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Introduction
Software defined networking (SDN) is becoming more and more popular among the 
network research community due to its simple configuration and easy management. 
SDN makes it easy to get fine-grained information about the transferred data and pro-
vides centralized control over network traffic. Therefore, it can manage all network 
traffic with different protocols, such as Internet Protocol version 6 (IPv6), Internet 
Protocol version 4 (IPv4), Internet Control Message Protocol (ICMP), Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP), etc., from different 
sources (MAC address, IP address, port number, etc.) in multiple ways [1, 2]. In addi-
tion, SDNs are more scalable and flexible as compared to legacy networks. In SDN, 
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the data-forwarding layer (switches and routers, etc.) is separated from the control 
layer (controller or operating system), which makes it ideal for large-scale and high-
speed computing. The control layer has the operating system, which coordinates with 
the application layer, in order to perform different tasks such as intrusion detection, 
load balancing, routing, etc. [3, 4]. Mostly, the control layer is connected to the data 
forwarding layer through a standard protocol called OpenFlow (OF), which transfers 
the OF messages (Packet-In, Packet-Out, Flow-Add, etc.) between switches and the 
controller for routing and management purposes. In OF, each switch contains a flow 
table with flow entries added by the controller for a specific duration to forward pack-
ets. When a packet arrives at a switch, it matches the packet header with flow entries 
in the flow table to take the appropriate action. If there is no matching entry, then the 
packet header is encapsulated in a Packet-In message and is directed toward the con-
troller for a suitable action. The controller adds a flow entry in the switch by sending a 
Flow-Add message containing the appropriate action. The remaining packets with the 
same packet header move according to the instructions in the matching flow entry [5, 
6]. These days, the OF support is being provided in network switches by major ven-
dors, such as Juniper, HP, and Cisco [7].

The SDN architecture allows a controller to manage a wide range of data plane 
resources and offers to simplify their configurations in a proper manner. Furthermore, 
the SDN architecture recommends that common models and mechanisms should be 
employed, wherever possible, to reduce the standardization, integration and validation 
efforts. In addition, it also implies utilizing existing standards or accepted best practices 
[2]. In SDN, security has become an important concern, as it is not a built-in feature yet 
in the SDN architecture. SDN is vulnerable to various kinds of security threats, such 
as spoofing, tampering, repudiation, information disclosure, denial of service (DoS) and 
elevation of privilege [8]. Among these threats, DoS has the most devastating effect as it 
degrades the SDN performance by increasing latency and dropping legitimate packets 
[9, 10]. An attacker can easily launch a DoS attack by massively sending useless packets 
having different source addresses so that the switch forwards each packet toward the 
controller in the form of a Packet-In message. This attack will overload the controller, 
control channel (the link between the controller and the switch), and the flow table [11]. 
An attacker can launch a DoS attack or its distributed version (i.e., DDoS attack) in order 
to choke the whole network by overloading the controller’s resources (computing power 
and memory), or a segment of the network by overwhelming a switch’s resources (flow 
agent, packet buffer and flow table) [12].

To defend SDN  against  DoS attacks, different techniques have been proposed dur-
ing the past few years. Most of the techniques block suspicious traffic by installing rules 
to drop all packets, while other reduce the effects of an attack by load balancing, flow 
aggregation, priority scheduling, or using trust values. It is very difficult to judge in such 
a short time and with high accuracy that the data sent by a node is legitimate or fake; 
hence, there are chances of a loss of data sent by a legitimate node. Therefore, more reli-
able techniques are required that aim to prevent legitimate data drop; however, they may 
also suffer from problems such as the requirement of additional hardware, modification 
in the switch, loss of fine-grained information, additional delay in route establishment, 
extra control packets, or race conditions, etc.
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This paper proposes a parallel flow installation model to reduce the effects of DoS 
attacks in SDN without compromising the fine-grained control over network traffic. The 
proposed model overcomes problems such as additional hardware requirement, switch 
modification, additional delay in route establishment, information loss, and additional 
control packets. The working of the proposed model is evaluated by comparing it with 
the basic SDN controller. The simulation results show that the proposed model increases 
the serving capacity of the existing SDN infrastructure by reducing the response time, 
lowering the CPU processing, and decreasing traffic on the control channel. In addition, 
the proposed model can be used with any existing mitigation approach to make it more 
efficient.

The remainder of the paper is organized as follows: “Working of SDN and DoS attacks” 
section presents the working of SDN and DoS attacks with their effects. “Related work” 
section reviews different methods to handle DoS attacks in SDN. Parallel flow instal-
lation model is explained in “Proposed parallel flow installation (PFI) model” section, 
while “Experiments and results” section evaluates the performance of the proposed 
model by comparing it with the default controller. Finally, “Conclusions and future work” 
section concludes this paper and presents some future directions.

Working of SDN and DoS attacks
In SDN, the controller being a centralized authority, keeps and maintains the updated 
information about the whole network. The routing process is also managed by the con-
troller with the help of OF messages, such as Packet-In, Packet-Out, Flow-Add, etc. 
[2]. Switches contain flow tables to store flow rules for a limited time and forward data 
according to these rules. The controller keeps the network topology in its database to 
provide efficient and timely routing to the connected nodes. The routing applications/
modules in well-known open-source SDN controllers, such as Floodlight (circuit pusher) 
[13], ONOS (fwd) [14], Ryu (simple_switch, simple_switch_12, simple_switch_13) [15], 
and POX (L2_learning, L3_learning) [16], etc., install the flow rules on OF switches in 
a linear fashion, where each switch in the path between the source and the destination 
sends a Packet-In message toward the controller in order to get the flow rule to forward 
newly arrived data. The network diagram shown in Fig. 1 explains the routing process 
between the source (Host-1) and the destination (Host-8) in SDN.

In Fig. 1, the solid lines represent connectivity between switches and hosts whereas 
the dashed lines represent links between the controller and switches. In SDN termi-
nology, the link between the controller and the switch is called a control channel. The 
arrows represent the movement of data from the source node (Host-1) to the destination 
node (Host-8) at different time intervals. At time t1, the source node sends a data packet 
to Switch-D, which searches its flow table to forward the data. A table-miss occurs when 
no matching flow rule is found in the flow table, as a result of which the switch generates 
a Packet-In message and sends it to the controller through the control channel at time 
t2. The controller, after receiving the Packet-In message, searches its routing table to find 
the route to the destination and sends a Flow-Add message containing instructions to 
forward data back to Switch-D at time t3. If there is no route to the destination in the 
controller’s routing table (i.e., the destination node has not yet communicated with any 
other node in the network), then the controller sends a Packet-Out message to Switch-D 
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asking it to broadcast the message. Upon receiving the Flow-Add message from the 
controller, Switch-D forwards the data to Switch-B at time t4. Switch-B also sends the 
Packet-In message, receives the Flow-Add message, and forwards data to Switch-A at 
time t5, t6, and t7 respectively. In a similar way, Switch-A, Switch-C, and Switch-G ask 
the controller for the path during time t8 to t15 and finally, Switch-G transfers data to 
the destination at time t16.

Now if the destination node also wants to communicate with the source node, then all 
these steps will be repeated in the reverse order. Furthermore, if these two nodes again 
communicate with each other after a specified time period to keep the flow rules in the 
flow table, then all the above-mentioned steps will be repeated again.

According to Fig. 1, if there are five switches between the source and the destination, 
then at least five Packet-In messages will be sent toward the controller; hence, five flow 
rules will be installed to transfer data toward the destination. So, the number of Open-
Flow messages (Packet-In and Flow-Add) sent over the control channel by the routing 
apps/modules (circuitpusher, fwd, simple_switch, simple_switch_12, simple_switch_13, 
L2_learning, L3_learning, etc.) for a single path can be calculated using the following 
simple equation:

where “S” is the number of switches included in the path. Most of the controllers also 
send Packet-Out message toward the switch in addition to the Flow-Add message; in 
that case, “S” will be multiplied by 3. Therefore, when a host connected to the SDN com-
municates with another host located at 5 switches away, then the total number of OF 
messages will be 15 (3 + 3+3 + 3+3) and for a two-way communication between same 
hosts, this number will be doubled (2 × 15). The SDN controller and switches require 
some time and resources to generate and process each of these OF messages. So if t is 
the time required to install a single flow on a switch, then the response time (reply from 
destination) for a complete path can also be calculated by the following simple equation:

(1)OpenFlow messages = S× 2
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where “t” is the time required to install a single flow. According to the above-mentioned 
calculations, there will not be any considerable load on the controller’s processor and the 
control channel during normal traffic. However, when there is more traffic, then the effi-
ciency of the network can be affected. This does not mean that SDN is unable to process 
heavy traffic. It has the ability to aggregate existing flow rules and can install wildcard 
flow rules to forward data based on the destination MAC address only.

Centralized monitoring and fine-grained control are the important features of SDN 
through which the data can be easily monitored up to the transport layer. The data sent to, 
or received from specific ports, can be blocked or re-routed. For monitoring and security 
purposes, a flow is mostly stored as a 12-tuple with fields that match against the incom-
ing packets [17]. To monitor the data transferred over the network in detail (mac, network, 
and transport layers), a new rule is required each time when a host uses a different port to 
transfer the data. As a result, there will be hundreds or even thousands of flow rules on each 
switch during normal traffic. An attacker can exploit this feature of SDN by flooding traffic 
toward random destinations to keep the controller busy in useless route management.

In the SDN paradigm, it is easy for an attacker to launch a DoS attack by flooding packets 
with random destinations in such a way that the OF switch forwards each packet toward 
the controller to get a new flow rule. This attack will affect different components of the 
SDN infrastructure by consuming their resources such as switch’s memory, control chan-
nel’s bandwidth and controller’s processing power. This overuse of resources may result 
in low throughput, high latency or a legitimate packet drop. In SDN, the DoS attack does 
not necessarily make the entire network or some of its segments unavailable; rather it may 
overload network resources in such a manner that the data is not delivered as desired [7].

Due to having different forms and the ability to target different components of the 
SDN infrastructure, DoS attacks are very difficult to detect and mitigate. An attacker can 
flood packets to different hosts in the network to consume resources of the switch and 
the controller (memory and processing power) or it can send large-sized packets to dif-
ferent hosts in the network to consume their bandwidth. A legitimate user can also have 
a requirement to scan the whole network repeatedly or to send a large amount of data 
to different nodes. Hence, it is difficult for a mitigation strategy to differentiate between 
an attacker and a legitimate user. Furthermore, a mitigation approach should not have 
a tradeoff at the cost of fine-grained flow conditions (source and destination’s MAC 
address, IP address, and port numbers, etc.).

Related work
During the past few years, several authors have proposed different methods to counter the 
DoS attack in SDN. Kandoi et al. [7] presented an approach that used enhanced configura-
tion parameters in order to decrease harmful effects of DoS attacks in SDN. They enforced 
the rate-limit to the number of packets sent toward the controller in a unit time. They also 
recommended flow aggregation and optimal idle timeout value to avoid overflow. The idle 
timeout has a large value in networks where hosts communicate more frequently with one 
another. More space is created in the flow table by the aggregation of two or more rules 
with a similar destination or by keeping the short idle timeout value of flows for their early 

(2)Response Time = (S× t)× 2
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removal from the flow table. Due to flow aggregation, there will be a loss of packet statis-
tics and other information from switches. Kloti et al. [12] performed the security analysis 
on the STRIDE model and proposed some solutions that could be helpful to mitigate DoS 
attacks in SDN. These solutions include rate limiting, flow timeout adjustments, and flow 
aggregation. Shin et al. [18] suggested an approach, called Avant-Guard, by adding connec-
tion migration and actuating triggers in OF switches to add some intelligence in the data 
forwarding plane. In this approach, upon receiving a new data packet, a switch verifies 
the source by the TCP handshake. If the handshake is successful, then it informs the con-
troller, which permits connection migration to start the data transfer. Actuating triggers 
enable the data plane to report the network status and payload information to the control 
plane. Wang et al. [19] introduced OF-Guard to overcome the limitations of Avant-Guard 
by including the data plane cache. OF-Guard is triggered when the utilization of network 
resources crosses a predefined limit, after which all new packets seeking the destination 
are sent toward the data plane cache, which stores proactive flow rules, caches table-miss 
packets, and separates fake packets. Both the Avant-Guard and OF-Guard require modifi-
cations in OF switches and are limited to control the TCP traffic only.

Oktian et  al. [20] designed an application to mitigate the DoS attack in the Beacon 
controller by using a table to save the related information about switches and connected 
hosts in the network. The controller collects the IP and MAC addresses of connected 
hosts by inspecting packets at the network startup. In addition to IP and MAC addresses, 
the status of ports and other switch information is also saved. By having this informa-
tion, the controller has full knowledge of the network topology, attached hosts, and the 
status of switch’s ports. Upon leaving or joining of each host, the controller updates this 
information, which helps it to block all traffic generated by an attacker as near as possible 
to its source to reduce its effects. This application only deals with MAC/IP spoofing. Bely-
aev et al. [21] suggested a technique to make SDN more resistive during the DoS attack 
with load balancing and is combined with an intrusion detection and mitigation system 
termed Callophrys. It first collects the topology and load information of the network, and 
then overrules the network with static information collected by the Bellman-Ford path 
finding algorithm. It splits the path having high traffic load with alternative routes. This 
technique shifts the load to alternate routes, which is only possible when there exist mul-
tiple paths between the source and the destination. Wang et al. [22] presented a flexible 
control structure to secure cloud computing and SDN with fast and specific attack reac-
tion. It consists of two modules; one for anomaly-based detection and the other for miti-
gation. The detection module contains attack patterns in a database, which are matched 
with new flow packets. If an attack is detected, then the mitigation module takes an 
appropriate action after notifying the controller. The malicious packet is further investi-
gated; if it belongs to a new type of attack, then the database is updated accordingly.

Dao et al. [23] proposed a solution assuming that abnormal users transmit less num-
ber of packets than a pre-defined value ‘n’ during each connection. If the transmitted 
packets are less than ‘n’, then a flow rule is installed to block traffic from that user. Addi-
tionally, flow rules installed for new packets contain lower values of the soft and hard 
timeouts to decrease their lifetime. Due to the low hard timeout value, the load will be 
more on the controller and the control channel. Kuerban et al. [24] proposed a simple 
method to control bandwidth, called FlowSec, where the controller constantly monitors 
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bandwidth of each port of the switch. If it crosses a predefined limit, then it is reduced 
to half in order to decrease the number of packets sent toward the controller. Padmaja 
et al. [25] presented a solution, in which a new entry is introduced into the flow table to 
keep packets of a flow in the packet buffer, to avoid the race condition. In a race condi-
tion, redundant flow requests sent to the controller cause it to calculate more flow rules 
for the same flow. Dridi et  al. [26] suggested SDN-Guard, which coordinates with an 
intrusion detection system to reduce the effect of DoS attack on the SDN infrastruc-
ture. It has three modules: flow management, monitoring, and aggregation. The flow 
management module assigns those routes to malicious packets that have low bandwidth 
consumption. The high timeout values are also assigned to suspicious flows to decrease 
the control channel communication. To avoid table overflow, malicious flow entries are 
aggregated by the aggregation module. Flow management requires multiple routes and 
flow aggregation will result in the loss of information from switches.

Zhang et  al. [27] suggested Multi-Layer Fair Queuing (MLFQ) to counter DoS 
attacks by maintaining queues of Packet-In messages in the controller, where mes-
sages received from each switch are placed in the corresponding queues. The control-
ler applies the Weighted Round Robin (WRR) algorithm to pool requests from these 
queues. When the number of packets in a queue crosses a predefined threshold, then 
that queue is expanded into a per-switch queue. If the size of a queue is still larger, 
then the queue is further expanded into the per-port queue. On the other hand, if the 
size of the sub-queue drops below the threshold, then the queues are aggregated into 
a single queue again. This approach requires additional computation for multi-layer 
queue management, so the legitimate hosts connected to the switch will face more 
delay when the attacker exists. Wang et al. [28] presented an approach, called Flood-
Guard, which introduced a proactive flow rule analyzer in the controller to install 
proactive flow rules during the attack to reduce burden on the controller. The control-
ler also has a migration agent, which is responsible to direct all table-miss packets 
toward the data plane cache, which temporarily stores packets to guard the data plane 
and sends them toward the controller in a rate-limited fashion using Round Robin 
(RR) scheduling. This solution requires additional hardware (data plane cache), modi-
fication in OF switches, and introduces a delay due to the rate limitation.

Wang et al. [29] proposed a rounding-based load balancing solution to reduce con-
trol channel congestion and response time for SDNs having multiple controllers. This 
algorithm performs link load balancing and controller load balancing. The authors 
also suggested an efficient mechanism for network status maintenance to improve 
their approach. Ma et al. [30] proposed a load balancing mechanism for multiple con-
trollers by implementing a hierarchical control with a meta-control plane and local 
control plane. The meta-control plane analyzes the resource utilization of the local 
control plane to optimize the performance, whereas the local control plane optimizes 
the performance of the data plane and eliminates the bottleneck effect. Ganesh et al. 
[31] proposed a load balancing mechanism by implementing a dynamic load balanc-
ing algorithm to distribute different traffic flows via different parallel paths.

As a result of the above study, the DoS mitigation approaches can be divided into 
two categories. The first category contains approaches that block malicious traffic by 
installing rules to drop all packets from malicious hosts. The second category contains 
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approaches that do not drop malicious traffic. These approaches reduce the effects of 
DoS attacks by load balancing, priority scheduling, or using trust values, as it is very dif-
ficult to accurately figure out in such a short time that the data sent by a node is fake or 
legitimate. Therefore, approaches in the second category are more reliable because using 
these approaches, there are no chances of a legitimate data drop. The proposed system 
belongs to the second category, which reduces the effects of the DoS attack by optimiz-
ing control traffic toward the SDN controller in order to reduce its load.

Proposed parallel flow installation model
It is necessary to install flow rules with more and more matching fields for fine-grained 
management and monitoring of data statistics. For this purpose, the OF specification 
defines a default set of 45 matching fields [2]. Moreover, as the number of matching 
fields for the flows increases, more traffic will flow toward the controller in the form of 
Packet-In messages and the controller will utilize more resources to process them. Dur-
ing normal traffic, SDN works fine with more matching fields; however, when there is a 
DoS attack in progress, then the number of packets sent over the control channel will 
increase exponentially. This attack will affect SDN in the following ways:

•	 Response time from the destination will increase
•	 Controller’s CPU utilization will increase
•	 Control channel traffic will increase.

To launch a DoS attack, the attacker generates fake route requests by sending fake 
data packets toward different destinations. Upon receiving these data packets, the OF 
switches that lie within the path send Packet-In messages to the SDN controller. In 
response, the controller sends Flow-Add messages to switches to forward data toward 
the destination. The number of control messages (Packet-In and Flow-Add) produced 
as a result of each fake request can be calculated using Eq. (1). More fake requests will 
result in the generation of more control packets due to which the controller’s resources 
will saturate and its capacity to handle requests will decrease. Now, to reduce the impact 
of the DoS attack, it is essential to reduce the number of control messages, as the num-
ber of control messages is directly proportional to the controller’s CPU utilization.

To reduce the number of control messages during the DoS attack, a Parallel Flow 
Installation (PFI) model is proposed by modifying the controller’s behavior from lin-
ear to parallel for flow rule installation. A traditional SDN controller only replies to 
the switch from which it receives the Packet-In message as described in Algorithm 1; 
whereas, in the proposed model, the controller sends Flow-Add messages to all 
switches that lie on the path between the source and the destination. This is because it 
knows that these switches that are included will demand the path toward the destina-
tion in the future. To convert the behavior of the controller from linear to parallel, the 
function handling the Packet-In message is modified in such a way that it makes a list 
of switches that lie on the path from the source to the destination, and sends Flow-
Add messages to them without receiving requests to install flow rules from them.

The proposed model is explained in Fig. 2 with an example, which shows the time 
intervals to transfer data from the source (Host-1) to the destination (Host-8). At time 
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t1, Host-1 sends data to Switch-D, which searches its flow table for possible existence 
of a matching flow rule to forward data toward the destination. Upon failure in find-
ing the flow rule, Switch-D sends a Packet-In message toward the controller at time 
t2. The controller calculates the complete path from the source to the destination and 
sends flow rules to all switches (D, B, A, C, and G) present in the path at time t3. At 
time t4, the data moves from Switch-D to Switch-G through Switches B, A and C, and 
finally to Host-8, as the flow rules to forward data are already installed on them. An 
important thing to note in the proposed approach is that the controller sends flow 
rules to those switches only that are included in the path between the source and 
destination hosts. So, the controller will not forward any flow rule to Switch-E and 
Switch-F because they are not included in the path.
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Fig. 2  Working of the proposed parallel flow installation system
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According to the proposed model, as described in Algorithm 2, a single Packet-In mes-
sage is sufficient to install flow rules on all switches included in the path from the source 
to the destination, so the number of OF messages over the control channel for a path can 
be calculated from the modified form of Eq. (1) as:

where “S” is the number of switches included in the path.
Consider another scenario, which has 8 switches in the path from the source to the 

destination. As in SDN, each switch along the path will send a Packet-In message toward 
the controller in order to get the flow rule to forward data from the source to the des-
tination. In response to each Packet-In message, the controller will send a Flow-Add 
message containing instructions to forward data toward the destination. So according 
to Eq.  (1), there will be a total of 16 OF messages (8 Packet-In and 8 Flow-Add mes-
sages) and if the processing time of each packet is considered to be 1 ms, then the path 
establishment time will be 16 ms. Whereas in the proposed PFI model, only one Packet-
In message will be sent toward the controller from the first switch along the path, in 
response to which the controller will send Flow-Add messages to all 8 switches that lie in 
the path from the source to the destination. Therefore, according to Eq. (3), there will be 
9 OF messages (1 Packet-In and 8 Flow-Add messages) and the path establishment time 
will be 9 ms.

Table 1 shows the OF messages for different numbers of switches in the path from the 
source to the destination.

In a similar way, the response time from the destination after installing two-way flows 
will be according to the following equation:

where “t” is the time required to install a single flow and “α” is the additional processing 
time required by the controller to install parallel flows.

The above example logically proves that the proposed model just sends one Packet-
In message to the controller for a complete path and comparatively takes less time to 

(3)OpenFlow messages = S + 1

(4)Response Time = (t+ α)× 2
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establish a path from the source to the destination. So, there will be less traffic toward 
the controller, as a result of which the controller will process fewer numbers of packets. 
In this way, the proposed model reduces the response time and saves the control channel 
bandwidth and the controller’s CPU resources. The flowcharts for both linear and paral-
lel flow installation mechanisms are shown in Fig. 3. The dotted part is optional and is 
executed only when there are multiple switches along the path.

Experiments and results
The proposed PFI model is implemented by modifying routing mechanisms of POX’s 
L2_learning [16] and RYU’s Simple_switch_13 [15] modules from linear to parallel 
for OpenFlow [2] version 1.1 and 1.3 respectively. To evaluate the proposed model, all 
experiments are performed by emulating a network topology, as shown in Fig. 2, and by 
using Mininet (version 2.3.0) [32] virtual network that is installed on a virtual machine 
and connecting it with remote POX and RYU controllers running on another virtual 
machine. To generate normal traffic, a script is run on Host-2 and Host-4 that send TCP 
traffic to Host-7 and Host-5 respectively, which changes the destination port after every 
5 s in order to request new flow rule from the controller. A DoS attack is launched by 
executing a script on Host-3, which picks a host from a randomly generated list of IP 
addresses within the network range and sends a data packet to its random port after a 
0.01 s interval so that each packet demands a new rule from the controller. The perfor-
mance of the proposed PFI model is compared with default routing algorithms of POX 
and RYU (L2_learning and simple_switch_13 described in “Working of SDN and DoS 
attacks” section) on different benchmarks such as response time, controller’s CPU utili-
zation, control channel bandwidth, and flow requests sent to the controller. The results 
for each benchmark are discussed below for both the controllers (POX and RYU) with 
and without a DoS attack.

Response time

It is the time duration between sending a packet and receiving its reply from the destina-
tion. Response time is calculated by sending a ping message from “Host-1” to all other 
hosts. The experiment was repeated multiple times to calculate the average response 
time.

Table 1  OpenFlow messages for a complete path from source to destination

No. of switch(es) 
in path

Linear flow installation Proposed parallel flow installation

Packet-In Flow-Add Total Packet-In Flow-Add Total

1 1 1 2 1 1 2

2 2 2 4 1 2 3

3 3 3 6 1 3 4

4 4 4 8 1 4 5

5 5 5 10 1 5 6

6 6 6 12 1 6 7

7 7 7 14 1 7 8

8 8 8 16 1 8 9
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Figure 4 shows the average response time for each host for both POX and PFI control-
lers without a DoS attack (dashed bar and wave bar respectively) and with a DoS attack 
(diagonal line bar and crossed line bar respectively). The shorter lengths of bars for PFI 
and PFI-DoS can be observed as compared to the bars for POX and POX-DoS respec-
tively, which shows that the PFI model has a shorter response time as compared to POX 
for almost all hosts. The average response time of POX and PFI without a DoS attack is 
38.26 ms and 26.29 ms respectively for all hosts, while the average response time of POX 
and PFI with a DoS attack is 52.14 ms and 39.96 ms respectively. So, the proposed sys-
tem has a 31.29% less response time in the absence of a DoS attack, while it has a 23.36% 
less response time in the presence of a DoS attack.

Similarly, Fig. 5 shows the average response time for each host for both RYU and PFI 
controllers without a DoS attack (dashed bar and wave bar respectively) and with a 
DoS attack (diagonal line bar and crossed line bar respectively). Here, it can again be 
observed that the bars for PFI and PFI-DoS are shorter as compared to the bars for RYU 
and RYU-DoS respectively, which clearly indicates that the PFI model has a shorter 
response time as compared to RYU. Here, the average response time of RYU and PFI 
without a DoS attack is 9.42 ms and 6.79 ms respectively for all hosts, while the aver-
age response time of POX and PFI with a DoS attack is 15.09 ms and 12.31 ms respec-
tively. So, the proposed system has a 27.88% less response time in the absence of a DoS 
attack, while it has 18.43% less response time in the presence of a DoS attack. The reason 
behind this reduction in response time is the parallel flow installation, in which the con-
troller processes only one Packet-In message for a complete path from the source to the 
destination and installs flow rules on next switches in the path before the arrival of data 
on those switches.

CPU utilization

It is the percentage of workload on controllers during the simulation period. To cal-
culate the CPU utilization, its per-second usage was recorded for a period of 300 s.

Figure 6 clearly shows that the CPU usage of PFI-DoS (solid line with spheres) is lower 
than that of POX-DoS (solid line with squares) during the DoS attack, while during 
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normal traffic, the CPU usage of both PFI (dotted line with spheres) and POX (dotted 
line with squares) are almost equal. The average CPU utilization for POX and PFI with-
out a DoS attack is 5.87% and 6.11% respectively. On the other hand, the average CPU 
utilization for POX and PFI with a DoS attack is 20.47% and 12.82% respectively. So the 
proposed model has about 37.39% less CPU utilization during the DoS attack.

Similarly, in Fig. 7, it can be observed that the average CPU utilization of RYU (dot-
ted line with squares) is almost equal to that of PFI (dotted line with spheres) during 
the normal traffic, which is 7.04% and 6.96% respectively. On the other hand, during a 
DoS attack, PFI-DoS (solid line with spheres) has much lower average CPU utilization as 
compared to RYU-DoS (solid line with squares), which is 20.70% and 30% respectively. 
So the proposed model has about 31.01% less CPU utilization during the DoS attack. 
The reason for the reduction in CPU utilization is the parallel flow installation where the 
controller has to process less number of Packet-In messages for the whole path from the 
source to the destination. As a result, its CPU utilization will be reduced.
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Control channel bandwidth

It is the amount of data transferred over the control channel between the controller and 
the switches. As discussed in the previous section, switches in the proposed approach 
send less number of Packet-In messages to the controller, so the amount of data toward 
the controller is also low. To calculate the amount of data sent toward the controller, the 
per-second network statistics were recorded for 300 s duration.

Figure  8 shows the average amount of data transferred between the controller and 
switches for POX (dotted line with squares) and PFI (dotted line with spheres) con-
trollers with the normal traffic is 15.08  kb/s and 6.61  kb/s respectively. On the other 
hand, during the DoS attack, the average amount of data transferred for PFI-DoS (solid 
line with spheres) is 83.40 kb/s, which is much smaller than POX-DoS (solid line with 
squares) having a data rate of 269.43 kb/s. So, there is about 56.17% and 69.04% decrease 
in the data rate for PFI and PFI-DoS respectively.

In the same way, Fig. 9 shows that the average amount of data transferred between 
the controller and switches for RYU (dotted line with squares) and PFI (dotted line 
with spheres) controllers with the normal traffic is 7.0 kb/s and 4.31 kb/s respectively. 
On the other hand, during the DoS attack, the average amount of data transferred for 
PFI-DoS (solid line with spheres) is 134 kb/s, which is much smaller than the RYU-
DoS (solid line with squares) having a data rate of 301 kb/s, which again shows that 
the proposed model has 38.46% and 55.62% less data transfer rate as compared to 
RYU and RYU-DoS respectively. This reduction in the use of control channel band-
width is due to the decrease in the number of Packet-In messages sent toward the 
controller from the switches.

Flow requests

It is the request, which is sent to the controller via the control channel from an OF 
switch to get a flow rule to transfer the data. It is sent in the form of a special packet 
called a Packet-In message.
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In Fig.  10, the bars show that the Packet-In messages sent toward the controller 
for POX (dashed bar) and PFI (wave bar) with the normal traffic are almost equal, 
whereas those for PFI-DoS (crossed lines bar) are much less than POX-DoS (diagonal 
lines bar). The average Packet-In messages sent toward the controller by each switch 
for POX-DoS and PFI-DoS are 7730 and 1901 respectively. So, the proposed approach 
sends about 75.40% less Packet-In messages, as represented in Eq. (3).

Similarly in Fig. 11, the bars show that the average Packet-In messages sent toward 
the controller by each switch for RYU (dashed bar) and PFI (wave bar) with normal 
traffic are 287 and 96 respectively, whereas for RYU-DoS (diagonal lines bar) and PFI-
DoS (crossed lines bar), these messages are 8353 and 2369 respectively. So, the pro-
posed model sends 66.53% and 71.63% fewer packets with normal traffic and with a 
DoS attack respectively. This reduction in flow requests is directly related to the par-
allel flow installation.
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Comparison with other approaches

Table  2 shows the comparison of the proposed model with other state-of-the-art 
approaches on the basis of various parameters, such as additional hardware require-
ment, switch modification, loss of fine-grained flow information and additional delay. 
The comparison shows that the proposed model does not have these kinds of drawbacks.

Conclusions and future work
The centralized nature of software defined networking (SDN) makes it vulnerable to 
DoS attacks, which can disable the whole network or a component of the network and 
can degrade its performance. The study of existing techniques to counter DoS attacks 
in SDN shows that some of these techniques use complex methods, require additional 
equipment, or need modified switches. In addition, these techniques may also introduce 
additional delay in the routing process and can add more traffic to the control channel 
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for verification purposes. These techniques may drop legitimate packets or are unable to 
detect intelligent DoS attacks. So it is very difficult to completely mitigate DoS attacks 
without these tradeoffs. Considering all the above-mentioned problems, a parallel flow 
installation (PFI) model is proposed to make SDN (especially those that are configured 
for fine-grained control over network traffic) more tolerant to DoS attacks. Although 
the proposed model does not stop the DoS attack directly, it efficiently saves the control 
channel bandwidth and the controller’s processing power to make it available for legiti-
mate users. Furthermore, the proposed model can be used with any existing method to 
make it more efficient as well as to increase the serving capacity of the existing SDN 
infrastructure. The results of our experiments show that the proposed PFI model 
reduces the time to establish a path, lowers controller’s processing, and decreases con-
trol channel traffic. These results will encourage the SDN research community to make 
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Table 2  Comparison with other state-of-the-art approaches

Approach/
Reference

Mechanism used Additional 
hardware

Switch 
modification

Loss 
of information

Additional 
delay

Kandoi et al. [7] Flow aggregation
Idle timeout management

No No Yes Yes

Kloti et al. [12] Rate limiting
Flow aggregation

No No Yes Yes

Belyaev et al. [21] Load balancing Yes No No Yes

FlowSec [24] Rate limiting No No Yes Yes

Padmaja et al. [25] Flow rule for buffer action No Yes No Yes

SDN-Guard [26] Flow aggregation
Timeout management

No No Yes Yes

Zhang et al. [27] Multi-layer queue manage-
ment

No No No Yes

FloodGuard [28] Packet migration
Proactive flow rule calculation

Yes Yes Yes Yes

Wang et al. [29] Controller load management Yes No No Yes

Proposed model Parallel flow installation (PFI) No No No No
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SDN more efficient and reliable. In the future, we plan to test the proposed model for a 
complex topology to check its scalability and design a simple, efficient and lightweight 
DoS attack detection and mitigation system for SDN.
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