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Introduction
The increased popularity of cyber physical systems (CPS) in recent years is evident in 
the variety of different applications where they are deployed [1–5]. Water distribution 
systems (WDS) have also embraced the convenience and flexibility of these CPS where 
digital computation and networking form an integral part of the monitoring and control 
of physical processes. The deployment of these smart water networks is paramount in 
the development of the envisioned smart cities of the future [6]. The added water man-
agement functionality introduced by CPS corresponds with an increase of vulnerability 
to cyber-attacks from intruders with malicious intent. This is largely due to the fact that 
these systems are heavily dependent on computer networks meaning that an attacker 
can use conventional techniques to penetrate this network which would give them 
access to the supervisory control and data acquisition (SCADA) system [7]. Adequately 
securing smart city applications will be paramount in order for them to become a reality 
in future [8].
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There has been a steady increase in the number of reported attacks against critical 
water system infrastructure in recent years (Fig. 1) and they have been reported to be 
in the top four of the most targeted critical infrastructure sectors [9–12]. The devastat-
ing impact of a successful attack in critical water system infrastructure could be long 
lasting with major social and financial implications so the protection of these systems 
should not be neglected when embracing the smart technologies of the future. An exam-
ple of the impact of such an attack is evident when looking at the successful breach of 
the Maroochy water treatment facility in Queensland, Australia. A disgruntled contrac-
tor was turned down for a position by the municipality and in retaliation he launched 
devastating attack on the facility using insider knowledge he gained while being part of a 
team that installed upgrades to system [7]. The attacker was able to remotely seize con-
trol of 150 pump station and by the time he was apprehended local water ways had been 
contaminated with around 150 million litres of untreated sewage.

The Maroochy water treatment facility did have preventative security mechanisms in 
place but the attacker was able to use his intimate knowledge of the system to bypass 
them. This shows that these preventative measures alone are not adequate to protect 
critical infrastructure applications so a second layer of security is required. More sophis-
ticated attacks than Maroochy would still however very difficult to detect because an 
attacker with sufficient knowledge about the system would be able to launch stealthy 
attacks that are able to fool the built-in fault detection (FD) mechanisms of these sys-
tems [13]. The authors in [14] for example were able to show that an insider with physi-
cal access to the system would be able to launch a devastating man-in-the-middle attack 
that would be undetectable by the FD mechanism. A robust intrusion detection systems 
(IDS) is still however able to detect these attacks even when the attacker attempts to go 
unnoticed [13].

IDS are deployed in response to the threat of normal security mechanisms failing to 
prevent an attacker gaining unauthorised access to the protected system. In this case 
the system would be able to detect whether or not the system has been breached which 
could prevent the attacker from causing a substantial amount of damage. The critical 
nature of WDS and frequency of attacks against these systems in recent years means 
that IDS are of equal importance to preventative security mechanisms. This is especially 
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Page 3 of 22Ramotsoela et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:13 

true when considering the fact that the key security goals when protecting WDS are to 
ensure that the system is able to carry out it’s mandate by preventing, detecting or sur-
viving cyber attacks [15]. The last two goals are linked to IDS in the broader network 
security architecture which shows how important this second line of defence is in these 
systems.

Some of the common attacks against WDS are (1) compromising the sensors or actua-
tors (physical layer), (2) attacking the links between the various devices (datalink layer), 
and (3) a direct attack to compromise the entire SCADA system (SCADA layer) [16]. If 
an attack on the SCADA layer is successful it becomes very difficult to detect because 
it is on this level where intrusions are detected. When considering the attack on the 
Maroochy water treatment facility it becomes evident that this was an attack on the 
SCADA layer meaning it would have been nearly impossible to detect in the SCADA 
network. Cyber-physical systems incorporate both corporate and SCADA networks and 
the attacker was able to seize control of the SCADA system through the corporate net-
work [17]. In this case the useful IDS system would have been the one implemented in 
the corporate and not the SCADA network. This IDS would need to form part of a larger 
network security architecture which includes strong network security policies which 
take into account the critical nature of the system being protected. From the perspective 
of the SCADA system an efficient logging system would be very useful once an attacker 
takes control of the system. This is because an attacker would be able to manipulate or 
even turn off all of the systems security mechanisms. An efficient logging system how-
ever would have allowed administrators to trace the root of the problem once the system 
started misbehaving.

WDS are in essence Industrial Control Systems (ICS) which consist of four key ele-
ments: (1) the physical process, (2) actuators, (3) sensors and, (4) a controller [18]. The 
physical process changes depending on the application scenario, for example in power 
grids it is electromagnetics and in water systems it is fluid dynamics. This is what distin-
guishes these ICS from each other even though they are structured in a similar way and 
components (2) to (4) are all vulnerable to attacks that could have a devastating impact 
on the entire system. Simple attacks like Denial-of-Service (DoS) attacks will be similar 
across all ICS and also easier to perpetrate and detect [19]. More advanced deception 
attacks will be application specific because they require an attacker to have an intimate 
knowledge how the system works. Should the attacker want to launch stealthy attacks 
they would also need knowledge about the system dynamics as it pertains to the physi-
cal process. These more advanced attacks are more difficult to perpetrate and detect but 
they have far more devastating consequences than the simpler ones. The differences in 
these system dynamics also means that an algorithm that works well in one critical infra-
structure sector will not necessarily work well in another. This is because knowledge 
about the physical system being controlled is key in both executing an attacking and pro-
tecting the system [20]. The performances of these IDS is thus going to be application 
specific.

IDS generally fall into two broad categories: those that are signature based and those 
that are behaviour based [21]. Signature based intrusion detection provides a fast way to 
detect known attacks based on specific patterns that can be attributed to those attacks. 
Behaviour based intrusion detection, also known as anomaly detection (AD), provides 
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greater detection generality in that it can detect previously unknown attacks by analys-
ing sensed data or traffic patterns to determine which instances deviate from the norm. 
A disadvantage of Signature based methods is that they are unable to detect unknown 
attacks while the AD schemes are generally less accurate and produce many more false 
positives. This paper focuses on the latter group of methods because the former are more 
reactive in that they rely on analysing attack sequences after an attack has potentially 
already caused a substantial amount of damage. The ability to detect unknown attacks in 
critical infrastructure applications is thus a necessity as can be seen by the impact of not 
swiftly detecting the attack on the Maroochy water treatment facility.

In this paper we compare a number of popular anomaly detection schemes that are 
based on machine learning using the battle of the attack detection algorithms (BAT-
ADAL) dataset [22]. The BATADAL competition produced a number of attack detection 
algorithms that used multi-stage strategies in an attempt to isolate both local and global 
anomalies. The main contributions of the work presented in this paper are as follows:

1. We evaluate whether conventional algorithms trained on the entire feature space in 
a centralised manner would be able to produce better or comparable results to the 
multi-stage systems proposed for the competition.

2. We also propose a novel ensemble detection scheme that leverages the scalability 
of density based techniques and the accuracy of parametric algorithms in order to 
produce a more robust system that minimises the drawbacks of the conventional 
schemes.

The rest of the paper is organised as follows: First a summary of the BATDAL competi-
tion is presented and its results are discussed to give context to the work presented in 
this paper “Anomaly detection” section. The approach taken is then discussed and the 
algorithms used in this paper are introduced followed by the proposal of a novel ensem-
ble technique for anomaly detection. The results of our experiments are then presented 
and discussed (“Results” section). Finally some observations from the results are dis-
cussed (“Observations” section) and the paper is concluded (“Conclusion” section).

Anomaly detection
In this section, some related work is discussed and then a brief overview of the BAT-
ADAL competition and its results are given. This then leads to a discussion about the 
traditional techniques implemented in this paper and then finally the proposed ensem-
ble technique is introduced.

Related work

An anomaly is not necessarily the result of an attack and as such anomaly detection 
algorithms can be used to evaluate situations the deviate from the normal operating 
conditions of the system such as water loss or normal system faults [7]. The authors in 
[23] used wavelet change-point detection that uses the continuous wavelet transform 
to detect water loss in WDS. The system is successfully able to detect water leaks in 
the application scenario but the sensitive nature of the algorithm means that it has the 
potential produce many false positive by detecting a normal process as an abrupt change. 
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The authors in [24] propose a ensemble leakage detection technique that uses a convolu-
tion neural network (CNN) and support vector machine (SVM) for detection and graph 
based localisation technique to find the location of the leak. The system yielded good 
accuracies for both detection and localisation although it still struggled with one-dimen-
sional signals.

Power grids are as vulnerable as WDS and the electricity sector is consistently ranked 
the most targeted critical infrastructure sector by the Industrial Control Systems-Cyber 
Emergency Response Team (ICS-CERT) [9–12]. Several anomaly detection schemes 
have been proposed in an attempt to mitigate this threat [25–27]. The authors in [25] 
proposed a hierarchical framework for anomaly detection in large-scale smart grid dis-
tribution systems. The proposed system uses smart meter data and a generative anom-
aly detection model which accounts for missing data. Thy sytem was verified using data 
from a large utility company and yielded promising results. The authors in [26] pro-
posed the use of an innovative reputation system for the detection of false data injection 
attacks in smart grids using a distributed host-based system. Smart grid systems have 
inbuilt fault detection mechanisms which automatically correct infrequent anomalous 
data so an attacker is required to persistently inject false data into the system in order 
to bypass this mechanism. The authors used this attacker behaviour to build their rep-
utation system which was accurately able isolate anomalies as verified by simulations. 
Like WDS however an attacker can launch stealthy attacks in an attempt to fool the IDS 
by mimicking the process dynamics of the system. The authors in [27] propose a solu-
tion to this problem by leveraging the power of machine learning. The system first uses 
principal component analysis (PCA) the reduce the dimensionality of the data and then 
depending of the nature of the data either supervised SVM or a semi-supervised out-
lier detection technique based on the Gaussian distribution probability density function. 
Although both methods yielded promising results, supervised learning is not always 
practical in anomaly detection systems because of the infrequency of anomalous events 
[7].

The battle of the attack detection algorithms

The BATADAL competition involved a number of research teams who proposed attack 
detection algorithms for the fictional C-Town water distribution network [22]. The com-
petitors were provided with three datasets, one with normal data (BATADAL_normal) 
and two that included a number of attacks (BATADAL_train and BATADAL_test). The 
BATADAL_train dataset was partially labelled and was meant to be used for training 
purposes while BATADAL_test wasn’t labelled at all and was used to evaluate the pro-
posed algorithms. In this paper we assumed that the BATADAL_train dataset was fully 
labelled and can thus be used for training and cross-validation purposes.

Seven teams [28–34] took part in the competition and all of the teams but two pro-
posed multi-stage detection algorithms. One of the teams that didn’t produced a model 
based technique that simulated the hydraulic processes using EPANET and used the 
error between the expected and actual values to determine whether or not an attack had 
occurred [28]. This was the only model-based technique proposed for the competition and 
it was incidentally also the most accurate. The authors in [22] however argue that the imple-
mentation of this technique in real-world systems will face many challenges because of the 
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volatile nature of these systems. The second team [31] opted for a decentralised approach 
by splitting the network into district metered areas (DMA) and predicting the water level of 
each tank using recurrent neural networks (RNN). As with the model based technique the 
error between the expected and actual values were used to find anomalies. The remaining 
competitors all proposed multi-stage systems with the majority opting for a simple control 
rule violation check as part of the first detection stage.

Traditional techniques

The main reason cited for using multi-stage detection techniques was to enable the algo-
rithms to detect both content and contextual anomalies [22]. The former implies specific 
components of the system are not operating within their permissible operating range while 
the latter identifies the broader system as behaving in an unexpected manner based on his-
torical data. In this paper we evaluate a number of popular anomaly detection techniques 
in order to determine whether or not they are able to detect both content and contextual 
anomalies. This is done without the aid of a dedicated content anomaly detection technique 
on the fully centralised feature space. The algorithms used for this purpose can be placed 
into three broad categories, those that are density based, parametric and classification 
algorithms.

It should be noted that some of the schemes proposed for the BATADAL competition 
have stages which also form part of the broad categories discussed in this section. The 
major distinction is that the schemes in this section are popular anomaly detection schemes 
which weren’t considered for the competition that don’t form part of multi-stage systems 
in the application environment. In this way we are able to determine whether or not this 
conventional techniques are able to produce similar or better results than the multi-stage 
systems when trained on the entire feature space without a dedicated content anomaly 
detector.

Density‑based algorithms

One of the most popular outlier detection algorithms is the local outlier factor (LOF) algo-
rithm which was proposed by Breunig et al. [35]. The algorithm assigns each data instance 
a score (the outlier factor) which is a measure of how much of an outlier it is relative to 
its neighbours. Equation (1) describes the local reachability distance of an object p which 
is intuitively the inverse of the average reachability distance of that object relative to its K 
nearest neighbours. The local outlier factor can then be determined using (2) which is the 
average of the ratio of the local reachability distance of an object p and it’s K nearest neigh-
bours. A LOF value that is approximately equal to one means that the object is not an out-
lier and those much larger than one are considered outliers.

(1)lrdK (p) =
∑

oǫNK (p)

(

NK (p)

reach_dist(p, o)

)

(2)LOFK (p) =

∑

oǫNK (p)

(

lrdK (o)
lrdK (p)

)

|NK (p)|
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The subspace outlier degree (SOD) algorithm is a variation of the shared nearest 
neighbours (SNN) algorithm that was specifically designed to detect outliers in high 
dimensional data [36]. The data is first projected onto a subspace which is an axis-par-
allel hyperplane with a dimensionality that is smaller than that of the original feature 
space. Any point that significantly deviates from this new hyperplane is then considered 
an outlier. The measure used to ascertain deviation is the weighted Euclidean distance 
as shown in (3) where o is the object, v is the subspace defining vector and µ is the mean 
of the reference set. The SOD can then be calculated using (4) which is the normalised 
version of (3) using the dimensionality. A SOD value that is approximately equal to zero 
means that the object is not an outlier and those much larger than zero are considered 
outliers.

Parametric methods

Parametric anomaly detection algorithms are those that make an assumption about 
the density distribution of the underlying data [7]. One of the most popular paramet-
ric methods is based on the Mahalanobis distance (MD) which is preferred over the 
Euclidean distance because it takes the variability and correlation of the variables into 
consideration [37]. The MD of an object xi can be calculated using (5) where C is the 
variance-covariance matrix, µ is the mean and T denotes the transpose operation. This 
method assumes that the underlying data follows the multivariate normal distribution 
and an object that has a large MD value is considered to be an outlier. A disadvantage of 
this method is that multicollinearity in high dimensional data leads a variance-covari-
ance matrix that cannot be inverted meaning that the MD cannot be calculated.

Classification algorithms

The methods described in this section are model-based classification algorithms 
which use historical data to find a model that can be used to classify new objects as 
either normal or anomalous. Discriminant analysis (DA) is a classical statistical tech-
nique that can be used for both profiling and classification [38]. We have implemented 
both linear (LDA) and quadratic discriminant analysis (QDA) with the former being 
more popular in practice but because of the complex nature of the application the 
latter was hypothesised to have a better performance. While discriminant analysis is 
a classification algorithm it is also parametric because it uses the MD to separate dif-
ferent classes. This means that discriminant analysis suffers from the same drawbacks 
when dealing with high dimensional data. With respect the requirement that the data 
should approximately follow the multivariate normal distribution DA is quite robust 

(3)dist(o,H(S)) =

√

√

√

√

d
∑

i=1

vSi · (oi,µ
S
i )

2

(4)SODR(p) (p) :=
dist(o,H(S))

∥

∥vR(p)
∥

∥

1

(5)MDi =

√

(xi − µ)TC−1
x (xi − µ)
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and is still able to perform well even when this requirement is not met. When this 
requirement is reasonably met however DA has been found to be more accurate than 
many other popular classification algorithms such as logistic regression.

The intuition behind the one-class support vector machine (OSVM), or in fact any 
one-class classifier, is to draw a decision boundary around most of the positive class 
data points [39]. Any point that falls outside the decision boundary is then considered 
to be an outlier. The Gaussian kernel is more flexible and accurate than other deci-
sion boundaries but it requires more training data. This algorithm does not work well 
with high dimensional data or when there are large density variations in the positive 
class. The benefits of using a one-class classification is that only the positive class is 
required for training which determines the “normal” behaviour of the system. This 
pseudo-unsupervised approach means that the unbalanced data problem [40] is not 
an issue. A summary of the concepts discussed in this section is shown in Fig. 2.

Proposed ensemble technique

We can make a few observations from the discussion above. Firstly, when the underly-
ing density distribution of the data is known, parametric AD schemes will outperform 
all of the other data-driven algorithms. The problem with these algorithms though is 
that they aren’t applicable to high dimensional data because of multicollinearity. This 
means that dimensionality reduction is going to be paramount when trying to apply 
them to high dimensional data. The second observation is that even though QDA uses 
MD in it’s calculation it will outperform it by a significant margin owing to it’s more 
flexible decision boundary. Conversely, the linear decision boundary drawn by LDA 
is not enough to adequately capture the differences between the negative and positive 
examples.

The density-based algorithms on the other hand do not make any assumption about 
the underlaying density distribution of the data but they aren’t as accurate as the 
parametric schemes. By examining the density distribution of both algorithms when 
run on the BATADAL dataset, as shown in Fig. 3, we can see that the data approxi-
mates the skew normal distribution. This means that the outlier values produced by 
these algorithms can be used by parametric algorithms to classify data. The ensemble 
technique proposed in this paper takes into account the two observations discussed 
above. Firstly we want to reduce the dimensionality of the data fed into parametric 

Fig. 2 Anomaly detection techniques
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schemes because they are not applicable to high dimensional data. Secondly, QDA is 
able to find a complex decision boundaries which leads to more accurate systems.

The proposed ensemble technique combines both SOD and LOF using QDA as shown 
in Fig. 4. As can be seen from the figure a datapoint is first run through both algorithms 
in parallel and the degree to which the value is an outlier is calculated using both (2) and 
(4). This density based phase of the proposed ensemble technique outputs two values, 
the LOF and SOD respectively. As discussed previously, an LOF and SOD value of much 
larger than one and zero respectively means that the datapoint is an anomaly. This is 
also evident when looking at the density distribution shown in (3). LOF will outperform 
SOD when run on low dimensional data and the opposite is true when considering high 
dimensional data. The proposed technique incorporates both of these values in order to 
create a more robust algorithm that leverages the advantages of the baseline algorithms.

To find a more complex decision boundary, QDA is introduced to find a model that uses 
both values to classify the data. This was chosen over popular methods such as bagging and 
boosting normally used in ensemble classifiers in order to leverage the classification power 
of QDA. These traditional methods normally rely on the classification outputs of each of 
the algorithms which are then combined to produce more accurate results. The advan-
tage of QDA is that it uses the outlier values produced by each algorithms to draw its own 
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independent decision boundary. The density distribution of the data means that QDA will 
be able to be able to produce very accurate results.

The density-based techniques make use of the full feature space to calculate their respec-
tive values. QDA then takes in only two features irrespective of how large the original fea-
ture space was, meaning that the dimensionality of the data will never be a problem in this 
context. Ensemble techniques are usually better than their singular counterparts because 
a number of algorithms are working together overcome each others limitations [7]. While 
this is mostly true, it is not always the case so it is important to evaluate the proposed tech-
nique under varying conditions in order to ascertain its advantages and drawbacks.

Results
In this section the results of the BATADAL competition are compared to the traditional 
anomaly detection algorithms discussed in the previous section. Based on these results we 
propose an ensemble technique for anomaly detection that considers the disadvantages 
and leverages the advantages of these schemes in order to create a more robust algorithm. 
The traditional schemes are then tested in the cases where the dataset size is halved and 
also where some of the sensors produced noisy results. Finally we consider how well the 
traditional schemes would work if they were implemented as part of a multi-stage sys-
tem. The BATADAL dataset was used because the competition had seven contestants who 
developed state-of-the-art algorithms that were all evaluated using the same performance 
metrics. This made it easier to adequately compare the performances of the implemented 
techniques without having to extrapolate from the results in published literature.

Normal dataset

In Table  1 the traditional algorithms were implemented on the BATADAL dataset and 
compared to the results of the competition as found in [22]. The table lists a number of per-
formance metrics mostly calculated from the confusion matrix values which are the num-
ber of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). 
These values are then used to calculate the precision also known as the positive predictor 
value (PPV), the specificity also known as the true negative rate (TNR) and the recall also 
known as the true positive rate (TPR). The F1 score is then calculated using (6) and the SCLF 
is the mean of TPR and TNR. The time-to-detection (TTD) value is the difference between 
the time when an attack starts and when it is first flagged and it is used to calculate the STTD 
score as shown in (7). The overall performance score S used to rank the algorithms is calcu-
lated using (8) where γ = 0.5.

It is worth noting that the F1 score and PPV were not in the original table, which is 
why the ranking score doesn’t consider them, but they were included here because they 

(6)F1 = 2 ·
PPV · TPR

PPV + TPR

(7)STTD = 1−
1

na

na
∑

i

TTDi

∆ti

(8)S = γ · STTD + (1− γ ) · SCLF
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are popular performance metrics used to evaluate machine learning algorithms. The 
algorithms B1–7 in the table are those from the competition with the number indicating 
their original ranking. The performance score is biased towards detecting attacks such 
that an algorithm that just detected everything as an attack would get a score of 0.75. 
This is called the naive classifier in the table. This is done because the cost of not detect-
ing an attack in the application scenario is much higher than the cost of false positives.

Looking at the table, the worst performing algorithms are OSVM and LDA and they 
have an S score of less than the 0.75 which would be achieved by the naive classifier 
mentioned above. Both algorithms however have better F1 scored than B5–7 (and the 
naive classifier) as a result of having a much high precision, which is the fraction of 
flagged instances which were correctly classified, than either of those algorithms. The 
density based techniques appear in the middle of the table with S scores in the mid to 
late 80s which is much higher than the naive classifier. These algorithms have a much 
higher number of FN than all the other algorithms that achieved S scores greater that 
0.75. These techniques were still able to detect all of the attacks meaning that the high 
false negative rate is as a result of detecting attacks late and ending them early as can be 
seen from the STTD score which is also lowest of all the algorithms that beat the naive 
classifier.

The MD and QDA algorithms both have exceptional results with both achieving S 
scores in excess of 0.9 with QDA outperforming all of the algorithms with the exception 
of the only model based one. Both of these parametric methods thus fall into the cluster 
of high performing algorithms that include B1–4 from the competition. Even though the 
results of the competition were biased towards the detection of attacks, all of the algo-
rithms that beat that naive classifier (with the exception of B5) have F1 scores in excess of 
0.8 with the high performing algorithms all being above 0.88.

Performance of ensemble technique

The results of the proposed scheme when run on the BATADAL dataset can be seen in 
Table 1. It performs better than both density-based techniques but isn’t as accurate as 
QDA. It also has an S score higher than 0.9 making it part of the illusive high performing 
algorithm cluster. It has an almost identical performance to MD and the biggest differ-
ence with LOF and SOD is the TPR which had a seven point increase. These promising 
results show that the proposed scheme has better or comparable results to those found 
in the literature.

Reduced dataset

The BATDAL dataset provides hourly readings taken from the C-Town WDS over a 
period of many months. To see how robust the traditional techniques are the dataset was 
halved by taking readings every 2 h instead of every hour. In machine learning the more 
data one has typically results in a more accurate algorithm [41]. By halving the data-
set we are evaluating how resistant the algorithms are to a change in dataset size. It is 
worth noting however that more data will not always result in a more accurate algorithm 
especially as it pertains to fixed size learners like the ones implemented in this paper. 
Processor limitations also mean that it is sometimes not feasible to simply throw data at 
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a problem, meaning that more robust algorithms that aren’t solely dependent on the data 
size are required.

The results of running the tradition techniques on the reduced BATADAL dataset are 
shown in Table  2. Unsurprisingly QDA, which typically doesn’t need a lot of training 
data to yield good results, was not affected much by this change in data set size. It is the 
only algorithms that remained part of the high performing cluster of algorithms on this 
dataset. LDA, which was already struggling on the original dataset, had a slight decrease 
in S score owing largely to a sharp decrease (almost 10 points) in it’s STTD score. Sur-
prisingly though, almost all of the other performance measures were higher this time 
around. The lower S score of MD was also highly influenced by it’s decreased STTD score 
as all the other performance metrics were only slightly lower.

The density-based techniques had moderate decreases with only LOF following the 
same pattern as the other algorithms and SOD having consistent decreases throughout. 
The most affected performance metric in both algorithms was the F1 score which was 
largely affected by the PPV which had a significant decrease in both algorithms. The rea-
son for this can bee seen in the table when looking at the much larger number of false 
positives for both algorithms even though the dataset has halved in size.

In contrast to all the other algorithms, OSVM had a much better performance on this 
dataset than it did on the original one. It’s S score increased by almost seven percentage 
points and the main performance metrics used in BATADAL had a similar trajectory. 
The largest decrease was the PPV which dropped by almost forty points but this coin-
cided with an almost twenty point increase in the TPR which thus resulted in a similar F1 
score. Only QDA and MD managed to maintain their number of detected attacks from 
the original dataset with all the other algorithms detecting one less attack on this one.

Performance of ensemble technique

Unsurprisingly the proposed ensemble technique followed the same pattern as the two 
density based approaches because it combines the values of both algorithms. What 
wasn’t expected however was that it would have a moderately lower performance than 
LOF which beats it by one percentage point. In this case LOF still has a lower STTD score 
but it has a much higher TNR which corresponds to a higher SCLF score. When look-
ing at the TPR and PPV it is evident that the Ensemble technique is able to detect more 
anomalies than LOF in this scenario but this comes at a cost of an increased number of 
false positives in this scenario.

Noisy dataset

Noisy data is common in cyber-physical systems and can severely affect even physi-
cal model-based attack detection techniques [42]. Noisy data can cause, amongst 
other things, severe overfitting of the training data [41] which could adversely affect 
the results on the test dataset. In this section noise is added to the pressure sensor 
values to evaluate how resistant the implemented algorithms are to this. Gaussian 
noise with a mean of zero and standard deviation of two was applied to the pres-
sure sensor values and the results of this on one of the sensors can be seen in Fig. 5. 
Gaussian noise was selected because it is a common way of modelling sensor meas-
urement noise in ICS applications [43]. Notice that there is a spike in the normal 
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sensor reading between October and November. These readings are from the first 
attack dataset and that spike corresponds to an attack that eventually led to an over-
flow of Tank 1. Looking at the noise readings it can be seen that the spike is no 
longer visible thus making it more challenging to detect that attack.

The results of running the tradition techniques on the noisy BATADAL dataset 
are shown in Table 3. QDA and MD were not affected much by this additional noise 
with both remaining part of the high performance cluster. Both however had an 
increase in the number of false negatives which resulted in a lower TPR. It is possi-
ble that these algorithms were not affected much by this noise because it follows the 
Gaussian distribution. Looking at Fig. 6 it is evident that the noisy signal of the pres-
sure sensor much more closely approximates the normal distribution required by 
both algorithms than the original signal. The density-based algorithms had a similar 
reaction to the additional noise as they did to the reduced dataset with moderate 
decrease throughout and a much lower PPV. OSVM and LDA both had significant 
decreases in performance with both algorithms recording a sharp increase in the 
number of FNs and a corresponding decrease in the number of TPs.

Performance of ensemble technique

In this scenario, the ensemble technique edges LOF by a single percentage point in 
the rankings attributed mainly to it’s higher STTD score although it still has a much 
lower F1 score. As with the reduced dataset, the ensemble technique has a higher 
TPR but a lower PPV than LOF while consistently outperforming SOD. This again 
means that it is detecting more anomalies than LOF but it also has a much larger 
number of FPs as can be seen from the table.
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Fig. 5 Noise applied to a pressure sensor
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Multi‑stage systems

As mentioned previously most of the algorithms from the BATADAL competition 
implemented multi-stage systems in an attempt to isolate both local and global anoma-
lies. The intuition is that some anomalies are only obvious when looking at the data from 
the context of local subsystems. This means the system as a whole may still be function-
ing as expected but specific subsystems could be behaving uncharacteristically in their 
local context. It is for this reason that in this section we explore how much of an impact 
adding a local detector would have on the implemented techniques.

A simple control rule violation check was found not to be adequate to isolate local 
anomalies because of the complex nature of the attacks which included several conceal-
ment tactics. It for this reason that a decentralised OSVM algorithm was preferred as 
the first detection stage in order to learn the expected behaviour of the different sub-
systems. While the original OSVM algorithm was implemented over the entire feature 
space, the decentralised approach has several of these algorithms running in parallel on 
subsets of the data which were determined using the dependencies provided with the 
dataset. From the dataset it is known which actuators are responsible for which tanks 
and which pressure sensors can be attributed to the different pump station.

The results of running the multi-stage detection techniques with decentralised OSVM 
as the first stage on the BATADAL dataset are shown in Table 4. From the table it is evi-
dent that the majority of the algorithms had significant improvements when compared 
to their original performance. The only exception seems to be QDA which already had 
the highest S score of all the data-driven algorithms. This could be an indication of a lim-
itation of this approach in the application environment. The MD algorithm had a mod-
erate S score increase of two percentage points making it slightly better this time around 
than that of algorithm B3 from the competition.

The density-based algorithms both surpass algorithm B4 to become part of the high 
performing algorithm cluster recording increases across most performance metrics. 
The biggest gain however came from LDA which had an S score increase of almost 10 
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percentage points outperforming both OSVM and B6 and detecting one more attack 
than it did on it’s own. Centralised OSVM also had a significant increases in the per-
formance metrics recording the highest F1 score increase of all the algorithms. By using 
this multi-stage approach, all of the implemented algorithms were able to beat the naive 
classifier.

Performance of ensemble technique

The Ensemble technique is dependant on both density-based algorithms so it is unsur-
prising that it recorded a similar increases in performance. When paired with a local 
classifier it was able to surpass MD and was only narrowly beaten by B2 to place fourth 
overall. Looking at the base algorithms, it was again able beat SOD across all perfor-
mance measures as it in all of the other datasets. It still had a higher number of false 
positives than LOF in this case but outperformed it in almost all the other performance 
measures, even registering a higher F1 score. The proposed technique also registered an 
S score that is within less than a half a percentage point of the top performing QDA 
algorithm.

Observations
Parametric methods

LDA was the worst performing of the implemented techniques throughout all of the sce-
narios considered in this paper. This is largely due to the linear decision boundary used 
by this algorithm which isn’t adequate to detect anomalies in this complex environment. 
QDA was at the opposite end of the spectrum outperforming all of the data-driven algo-
rithms. It was so effective at detecting anomalies that the local anomaly detector didn’t 
improve its accuracy like it did with the other algorithms meaning that it was already 
detecting the anomalies uncovered by that technique. Unsurprisingly MD was always 
close behind QDA with the two algorithms reacting similarly to the different scenarios.

The biggest problem with these techniques is that they are rendered ineffective in high 
dimensional spaces. In this scenario, dimensionality reduction is going to play a huge 
role in determining whether or not they can be applied. Another issue is that unlike the 
other implemented techniques DA also requires negative example in the training pro-
cess. The nature of anomaly detection problems also means that there is always going 
to be an imbalance of positive and negative examples. This unbalanced data problem is 
not an issue for QDA and no creative sampling of the dataset is required in order to yield 
good results. When the dataset has some negative examples for training and dimension-
ality is not an issue with the assumption of normality being reasonably met, QDA out-
performs most algorithms.

Density‑based algorithms

The Density-based algorithms had mixed results although they were mostly positive 
with their S scores never dropping below 0.8. Their F1 scores however weren’t as resil-
ient when tested on the reduced and noisy datasets. This is largely due to the increased 
number of FPs flagged by these algorithms in those scenarios. LOF consistently out-
performed SOD, which was specifically designed for high dimensional data, across all 
scenarios considered in this paper. As the dimensionality of the data increases the roles 
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will gradually reverse to see SOD being the more accurate algorithm. This is why both 
algorithms were included in the proposed ensemble technique. The main disadvan-
tage of these algorithms is that they are more computationally expensive than the other 
techniques.

OSVM

Centralised OSVM on its own did not have the best results as it was only able to out-
perform LDA and only scoring above the naive classifier in the reduced dataset where 
OSVM recorded a large number of FPs. The problem with OSVM is that it wasn’t sensi-
tive enough to anomalies as can be seen from the extremely low number of FPs. Even 
though it was able to detect all 7 attacks, the performance metrics indicate that it didn’t 
perform well considering the entire attack window. The high PPV indicates that it usu-
ally flags the correct data and the low TPR indicates that it misses a lot of relevant sam-
ples. When paired with a local detector it was able to outperform the naive classifier but 
still wasn’t able to get either the S or F1 scores above 0.8.

Ensemble technique

The proposed technique looked to leverage the performance of QDA and the scalability 
of the density-based approaches. When the data is clean with a reasonably sized data-
set it outperforms both LOF and SOD. When those two conditions are not met though 
it has either worse of comparable results to LOF which consistently had a better F1 
score. This means that filtering data is paramount when applying this technique to noisy 
datasets in order to leverage the full benefits it has over the original methods. It is also 
important to have sufficient training samples as a larger dataset helps to draw a more 
accurate decision boundary which doesn’t suffer from overfitting.

In general though the ensemble technique had very promising results and when paired 
with a local detector it was able to achieve a comparable performance to plain QDA. 
The main advantage it has over plain QDA is the scalability when looking at the dimen-
sionality of the feature space. In this particular dataset the dimensionality doesn’t cause 
multicollinearity problems so the performance of QDA is undisputed among the data-
centric algorithms. In higher dimensional data QDA and by extension MD will not be 
applicable but the proposed algorithm, which always takes in only two features will not 
be affected in the same way. Like the density-based algorithms, the main disadvantage of 
this approach is also how computational expensive it is.

Conclusion
In this paper a number of traditional anomaly detection techniques were tested on the 
BATADAL dataset in different scenarios and compared to the algorithms proposed for 
the competition. The main focus was whether or not it’s possible to get accurate results 
when training the algorithms on the entire feature space in a centralised manner. An 
ensemble technique that uses both density-based techniques and QDA was also pro-
posed and tested alongside the traditional techniques. The implemented algorithms had 
comparable results to the state of the art techniques developed for the competition. It 
was thus found that while it is possible to get accurate results using centralised train-
ing, the use of multi-stage techniques that isolates both local and global anomalies will 
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generally yield better results. The proposed technique also had very promising results in 
the application scenario and outperformed both SOD and LOF in the original dataset. 
Future work is going to include testing the application of the proposed technique in high 
dimensional datasets.
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