
Reducing the effects of DoS attacks
in software defined networks using parallel flow
installation
Muhammad Imran1, Muhammad Hanif Durad1, Farrukh Aslam Khan2*  and Abdelouahid Derhab2

Introduction
Software defined networking (SDN) is becoming more and more popular among the
network research community due to its simple configuration and easy management.
SDN makes it easy to get fine-grained information about the transferred data and pro-
vides centralized control over network traffic. Therefore, it can manage all network
traffic with different protocols, such as Internet Protocol version 6 (IPv6), Internet
Protocol version 4 (IPv4), Internet Control Message Protocol (ICMP), Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP), etc., from different
sources (MAC address, IP address, port number, etc.) in multiple ways [1, 2]. In addi-
tion, SDNs are more scalable and flexible as compared to legacy networks. In SDN,

Abstract 

Software defined networking (SDN) is becoming more and more popular due to its
key features, such as monitoring, fine-grained control, flexibility and scalability. The
centralized control of SDN makes it vulnerable to various types of attacks, e.g., flooding,
spoofing, and denial of service (DoS). Among these attacks, DoS attack has the most
severe impact because it degrades the performance of the SDN by overloading its
different components, i.e., controller, switch, and control channel. This impact becomes
more prominent in SDNs having fine-grained control over traffic for monitoring and
management purposes, where large numbers of flow rules are installed. Existing
approaches handle DoS attacks in SDN either by dropping malicious packets or by
aggregating flow rules, resulting in a legitimate packet drop or loss of fine-grained con-
trol over network traffic. In this paper, a parallel flow installation approach is proposed
to reduce the effects of DoS attacks, without losing the monitoring capability and
fine-grained control over network traffic. The proposed approach installs flow rules in
all switches along the path from the source to the destination on a single request from
the source; resulting in a considerable reduction of control channel traffic and control-
ler’s utilization. The proposed approach is evaluated by comparing it with the basic
SDN controller. The simulation results show that the proposed approach increases the
SDN performance in terms of CPU utilization, response time, flow requests, and control
channel bandwidth.

Keywords:  Software defined networking, Denial of service attacks, DoS mitigation,
Fine-grained control, Parallel flow installation

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16
https://doi.org/10.1186/s13673-019-0176-7

*Correspondence:
fakhan@ksu.edu.sa
2 Center of Excellence
in Information Assurance
(CoEIA), King Saud University,
Riyadh, Saudi Arabia
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-7023-7172
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-019-0176-7&domain=pdf

Page 2 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

the data-forwarding layer (switches and routers, etc.) is separated from the control
layer (controller or operating system), which makes it ideal for large-scale and high-
speed computing. The control layer has the operating system, which coordinates with
the application layer, in order to perform different tasks such as intrusion detection,
load balancing, routing, etc. [3, 4]. Mostly, the control layer is connected to the data
forwarding layer through a standard protocol called OpenFlow (OF), which transfers
the OF messages (Packet-In, Packet-Out, Flow-Add, etc.) between switches and the
controller for routing and management purposes. In OF, each switch contains a flow
table with flow entries added by the controller for a specific duration to forward pack-
ets. When a packet arrives at a switch, it matches the packet header with flow entries
in the flow table to take the appropriate action. If there is no matching entry, then the
packet header is encapsulated in a Packet-In message and is directed toward the con-
troller for a suitable action. The controller adds a flow entry in the switch by sending a
Flow-Add message containing the appropriate action. The remaining packets with the
same packet header move according to the instructions in the matching flow entry [5,
6]. These days, the OF support is being provided in network switches by major ven-
dors, such as Juniper, HP, and Cisco [7].

The SDN architecture allows a controller to manage a wide range of data plane
resources and offers to simplify their configurations in a proper manner. Furthermore,
the SDN architecture recommends that common models and mechanisms should be
employed, wherever possible, to reduce the standardization, integration and validation
efforts. In addition, it also implies utilizing existing standards or accepted best practices
[2]. In SDN, security has become an important concern, as it is not a built-in feature yet
in the SDN architecture. SDN is vulnerable to various kinds of security threats, such
as spoofing, tampering, repudiation, information disclosure, denial of service (DoS) and
elevation of privilege [8]. Among these threats, DoS has the most devastating effect as it
degrades the SDN performance by increasing latency and dropping legitimate packets
[9, 10]. An attacker can easily launch a DoS attack by massively sending useless packets
having different source addresses so that the switch forwards each packet toward the
controller in the form of a Packet-In message. This attack will overload the controller,
control channel (the link between the controller and the switch), and the flow table [11].
An attacker can launch a DoS attack or its distributed version (i.e., DDoS attack) in order
to choke the whole network by overloading the controller’s resources (computing power
and memory), or a segment of the network by overwhelming a switch’s resources (flow
agent, packet buffer and flow table) [12].

To defend SDN against DoS attacks, different techniques have been proposed dur-
ing the past few years. Most of the techniques block suspicious traffic by installing rules
to drop all packets, while other reduce the effects of an attack by load balancing, flow
aggregation, priority scheduling, or using trust values. It is very difficult to judge in such
a short time and with high accuracy that the data sent by a node is legitimate or fake;
hence, there are chances of a loss of data sent by a legitimate node. Therefore, more reli-
able techniques are required that aim to prevent legitimate data drop; however, they may
also suffer from problems such as the requirement of additional hardware, modification
in the switch, loss of fine-grained information, additional delay in route establishment,
extra control packets, or race conditions, etc.

Page 3 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

This paper proposes a parallel flow installation model to reduce the effects of DoS
attacks in SDN without compromising the fine-grained control over network traffic. The
proposed model overcomes problems such as additional hardware requirement, switch
modification, additional delay in route establishment, information loss, and additional
control packets. The working of the proposed model is evaluated by comparing it with
the basic SDN controller. The simulation results show that the proposed model increases
the serving capacity of the existing SDN infrastructure by reducing the response time,
lowering the CPU processing, and decreasing traffic on the control channel. In addition,
the proposed model can be used with any existing mitigation approach to make it more
efficient.

The remainder of the paper is organized as follows: “Working of SDN and DoS attacks”
section presents the working of SDN and DoS attacks with their effects. “Related work”
section reviews different methods to handle DoS attacks in SDN. Parallel flow instal-
lation model is explained in “Proposed parallel flow installation (PFI) model” section,
while “Experiments and results” section evaluates the performance of the proposed
model by comparing it with the default controller. Finally, “Conclusions and future work”
section concludes this paper and presents some future directions.

Working of SDN and DoS attacks
In SDN, the controller being a centralized authority, keeps and maintains the updated
information about the whole network. The routing process is also managed by the con-
troller with the help of OF messages, such as Packet-In, Packet-Out, Flow-Add, etc.
[2]. Switches contain flow tables to store flow rules for a limited time and forward data
according to these rules. The controller keeps the network topology in its database to
provide efficient and timely routing to the connected nodes. The routing applications/
modules in well-known open-source SDN controllers, such as Floodlight (circuit pusher)
[13], ONOS (fwd) [14], Ryu (simple_switch, simple_switch_12, simple_switch_13) [15],
and POX (L2_learning, L3_learning) [16], etc., install the flow rules on OF switches in
a linear fashion, where each switch in the path between the source and the destination
sends a Packet-In message toward the controller in order to get the flow rule to forward
newly arrived data. The network diagram shown in Fig. 1 explains the routing process
between the source (Host-1) and the destination (Host-8) in SDN.

In Fig. 1, the solid lines represent connectivity between switches and hosts whereas
the dashed lines represent links between the controller and switches. In SDN termi-
nology, the link between the controller and the switch is called a control channel. The
arrows represent the movement of data from the source node (Host-1) to the destination
node (Host-8) at different time intervals. At time t1, the source node sends a data packet
to Switch-D, which searches its flow table to forward the data. A table-miss occurs when
no matching flow rule is found in the flow table, as a result of which the switch generates
a Packet-In message and sends it to the controller through the control channel at time
t2. The controller, after receiving the Packet-In message, searches its routing table to find
the route to the destination and sends a Flow-Add message containing instructions to
forward data back to Switch-D at time t3. If there is no route to the destination in the
controller’s routing table (i.e., the destination node has not yet communicated with any
other node in the network), then the controller sends a Packet-Out message to Switch-D

Page 4 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

asking it to broadcast the message. Upon receiving the Flow-Add message from the
controller, Switch-D forwards the data to Switch-B at time t4. Switch-B also sends the
Packet-In message, receives the Flow-Add message, and forwards data to Switch-A at
time t5, t6, and t7 respectively. In a similar way, Switch-A, Switch-C, and Switch-G ask
the controller for the path during time t8 to t15 and finally, Switch-G transfers data to
the destination at time t16.

Now if the destination node also wants to communicate with the source node, then all
these steps will be repeated in the reverse order. Furthermore, if these two nodes again
communicate with each other after a specified time period to keep the flow rules in the
flow table, then all the above-mentioned steps will be repeated again.

According to Fig. 1, if there are five switches between the source and the destination,
then at least five Packet-In messages will be sent toward the controller; hence, five flow
rules will be installed to transfer data toward the destination. So, the number of Open-
Flow messages (Packet-In and Flow-Add) sent over the control channel by the routing
apps/modules (circuitpusher, fwd, simple_switch, simple_switch_12, simple_switch_13,
L2_learning, L3_learning, etc.) for a single path can be calculated using the following
simple equation:

where “S” is the number of switches included in the path. Most of the controllers also
send Packet-Out message toward the switch in addition to the Flow-Add message; in
that case, “S” will be multiplied by 3. Therefore, when a host connected to the SDN com-
municates with another host located at 5 switches away, then the total number of OF
messages will be 15 (3 + 3+3 + 3+3) and for a two-way communication between same
hosts, this number will be doubled (2 × 15). The SDN controller and switches require
some time and resources to generate and process each of these OF messages. So if t is
the time required to install a single flow on a switch, then the response time (reply from
destination) for a complete path can also be calculated by the following simple equation:

(1)OpenFlow messages = S× 2

Host-1

Switch-B

Switch-D

Switch-E

Control Channel

Host-2

Host-3 Host-4

t 10

t 9t 4

t 3

t 2
t 1

t 8

t 7

t 6

t 5

Source: Host-1
Des�na�on: Host-8

Host-5

Switch-C

Switch-F

Switch-G

Host-6

Host-7 Host-8

Switch-A

t 12

t 11

t 16

t 14

t 15

t 13

SDN
Controller

Fig. 1  Routing process in SDN

Page 5 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

where “t” is the time required to install a single flow. According to the above-mentioned
calculations, there will not be any considerable load on the controller’s processor and the
control channel during normal traffic. However, when there is more traffic, then the effi-
ciency of the network can be affected. This does not mean that SDN is unable to process
heavy traffic. It has the ability to aggregate existing flow rules and can install wildcard
flow rules to forward data based on the destination MAC address only.

Centralized monitoring and fine-grained control are the important features of SDN
through which the data can be easily monitored up to the transport layer. The data sent to,
or received from specific ports, can be blocked or re-routed. For monitoring and security
purposes, a flow is mostly stored as a 12-tuple with fields that match against the incom-
ing packets [17]. To monitor the data transferred over the network in detail (mac, network,
and transport layers), a new rule is required each time when a host uses a different port to
transfer the data. As a result, there will be hundreds or even thousands of flow rules on each
switch during normal traffic. An attacker can exploit this feature of SDN by flooding traffic
toward random destinations to keep the controller busy in useless route management.

In the SDN paradigm, it is easy for an attacker to launch a DoS attack by flooding packets
with random destinations in such a way that the OF switch forwards each packet toward
the controller to get a new flow rule. This attack will affect different components of the
SDN infrastructure by consuming their resources such as switch’s memory, control chan-
nel’s bandwidth and controller’s processing power. This overuse of resources may result
in low throughput, high latency or a legitimate packet drop. In SDN, the DoS attack does
not necessarily make the entire network or some of its segments unavailable; rather it may
overload network resources in such a manner that the data is not delivered as desired [7].

Due to having different forms and the ability to target different components of the
SDN infrastructure, DoS attacks are very difficult to detect and mitigate. An attacker can
flood packets to different hosts in the network to consume resources of the switch and
the controller (memory and processing power) or it can send large-sized packets to dif-
ferent hosts in the network to consume their bandwidth. A legitimate user can also have
a requirement to scan the whole network repeatedly or to send a large amount of data
to different nodes. Hence, it is difficult for a mitigation strategy to differentiate between
an attacker and a legitimate user. Furthermore, a mitigation approach should not have
a tradeoff at the cost of fine-grained flow conditions (source and destination’s MAC
address, IP address, and port numbers, etc.).

Related work
During the past few years, several authors have proposed different methods to counter the
DoS attack in SDN. Kandoi et al. [7] presented an approach that used enhanced configura-
tion parameters in order to decrease harmful effects of DoS attacks in SDN. They enforced
the rate-limit to the number of packets sent toward the controller in a unit time. They also
recommended flow aggregation and optimal idle timeout value to avoid overflow. The idle
timeout has a large value in networks where hosts communicate more frequently with one
another. More space is created in the flow table by the aggregation of two or more rules
with a similar destination or by keeping the short idle timeout value of flows for their early

(2)Response Time = (S× t)× 2

Page 6 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

removal from the flow table. Due to flow aggregation, there will be a loss of packet statis-
tics and other information from switches. Kloti et al. [12] performed the security analysis
on the STRIDE model and proposed some solutions that could be helpful to mitigate DoS
attacks in SDN. These solutions include rate limiting, flow timeout adjustments, and flow
aggregation. Shin et al. [18] suggested an approach, called Avant-Guard, by adding connec-
tion migration and actuating triggers in OF switches to add some intelligence in the data
forwarding plane. In this approach, upon receiving a new data packet, a switch verifies
the source by the TCP handshake. If the handshake is successful, then it informs the con-
troller, which permits connection migration to start the data transfer. Actuating triggers
enable the data plane to report the network status and payload information to the control
plane. Wang et al. [19] introduced OF-Guard to overcome the limitations of Avant-Guard
by including the data plane cache. OF-Guard is triggered when the utilization of network
resources crosses a predefined limit, after which all new packets seeking the destination
are sent toward the data plane cache, which stores proactive flow rules, caches table-miss
packets, and separates fake packets. Both the Avant-Guard and OF-Guard require modifi-
cations in OF switches and are limited to control the TCP traffic only.

Oktian et al. [20] designed an application to mitigate the DoS attack in the Beacon
controller by using a table to save the related information about switches and connected
hosts in the network. The controller collects the IP and MAC addresses of connected
hosts by inspecting packets at the network startup. In addition to IP and MAC addresses,
the status of ports and other switch information is also saved. By having this informa-
tion, the controller has full knowledge of the network topology, attached hosts, and the
status of switch’s ports. Upon leaving or joining of each host, the controller updates this
information, which helps it to block all traffic generated by an attacker as near as possible
to its source to reduce its effects. This application only deals with MAC/IP spoofing. Bely-
aev et al. [21] suggested a technique to make SDN more resistive during the DoS attack
with load balancing and is combined with an intrusion detection and mitigation system
termed Callophrys. It first collects the topology and load information of the network, and
then overrules the network with static information collected by the Bellman-Ford path
finding algorithm. It splits the path having high traffic load with alternative routes. This
technique shifts the load to alternate routes, which is only possible when there exist mul-
tiple paths between the source and the destination. Wang et al. [22] presented a flexible
control structure to secure cloud computing and SDN with fast and specific attack reac-
tion. It consists of two modules; one for anomaly-based detection and the other for miti-
gation. The detection module contains attack patterns in a database, which are matched
with new flow packets. If an attack is detected, then the mitigation module takes an
appropriate action after notifying the controller. The malicious packet is further investi-
gated; if it belongs to a new type of attack, then the database is updated accordingly.

Dao et al. [23] proposed a solution assuming that abnormal users transmit less num-
ber of packets than a pre-defined value ‘n’ during each connection. If the transmitted
packets are less than ‘n’, then a flow rule is installed to block traffic from that user. Addi-
tionally, flow rules installed for new packets contain lower values of the soft and hard
timeouts to decrease their lifetime. Due to the low hard timeout value, the load will be
more on the controller and the control channel. Kuerban et al. [24] proposed a simple
method to control bandwidth, called FlowSec, where the controller constantly monitors

Page 7 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

bandwidth of each port of the switch. If it crosses a predefined limit, then it is reduced
to half in order to decrease the number of packets sent toward the controller. Padmaja
et al. [25] presented a solution, in which a new entry is introduced into the flow table to
keep packets of a flow in the packet buffer, to avoid the race condition. In a race condi-
tion, redundant flow requests sent to the controller cause it to calculate more flow rules
for the same flow. Dridi et al. [26] suggested SDN-Guard, which coordinates with an
intrusion detection system to reduce the effect of DoS attack on the SDN infrastruc-
ture. It has three modules: flow management, monitoring, and aggregation. The flow
management module assigns those routes to malicious packets that have low bandwidth
consumption. The high timeout values are also assigned to suspicious flows to decrease
the control channel communication. To avoid table overflow, malicious flow entries are
aggregated by the aggregation module. Flow management requires multiple routes and
flow aggregation will result in the loss of information from switches.

Zhang et al. [27] suggested Multi-Layer Fair Queuing (MLFQ) to counter DoS
attacks by maintaining queues of Packet-In messages in the controller, where mes-
sages received from each switch are placed in the corresponding queues. The control-
ler applies the Weighted Round Robin (WRR) algorithm to pool requests from these
queues. When the number of packets in a queue crosses a predefined threshold, then
that queue is expanded into a per-switch queue. If the size of a queue is still larger,
then the queue is further expanded into the per-port queue. On the other hand, if the
size of the sub-queue drops below the threshold, then the queues are aggregated into
a single queue again. This approach requires additional computation for multi-layer
queue management, so the legitimate hosts connected to the switch will face more
delay when the attacker exists. Wang et al. [28] presented an approach, called Flood-
Guard, which introduced a proactive flow rule analyzer in the controller to install
proactive flow rules during the attack to reduce burden on the controller. The control-
ler also has a migration agent, which is responsible to direct all table-miss packets
toward the data plane cache, which temporarily stores packets to guard the data plane
and sends them toward the controller in a rate-limited fashion using Round Robin
(RR) scheduling. This solution requires additional hardware (data plane cache), modi-
fication in OF switches, and introduces a delay due to the rate limitation.

Wang et al. [29] proposed a rounding-based load balancing solution to reduce con-
trol channel congestion and response time for SDNs having multiple controllers. This
algorithm performs link load balancing and controller load balancing. The authors
also suggested an efficient mechanism for network status maintenance to improve
their approach. Ma et al. [30] proposed a load balancing mechanism for multiple con-
trollers by implementing a hierarchical control with a meta-control plane and local
control plane. The meta-control plane analyzes the resource utilization of the local
control plane to optimize the performance, whereas the local control plane optimizes
the performance of the data plane and eliminates the bottleneck effect. Ganesh et al.
[31] proposed a load balancing mechanism by implementing a dynamic load balanc-
ing algorithm to distribute different traffic flows via different parallel paths.

As a result of the above study, the DoS mitigation approaches can be divided into
two categories. The first category contains approaches that block malicious traffic by
installing rules to drop all packets from malicious hosts. The second category contains

Page 8 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

approaches that do not drop malicious traffic. These approaches reduce the effects of
DoS attacks by load balancing, priority scheduling, or using trust values, as it is very dif-
ficult to accurately figure out in such a short time that the data sent by a node is fake or
legitimate. Therefore, approaches in the second category are more reliable because using
these approaches, there are no chances of a legitimate data drop. The proposed system
belongs to the second category, which reduces the effects of the DoS attack by optimiz-
ing control traffic toward the SDN controller in order to reduce its load.

Proposed parallel flow installation model
It is necessary to install flow rules with more and more matching fields for fine-grained
management and monitoring of data statistics. For this purpose, the OF specification
defines a default set of 45 matching fields [2]. Moreover, as the number of matching
fields for the flows increases, more traffic will flow toward the controller in the form of
Packet-In messages and the controller will utilize more resources to process them. Dur-
ing normal traffic, SDN works fine with more matching fields; however, when there is a
DoS attack in progress, then the number of packets sent over the control channel will
increase exponentially. This attack will affect SDN in the following ways:

•	 Response time from the destination will increase
•	 Controller’s CPU utilization will increase
•	 Control channel traffic will increase.

To launch a DoS attack, the attacker generates fake route requests by sending fake
data packets toward different destinations. Upon receiving these data packets, the OF
switches that lie within the path send Packet-In messages to the SDN controller. In
response, the controller sends Flow-Add messages to switches to forward data toward
the destination. The number of control messages (Packet-In and Flow-Add) produced
as a result of each fake request can be calculated using Eq. (1). More fake requests will
result in the generation of more control packets due to which the controller’s resources
will saturate and its capacity to handle requests will decrease. Now, to reduce the impact
of the DoS attack, it is essential to reduce the number of control messages, as the num-
ber of control messages is directly proportional to the controller’s CPU utilization.

To reduce the number of control messages during the DoS attack, a Parallel Flow
Installation (PFI) model is proposed by modifying the controller’s behavior from lin-
ear to parallel for flow rule installation. A traditional SDN controller only replies to
the switch from which it receives the Packet-In message as described in Algorithm 1;
whereas, in the proposed model, the controller sends Flow-Add messages to all
switches that lie on the path between the source and the destination. This is because it
knows that these switches that are included will demand the path toward the destina-
tion in the future. To convert the behavior of the controller from linear to parallel, the
function handling the Packet-In message is modified in such a way that it makes a list
of switches that lie on the path from the source to the destination, and sends Flow-
Add messages to them without receiving requests to install flow rules from them.

The proposed model is explained in Fig. 2 with an example, which shows the time
intervals to transfer data from the source (Host-1) to the destination (Host-8). At time

Page 9 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

t1, Host-1 sends data to Switch-D, which searches its flow table for possible existence
of a matching flow rule to forward data toward the destination. Upon failure in find-
ing the flow rule, Switch-D sends a Packet-In message toward the controller at time
t2. The controller calculates the complete path from the source to the destination and
sends flow rules to all switches (D, B, A, C, and G) present in the path at time t3. At
time t4, the data moves from Switch-D to Switch-G through Switches B, A and C, and
finally to Host-8, as the flow rules to forward data are already installed on them. An
important thing to note in the proposed approach is that the controller sends flow
rules to those switches only that are included in the path between the source and
destination hosts. So, the controller will not forward any flow rule to Switch-E and
Switch-F because they are not included in the path.

Host-1

Switch-B

Switch-D

Switch-E

Control Channel

Host-2

Host-3 Host-4

t 4

t 3t 4

t 2

t 3

t 1

t 4

t 3

Source: Host-1
Des�na�on: Host-8

Host-5

Switch-C

Switch-F

Switch-G

Host-6

Host-7 Host-8

Switch-A

t 3

t 4
t 3

t 4

SDN
Controller

Fig. 2  Working of the proposed parallel flow installation system

Page 10 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

According to the proposed model, as described in Algorithm 2, a single Packet-In mes-
sage is sufficient to install flow rules on all switches included in the path from the source
to the destination, so the number of OF messages over the control channel for a path can
be calculated from the modified form of Eq. (1) as:

where “S” is the number of switches included in the path.
Consider another scenario, which has 8 switches in the path from the source to the

destination. As in SDN, each switch along the path will send a Packet-In message toward
the controller in order to get the flow rule to forward data from the source to the des-
tination. In response to each Packet-In message, the controller will send a Flow-Add
message containing instructions to forward data toward the destination. So according
to Eq. (1), there will be a total of 16 OF messages (8 Packet-In and 8 Flow-Add mes-
sages) and if the processing time of each packet is considered to be 1 ms, then the path
establishment time will be 16 ms. Whereas in the proposed PFI model, only one Packet-
In message will be sent toward the controller from the first switch along the path, in
response to which the controller will send Flow-Add messages to all 8 switches that lie in
the path from the source to the destination. Therefore, according to Eq. (3), there will be
9 OF messages (1 Packet-In and 8 Flow-Add messages) and the path establishment time
will be 9 ms.

Table 1 shows the OF messages for different numbers of switches in the path from the
source to the destination.

In a similar way, the response time from the destination after installing two-way flows
will be according to the following equation:

where “t” is the time required to install a single flow and “α” is the additional processing
time required by the controller to install parallel flows.

The above example logically proves that the proposed model just sends one Packet-
In message to the controller for a complete path and comparatively takes less time to

(3)OpenFlow messages = S + 1

(4)Response Time = (t+ α)× 2

Page 11 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

establish a path from the source to the destination. So, there will be less traffic toward
the controller, as a result of which the controller will process fewer numbers of packets.
In this way, the proposed model reduces the response time and saves the control channel
bandwidth and the controller’s CPU resources. The flowcharts for both linear and paral-
lel flow installation mechanisms are shown in Fig. 3. The dotted part is optional and is
executed only when there are multiple switches along the path.

Experiments and results
The proposed PFI model is implemented by modifying routing mechanisms of POX’s
L2_learning [16] and RYU’s Simple_switch_13 [15] modules from linear to parallel
for OpenFlow [2] version 1.1 and 1.3 respectively. To evaluate the proposed model, all
experiments are performed by emulating a network topology, as shown in Fig. 2, and by
using Mininet (version 2.3.0) [32] virtual network that is installed on a virtual machine
and connecting it with remote POX and RYU controllers running on another virtual
machine. To generate normal traffic, a script is run on Host-2 and Host-4 that send TCP
traffic to Host-7 and Host-5 respectively, which changes the destination port after every
5 s in order to request new flow rule from the controller. A DoS attack is launched by
executing a script on Host-3, which picks a host from a randomly generated list of IP
addresses within the network range and sends a data packet to its random port after a
0.01 s interval so that each packet demands a new rule from the controller. The perfor-
mance of the proposed PFI model is compared with default routing algorithms of POX
and RYU (L2_learning and simple_switch_13 described in “Working of SDN and DoS
attacks” section) on different benchmarks such as response time, controller’s CPU utili-
zation, control channel bandwidth, and flow requests sent to the controller. The results
for each benchmark are discussed below for both the controllers (POX and RYU) with
and without a DoS attack.

Response time

It is the time duration between sending a packet and receiving its reply from the destina-
tion. Response time is calculated by sending a ping message from “Host-1” to all other
hosts. The experiment was repeated multiple times to calculate the average response
time.

Table 1  OpenFlow messages for a complete path from source to destination

No. of switch(es)
in path

Linear flow installation Proposed parallel flow installation

Packet-In Flow-Add Total Packet-In Flow-Add Total

1 1 1 2 1 1 2

2 2 2 4 1 2 3

3 3 3 6 1 3 4

4 4 4 8 1 4 5

5 5 5 10 1 5 6

6 6 6 12 1 6 7

7 7 7 14 1 7 8

8 8 8 16 1 8 9

Page 12 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

Figure 4 shows the average response time for each host for both POX and PFI control-
lers without a DoS attack (dashed bar and wave bar respectively) and with a DoS attack
(diagonal line bar and crossed line bar respectively). The shorter lengths of bars for PFI
and PFI-DoS can be observed as compared to the bars for POX and POX-DoS respec-
tively, which shows that the PFI model has a shorter response time as compared to POX
for almost all hosts. The average response time of POX and PFI without a DoS attack is
38.26 ms and 26.29 ms respectively for all hosts, while the average response time of POX
and PFI with a DoS attack is 52.14 ms and 39.96 ms respectively. So, the proposed sys-
tem has a 31.29% less response time in the absence of a DoS attack, while it has a 23.36%
less response time in the presence of a DoS attack.

Similarly, Fig. 5 shows the average response time for each host for both RYU and PFI
controllers without a DoS attack (dashed bar and wave bar respectively) and with a
DoS attack (diagonal line bar and crossed line bar respectively). Here, it can again be
observed that the bars for PFI and PFI-DoS are shorter as compared to the bars for RYU
and RYU-DoS respectively, which clearly indicates that the PFI model has a shorter
response time as compared to RYU. Here, the average response time of RYU and PFI
without a DoS attack is 9.42 ms and 6.79 ms respectively for all hosts, while the aver-
age response time of POX and PFI with a DoS attack is 15.09 ms and 12.31 ms respec-
tively. So, the proposed system has a 27.88% less response time in the absence of a DoS
attack, while it has 18.43% less response time in the presence of a DoS attack. The reason
behind this reduction in response time is the parallel flow installation, in which the con-
troller processes only one Packet-In message for a complete path from the source to the
destination and installs flow rules on next switches in the path before the arrival of data
on those switches.

CPU utilization

It is the percentage of workload on controllers during the simulation period. To cal-
culate the CPU utilization, its per-second usage was recorded for a period of 300 s.

Figure 6 clearly shows that the CPU usage of PFI-DoS (solid line with spheres) is lower
than that of POX-DoS (solid line with squares) during the DoS attack, while during

Source

Des�na�on

Data Packet

OpenFlow
Switch

Controller

OpenFlow
Switch (n)

Is Des�na�on?

Is Des�na�on?

Des�na�on
)1+n(

poHtxe
N

oT

Yes

No

No

Yes

Source

Des�na�on

Data Packet

OpenFlow
Switch

Controller

OpenFlow
Switch (n)

Is Des�na�on?

Is Des�na�on?

Des�na�on

To
 N

ex
t H

op
 (n

+1
)

Yes

No

No

Yes

To all hops
along path

a b
Fig. 3  Flowchart comparison a linear flow installation, b proposed parallel flow installation

Page 13 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

normal traffic, the CPU usage of both PFI (dotted line with spheres) and POX (dotted
line with squares) are almost equal. The average CPU utilization for POX and PFI with-
out a DoS attack is 5.87% and 6.11% respectively. On the other hand, the average CPU
utilization for POX and PFI with a DoS attack is 20.47% and 12.82% respectively. So the
proposed model has about 37.39% less CPU utilization during the DoS attack.

Similarly, in Fig. 7, it can be observed that the average CPU utilization of RYU (dot-
ted line with squares) is almost equal to that of PFI (dotted line with spheres) during
the normal traffic, which is 7.04% and 6.96% respectively. On the other hand, during a
DoS attack, PFI-DoS (solid line with spheres) has much lower average CPU utilization as
compared to RYU-DoS (solid line with squares), which is 20.70% and 30% respectively.
So the proposed model has about 31.01% less CPU utilization during the DoS attack.
The reason for the reduction in CPU utilization is the parallel flow installation where the
controller has to process less number of Packet-In messages for the whole path from the
source to the destination. As a result, its CPU utilization will be reduced.

0

10

20

30

40

50

60

70

80

H1 H2 H3 H4 H5 H6 H7 H8

(e
miT esnopseR egarevA

m
s)

Hosts

POX PFI POX-DoS PFI-DoS

Fig. 4  Response time comparison with POX controller

0

5

10

15

20

25

H1 H2 H3 H4 H5 H6 H7 H8

(e
miT esnopseR egarevA

m
s)

Hosts

RYU PFI RYU-DoS PFI-DoS

Fig. 5  Response time comparison with RYU controller

Page 14 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

Control channel bandwidth

It is the amount of data transferred over the control channel between the controller and
the switches. As discussed in the previous section, switches in the proposed approach
send less number of Packet-In messages to the controller, so the amount of data toward
the controller is also low. To calculate the amount of data sent toward the controller, the
per-second network statistics were recorded for 300 s duration.

Figure 8 shows the average amount of data transferred between the controller and
switches for POX (dotted line with squares) and PFI (dotted line with spheres) con-
trollers with the normal traffic is 15.08 kb/s and 6.61 kb/s respectively. On the other
hand, during the DoS attack, the average amount of data transferred for PFI-DoS (solid
line with spheres) is 83.40 kb/s, which is much smaller than POX-DoS (solid line with
squares) having a data rate of 269.43 kb/s. So, there is about 56.17% and 69.04% decrease
in the data rate for PFI and PFI-DoS respectively.

In the same way, Fig. 9 shows that the average amount of data transferred between
the controller and switches for RYU (dotted line with squares) and PFI (dotted line
with spheres) controllers with the normal traffic is 7.0 kb/s and 4.31 kb/s respectively.
On the other hand, during the DoS attack, the average amount of data transferred for
PFI-DoS (solid line with spheres) is 134 kb/s, which is much smaller than the RYU-
DoS (solid line with squares) having a data rate of 301 kb/s, which again shows that
the proposed model has 38.46% and 55.62% less data transfer rate as compared to
RYU and RYU-DoS respectively. This reduction in the use of control channel band-
width is due to the decrease in the number of Packet-In messages sent toward the
controller from the switches.

Flow requests

It is the request, which is sent to the controller via the control channel from an OF
switch to get a flow rule to transfer the data. It is sent in the form of a special packet
called a Packet-In message.

0

5

10

15

20

25

30

)
%(noitazilit

U
UPC

Time (seconds)

POX PFI POX-DoS PFI-DoS

Fig. 6  CPU utilization of POX controller

Page 15 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

In Fig. 10, the bars show that the Packet-In messages sent toward the controller
for POX (dashed bar) and PFI (wave bar) with the normal traffic are almost equal,
whereas those for PFI-DoS (crossed lines bar) are much less than POX-DoS (diagonal
lines bar). The average Packet-In messages sent toward the controller by each switch
for POX-DoS and PFI-DoS are 7730 and 1901 respectively. So, the proposed approach
sends about 75.40% less Packet-In messages, as represented in Eq. (3).

Similarly in Fig. 11, the bars show that the average Packet-In messages sent toward
the controller by each switch for RYU (dashed bar) and PFI (wave bar) with normal
traffic are 287 and 96 respectively, whereas for RYU-DoS (diagonal lines bar) and PFI-
DoS (crossed lines bar), these messages are 8353 and 2369 respectively. So, the pro-
posed model sends 66.53% and 71.63% fewer packets with normal traffic and with a
DoS attack respectively. This reduction in flow requests is directly related to the par-
allel flow installation.

0

5

10

15

20

25

30

35

40

)
%(noitazilit

U
UPC

Time (seconds)

RYU PFI RYU-DoS PFI-DoS

Fig. 7  CPU utilization of RYU controller

0

50

100

150

200

250

300

350

)ces/BK(htdi
wdnaB

Time (seconds)

POX PFI POX-DoS PFI-DoS

Fig. 8  Data sent over control channel for POX controller

Page 16 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

Comparison with other approaches

Table 2 shows the comparison of the proposed model with other state-of-the-art
approaches on the basis of various parameters, such as additional hardware require-
ment, switch modification, loss of fine-grained flow information and additional delay.
The comparison shows that the proposed model does not have these kinds of drawbacks.

Conclusions and future work
The centralized nature of software defined networking (SDN) makes it vulnerable to
DoS attacks, which can disable the whole network or a component of the network and
can degrade its performance. The study of existing techniques to counter DoS attacks
in SDN shows that some of these techniques use complex methods, require additional
equipment, or need modified switches. In addition, these techniques may also introduce
additional delay in the routing process and can add more traffic to the control channel

0

50

100

150

200

250

300

350

)ces/BK(htdi
wdnaB

Time (seconds)

RYU PFI RYU-DoS PFI-DoS

Fig. 9  Data sent over control channel for RYU controller

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

tekcaP
-

segasse
M nI

Switches

POX PFI POX-DoS PFI-DoS

Fig. 10  Packet-In messages sent to POX controller

Page 17 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

for verification purposes. These techniques may drop legitimate packets or are unable to
detect intelligent DoS attacks. So it is very difficult to completely mitigate DoS attacks
without these tradeoffs. Considering all the above-mentioned problems, a parallel flow
installation (PFI) model is proposed to make SDN (especially those that are configured
for fine-grained control over network traffic) more tolerant to DoS attacks. Although
the proposed model does not stop the DoS attack directly, it efficiently saves the control
channel bandwidth and the controller’s processing power to make it available for legiti-
mate users. Furthermore, the proposed model can be used with any existing method to
make it more efficient as well as to increase the serving capacity of the existing SDN
infrastructure. The results of our experiments show that the proposed PFI model
reduces the time to establish a path, lowers controller’s processing, and decreases con-
trol channel traffic. These results will encourage the SDN research community to make

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

tekcaP
-

segasse
M nI

Switches

RYU PFI RYU-DoS PFI-DoS

Fig. 11  Packet-In messages sent to RYU controller

Table 2  Comparison with other state-of-the-art approaches

Approach/
Reference

Mechanism used Additional
hardware

Switch
modification

Loss
of information

Additional
delay

Kandoi et al. [7] Flow aggregation
Idle timeout management

No No Yes Yes

Kloti et al. [12] Rate limiting
Flow aggregation

No No Yes Yes

Belyaev et al. [21] Load balancing Yes No No Yes

FlowSec [24] Rate limiting No No Yes Yes

Padmaja et al. [25] Flow rule for buffer action No Yes No Yes

SDN-Guard [26] Flow aggregation
Timeout management

No No Yes Yes

Zhang et al. [27] Multi-layer queue manage-
ment

No No No Yes

FloodGuard [28] Packet migration
Proactive flow rule calculation

Yes Yes Yes Yes

Wang et al. [29] Controller load management Yes No No Yes

Proposed model Parallel flow installation (PFI) No No No No

Page 18 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

SDN more efficient and reliable. In the future, we plan to test the proposed model for a
complex topology to check its scalability and design a simple, efficient and lightweight
DoS attack detection and mitigation system for SDN.
Authors’ contributions
MI, MHD, FAK and AD were involved in proposing the system idea, performing the experiments, and writing the manu-
script. All authors read and approved the final manuscript.

Author details
1 Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS),
Islamabad, Pakistan. 2 Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Saudi Arabia.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Please contact authors for data requests.

Funding
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud Uni-
versity, Saudi Arabia, for its funding of this research through the Research Group Project No. RGP-214. The research was
supported in part by the Higher Education Commission of Pakistan through PIN no. 315-7318-2EG3-116.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 December 2018 Accepted: 25 March 2019

References
	1.	 McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openow:

enabling innovation in campus networks. SIGCOMM Comput Commun Rev 38:69–74
	2.	 OpenFlow Switch Specification, Version 1.5.1.; 2015. https​://www.openn​etwor​king.org/softw​are-defin​ed-stand​ards/

speci​ficat​ions/. Accessed 04 Sept 2018
	3.	 Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a

comprehensive survey. Proc IEEE 103:14–76
	4.	 Schaller S, Hood D (2017) Software defined networking architecture standardization. Comput Stand Interfaces

54:197–202
	5.	 Karakus M, Durresi A (2018) Economic viability of software defined networking (SDN). Comput Netw 135:81–95
	6.	 Hu F, Hao Q, Bao K (2014) A survey on software-defined network and OpenFlow: from concept to implementation.

IEEE Commun Surv Tutorials 16:2181–2206
	7.	 Kandoi R, Antikainen M (2015) Denial-of-service attacks in OpenFlow SDN networks. In: 2015 IFIP/IEEE international

symposium on integrated network management (IM). IEEE, New York
	8.	 Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv

Tutorials 17:2317–2346
	9.	 Alsmadi Izzat, Dianxiang Xu (2015) Security of software defined networks: a survey. Comput Secur 53:79–108
	10.	 Imran M, Durad MH, Khan FA, Derhab A (2019) Toward an optimal solution against denial of service attacks in soft-

ware defined networks. Future Generat Comput Syst 92:444–453
	11.	 Anand N, Babu S, Manoj B (2018) On detecting compromised controller in software defined networks. Comput

Netw 137:107–118
	12.	 Kloti R, Kotronis V, Smith P (2013) Openflow: a security analysis. In: 21st IEEE international conference on network

protocols (ICNP). IEEE, New York
	13.	 Floodlight OpenFlow Controller. http://www.proje​ctood​light​.org/flood​light​/. Accessed 04 Sept 2018
	14.	 Open Network Operating System (ONOS). https​://onosp​rojec​t.org/. Accessed 04 Sept 2018
	15.	 Ryu SDN Framework. https​://osrg.githu​b.io/ryu/. Accessed 04 Sept 2018
	16.	 The POX Controller. https​://githu​b.com/noxre​po/pox. Accessed 04 Sept 2018
	17.	 Dillon C, Berkelaar M (2014) OpenFlow (D) DoS Mitigation. Technical report. http://www.delaa​t.net/rp/2013-2014/

p42/repor​t.pdf. Accessed 04 Sept 2018
	18.	 Shin S, Yegneswaran V, Porras P, Gu G (2013) AVANT-GUARD: scalable and vigilant switch flow management in

software-defined networks. In: 2013 ACM SIGSAC conference on computer & communications security (CCS 2013).
ACM, New York

	19.	 Wang H, Xu L, Gu G (2014) OF-GUARD: a DoS attack prevention extension in software-defined networks. In: The
Open Network Summit (ONS), Santa Clara, CA, 3–5 March 2014

	20.	 Oktian YE, Lee S, Lee H (2014) Mitigating denial of service (DoS) attacks in openflow networks. In: International
conference on information and communication technology convergence (ICTC). IEEE, New York

	21.	 Belyaev M, Gaivoronski S (2014) Towards load balancing in SDN-networks during DDoS-attacks. In: First international
science and technology conference (Modern Networking Technologies) (MoNeTeC). IEEE, New York

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
http://www.projectoodlight.org/floodlight/
https://onosproject.org/
https://osrg.github.io/ryu/
https://github.com/noxrepo/pox
http://www.delaat.net/rp/2013-2014/p42/report.pdf
http://www.delaat.net/rp/2013-2014/p42/report.pdf

Page 19 of 19Imran et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:16

	22.	 Wang B, Zheng Y, Lou W, Hou YT (2015) DDoS attack protection in the era of cloud computing and software-defined
networking. Comput Netw 81:308–319

	23.	 Dao NN, Park J, Park M, Cho S (2015) A feasible method to combat against DDoS attack in SDN network. In: 2015
International conference on information networking (ICOIN). IEEE, New York

	24.	 Kuerban M, Tian Y, Yang Q, Jia Y, Huebert B, Poss D (2016) FlowSec: DOS attack mitigation strategy on SDN controller.
In: 2016 IEEE international conference on networking, architecture and storage (NAS). IEEE, New York

	25.	 Padmaja S, Vetriselvi V (2016) Mitigation of switch-DoS in software defined network. In: 2016 international confer-
ence on information communication and embedded systems (ICICES). IEEE, New York

	26.	 Dridi L, Zhani MF (2016) SDN-Guard: DoS attacks mitigation in SDN networks. In: 5th IEEE international conference
on cloud networking (Cloudnet). IEEE, New York

	27.	 Zhang Peng, Wang Huanzhao, Chengchen Hu, Lin Chuang (2016) On denial of service attacks in software defined
networks. IEEE Netw 30:28–33

	28.	 Wang H, Xu L, Gu G (2015) Floodguard: a dos attack prevention extension in software-defined networks. In: 45th
annual IEEE/IFIP international conference on dependable systems and networks (DSN). IEEE, New York

	29.	 Wang H, Xu H, Huang L, Wang J, Yang X (2018) Load-balancing routing in software defined networks with multiple
controllers. Comput Netw 141:82–91

	30.	 Ma YW, Chen JL, Tsai YH, Cheng KH, Hung WC (2017) Load-balancing multiple controllers mechanism for software-
defined networking. Wireless Pers Commun 94:3549–3574

	31.	 Ganesh S, Ranjani S (2015) Dynamic load balancing using software defined networks. In: International conference
on current trends in advanced computing (ICCTAC)

	32.	 Mininet: an instant virtual network on your laptop (or other PC). http://minin​et.org/. Accessed 31 July 2018

http://mininet.org/

	Reducing the effects of DoS attacks in software defined networks using parallel flow installation
	Abstract
	Introduction
	Working of SDN and DoS attacks
	Related work
	Proposed parallel flow installation model
	Experiments and results
	Response time
	CPU utilization
	Control channel bandwidth
	Flow requests
	Comparison with other approaches

	Conclusions and future work
	Authors’ contributions
	References

