06 11.98 14.25 13.27 12.20

  Max 17.73 14.25 23.85 24.58 19.91

  STD 1.75 0.66 1.96 2.93 2.46

 VM200-PM100

  Min 13.03 14.24 14.78 15.77 13.37

  Max 18.92 19.77 22.04 19.77 19.49

  STD 1.73 1.99 2.26 1.35 1.82

SLAV

 VM50-PM25

  Min 10.00 10.00 10.00 10.00 10.30

  Max 14.94 16.10 18.50 17.00 14.90

  STD 1.63 1.75 2.58 2.24 1.50

 VM150-PM75

  Min 9.67 9.67 9.67 9.67 10.21

  Max 13.29 14.16 14.07 14.07 13.62

  STD 1.60 0.97 1.76 1.98 1.25

 VM200-PM100

  Min 9.60 10.00 10.00 10.00 10.00

  Max 12.13 13.33 14.00 14.00 15.00

  STD 1.15 1.00 1.72 1.45 1.96

MTBHS

 VM50-PM25

  Min 8845.46 7397.86 8538.01 8547.97 7942.10

  Max 10860.11 10773.76 8739.08 8724.04 8566.20

  STD 868.70 856.34 45.33 64.88 192.77

 VM150-PM75

  Min 7630.12 7613.31 8513.32 7570.60 7524.73

  Max 9229.50 9165.59 8723.81 8441.30 8529.89

  STD 305.74 603.68 95.95 314.67 337.52

 VM200-PM100

  Min 8236.32 7397.86 8111.96 7614.16 7516.34

  Max 8995.71 8773.76 8731.38 8715.56 8756.34

  STD 205.42 472.11 244.68 275.83 401.91



Page 17 of 24Alresheedi et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:15 

VM50-PM25, and the MOSCA method has better value in problems VM150-PM75 and 
VM200-PM100.

The best maximum and minimum MTBHS values are achieved by the MOSSASCA 
in all the tested problems, but the best standard deviation is achieved by MOPSO in 
problems VM50-PM25 and VM150-PM75. Furthermore, the proposed method has the 
smaller standard deviation value in the VM200-PM100 problem.

Figures  2, 3, and 4 show the average time, SLAV, and energy, respectively. The fig-
ures show that the proposed method provides lower average power consumption and 

Fig. 2  Average MTBHS for each method in each VMP problem

Fig. 3  Average SLAV for each method in each VMP problem

Fig. 4  Average power consumption for each method in each VMP problem
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SLAV values than the other methods in each tested problem. The methods have simi-
lar performance in VM50-PM25, but MOPOS and NSGA-II have the worst value in 
VM200-PM100 and VM150-PM75, respectively. Power consumption is increased as 
the numbers of PMs and VMs are increased. The proposed method and MOSCA nearly 
have the same SLAV value in VM50-PM25, but the proposed method produces better 
results than all other methods in the other two problems. Among the methods, NSGA-
II has the worst results in three problems, whereas MOSCA, MOPSO, and MOEAD 
have nearly the same average value of SLAV in the VM150-PM75 problem. However, 
MOSCA has better results than MOPSO and MOEAD in the VM200-PM100 problem. 
Moreover, the worst MTBHS value is achieved by NSGA-II in problems VM50-PM25 
and VM200-PM100, and MOEAD in VM150-VM75. The MOSSASCA shows best value 
among all tested algorithms in each tested problem. These results suggest that MOS-
SASCA provides maximum utilization of each resource.

Performance evaluation based on MOP indicators

To investigate the quality of PFs obtained by each method we evaluate a set of MOP 
indicators given in Table 4 for each tested problem. From this table, it can be noted that 
the MOSSASCA performs better than the other methods in approximating PFs. For 
example, in terms of EP, HV, and IGD, the MOSSASCA ranks first of in all tested prob-
lems. However, in terms of spread, MOSCA ranks first in testing problems in the VM50-
PM25 and VM150-PM75, followed by the proposed MOSSASCA method, which has a 
smaller GD value in the third problem (i.e., VM200-PM100). MOSSASCA has a smaller 
GD value only in problem VM50-PM25, but MOPSO has a smaller GD value in two 
other problems. In addition, we can conclude from the table that MOEAD and NSGA-II 
generally have the worst performance in the tested problems.

From all the previous results, it can be concluded that the MOSSASCA outperforms 
the other methods based on the MOP indicators.

Influence the parameters of proposed method

In this experiment, we investigate the influence of different parameters on the perfor-
mance of the MOSSASCA. Table 5 illustrates the results of the proposed MOSSASCA 
based on different values of a = [1, 4] , NS=[50, 200], and gmax=[50, 200]. The proposed 
method at a = 1.5 is better than that at a = 0.5 , indicating that the performance of the 
MOSSASCA increases with increasing a. In addition, population size affects the perfor-
mance of MOSSASCA. Specifically, the MOSSASCA performs better at pop=200 than 
at pop=50 and pop=100 as in Table 4. Moreover, similarly, the performance of MOS-
SASCA is affected by the number of iterations, and the results showed that the MOS-
SASCA achieves high performance at iter=200.

Influences of VMs and PMs on the proposed method

The effect of variants number of VMs and PMs on the performance of the MOSSASCA 
method is tested in this section. Table  6 illustrates the results of different VMs and 
PMs, in which we note that the performance of the MOSSASCA in terms of EPS has 
better value in problem VM300-PM600; however, this is not largely different than the 
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result with VM200-PM500. In VM400-PM1000, the EPS of the MOSSASCA is the larg-
est among the three problems. Based on the spread measure, the quality of the MOS-
SASCA in the three problems is nearly the same; however, the best value is achieved 
in VM200-PM500. The same observation is found for the values of GD, where the 
value of the MOSSASCA at VM200-PM500 is better than its value in the other prob-
lems. In addition, the HV value of the MOSSASCA at VM400-PM100 is better than 
in other problems. In addition, it can be observed that the best IGD value is achieved 
when MOSSASCA is used to solve the VM300-PM600. From these experimental series, 
it can be observed that the performance of MOSSASCA, in terms of MOP indicators, 
is not largely notable when solving the VM problem with VMs of 200–400 and PMs of 
500–1000.

Table 4  Comparison results based on MOP indicators

MOSSASCA MOSCA NSGAII MOEAD MOPSO

VM50-PM25

 EPS 1.54E−01 2.77E−01 7.14E−01 6.12E−1 6.12E−01

2.2E−02 2.5E−02 2.3E−04 0.00 0.0E+00

 Spread 1.36E+00 4.10E−01 1.08E+00 1.30E+00 1.05E+00

2.6E−02 1.3E−01 2.3E−04 6.0E−02 2.9E−03

 GD 4.29E−03 4.73E−02 1.58E−01 3.54E−02 3.48E−02

1.4E−03 2.2E−02 7.1E−05 1.1E−04 1.1E−06

 HV 4.91E−01 4.16E−01 2.31E−01 3.36E−01 3.36E−01

1.5E−02 1.9E−02 1.7E−04 1.3E−04 2.6E−08

 IGD 1.08E−03 2.77E−03 1.42E−02 1.33E−02 1.35E−02

7.8E−05 4.6E−04 1.6E−06 1.6E−05 2.1E−05

VM150-PM75

 EPS 1.16E−01 1.95E−01 4.43E−01 3.40E−01 2.40E−01

8.3E−02 5.1E−02 9.2E−05 2.2E−04 0.0E+00

 Spread 1.50E+00 7.79E−01 1.01E+00 1.27E+00 9.08E−01

9.1E−02 8.2E−02 2.0E−02 5.7E−02 5.2E−02

 GD 1.93E−03 1.31E−02 1.22E−02 7.15E−03 9.99E−05

3.1E−04 7.3E−03 1.9E−04 3.8E−04 1.4E−04

 HV 6.79E−01 6.15E−01 4.53E−01 5.40E−01 6.33E−01

2.8E−03 4.8E−03 8.1E−05 9.9E−03 1.1E−07

I GD 1.22E−03 2.46E−03 8.73E−03 7.44E−03 7.79E−03

8.7E−04 7.2E−05 3.9E−05 1.6E−04 1.0E−04

VM200-PM100

 EPS 1.27E−01 4.58E−01 3.97E−01 3.46E−01 2.91E−01

3.8E−03 5.8E−04 1.5E−04 9.4E−03 6.8E−02

 Spread 7.35E−01 1.17E+00 1.07E+00 1.16E+00 1.14E+00

2.6E−02 1.2E−04 2.0E−02 9.9E−02 5.0E−03

 GD 3.90E−02 4.61E−02 6.65E−03 3.50E−03 1.08E−04

2.8E−03 1.30E−03 3.6E−04 1.6E−03 9.8E−05

 HV 6.10E−01 6.68E−01 4.76E−01 5.34E−01 7.00E−01

1.1E−03 8.1E−03 1.4E−04 1.7E−02 5.1E−02

 IGD 5.55E−03 7.1E−03 1.18E−02 1.10E−02 1.10E−02

1.2E−04 2.1E−03 4.1E−05 1.90E−04 1.2E−04
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From all the previous experimental results, it can be noted that the performance of 
MOSSASCA is better than the other methods in terms of the three objectives functions 
and the performance measurements. This performance results from the high skill of the 
SSA in exploration of the search domain and in using the operators of the SCA algo-
rithm to improve the exploitation ability of the SSA through working as a local search 
method. Additionally, this leads to finding the nondominated solution that best balances 
among the three objectives of solving the VMP problem in cloud computing. Moreover, 
it can be noted that the performance of the other multiobjective VMP methods was less 
than that of the proposed method in this study and that the quality of the algorithms 
was not fixed when changing the problems. This outcome is because each algorithm has 
a different ability regarding either the exploration or exploitation of the search domain. 
However, there are some limitations for MOSSASCA, such as the fact that its computa-
tional time will require additional improvement to make it more suitable for real-time 
VMP problems.

Table 5  Results of  MOP indicators under  different parameter values in  the  proposed 
method

a = 1.5 a = 0.5

EPS 1.40E−01 1.6E−01 EPS 1.63E−01 1.2E−01

Spread 8.79E−01 2.5E−03 Spread 9.51E−01 1.5E−01

GD 4.79E−03 7.9E−03 GD 5.18E−03 5.9E−03

HV 6.62E−01 3.0E−03 HV 6.16E−01 5.3E−03

IGD 8.38E−03 4.7E−03 IGD 2.04E−02 2.3E−02

NS = 200 NS = 50

EPS 3.47E−02 2.9E−02 EPS 1.71E−01 7.1E−02

Spread 7.89E−01 3.0E−02 Spread 9.37E−01 6.5E−02

GD 1.32E−03 1.6E−03 GD 6.08E−03 8.6E−03

HV 6.83E−01 2.3E−03 HV 6.04E−01 6.5E−02

IGD 1.12E−03 4.2E−03 IGD 9.37E−03 2.9E−03

g max = 50 g max = 200

EPS 9.47E−01 5.7E−02 EPS 8.36E−02 5.6E−02

Spread 9.14E−01 8.3E−02 Spread 8.44E−01 1.7E−02

GD 1.54E−02 5.3E−03 GD 1.18E−03 4.7E−03

HV 6.37E−01 7.3E−02 HV 7.45E−01 5.0E−03

IGD 9.66E−03 5.7E−03 IGD 1.16E−03 4.5E−03

Table 6  Results of changing the number of VMs and PMs

Power 
consumption

SLVA MTBHS EPS Spread GD HV IGD

VM500-PM200 26.03 10.48 8371.35 7.43E−02 7.20E−01 3.01E−03 4.92E−01 2.61E−03

VM600-PM300 36.71 10.81 7318.01 4.56E−02 9.17E−01 4.85E−03 6.91E−01 1.39E−03

VM1000-PM400 59.24 11.44 6038.51 1.44E−01 7.23E−01 9.79E−03 2.17E−01 2.26E−03
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Conclusion
This paper proposes an alternative MOP method for finding the optimal solution to the 
VM consolidation problem. The main objectives of the proposed MOSSASCA are to 
maximize MTBHS, to reduce power consumption, and to minimize SLAV. MOSSASCA 
is proposed to find solutions that can minimize conflict between the three objectives. 
In MOSSASCA, the SCA is applied as a local search approach to enhance the perfor-
mance of traditional SSAs by preventing them from getting stuck in a local optimal 
solution and increasing convergence speed. To assess the performance of the proposed 
method, we perform a set of experiments using different numbers of VMs and physi-
cal machines. The results of MOSSASCA are compared with that of well-known MOP 
methods, including NSGA-II, MOPSO, and MOSCA. The experimental results show 
that MOSSASCA is better than others on the basis of MOP indicators and in achieving 
the three objectives. Here, the proposed method achieves the best results in three MOP 
indicators, namely, EPS, HV, and IGD. The MOSCA and MOPSO methods are better 
according to the value of spread and GD, respectively. Compared with the other meth-
ods, MOSSASCA exhibits a better ability to reduce power consumption and SLAV while 
increasing MTBHS.

Given the superiority of the proposed MOSSASCA method, it can be extended to 
solve more than the three objectives in VM placement in cloud computing. It can also 
be applied to different fields, for example, feature selection, image segmentation and job 
scheduling.
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