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Introduction
Indoor localization is essential to enable location based services (LBS) such as indoor 
navigation [27, 35, 37, 84], health rehabilitation [14, 45, 49, 54] and human–computer 
interaction (HCI) devices [47, 70, 83, 85]. Aiming at higher accuracy, shorter time 
latency and lower infrastructure requirement, many localization systems have been 
designed for various scenarios. Generally, localization algorithms can be described as a 
two-stage procedure [41]. In the first step, geographic information such as distances and 
angles are measured. In the second step, the target is located using those data. Physical 
phenomena such as Time of Flight (ToF) [9, 40, 50, 51], Doppler Effect [20, 42, 76, 85] 
and phase shift [64, 70, 77, 81] assist in the first step. Geometric knowledge [9, 76, 81] 
and optimization methods [24, 40, 42] are common choices for the second step.

In addition to the acoustic signal on which we will concentrate in this survey, other 
ways have also been exploited for localization systems in many scenarios. Inertial sen-
sors [49, 62, 87] are frequently utilized due to their highly accessible equipments and 
straightforward principles. An intuitive idea is using the double integration of the accel-
eration to estimate the displacement and applying the gyroscope to predict the direc-
tion, which however leads to significant location error with even a small measurement 
error [76]. Although it is challenging to achieve high accuracy with inertial sensors, 
we can still leverage them as an auxiliary tool in acoustic localization. For example, 
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Montage [80] attains an initial position through elapsed time between the two time-of-
arrivals which is introduced in detail in “Elapsed time between two time-of-arrivals” sec-
tion, and updates the position through the movement vector from inertial sensors. CAT 
[42] leverages inertial sensors to improve the accuracy while plugging their readings into 
an objective function. Tracko [29] applies inertial sensors to correct its 3D estimation. 
Swadloon [27] applies the accelerometer and the gyroscope to obtain the direction of the 
acoustic source.

Radio frequency (RF) signals share many characteristics with acoustic signals. To some 
extent, many ideas applied in acoustic localization are borrowed from RF signals. For 
instance, FingerIO [46] employs orthogonal frequency-division multiplexing, Starta [77] 
uses channel impulse response and Guoguo [40] applies decoded symbols, which are 
originally designed for digital communication. Currently, commercial companies like 
Google invest a lot in RF localization. Their ongoing products, like Soli [36], can achieve 
sub-millimeter accuracy. Despite the attractive accuracy, Soli applies millimeter wave, 
which is very demanding on infrastructure and not applicable for wide deployment. 
When compared to more common RF signals like Wi-Fi, acoustic localization gains 
strength as what it requires are mainly microphones and speakers, which are widely 
equipped on many smart devices. Another advantage of the acoustic signal is that the 
sound speed is much lower than the speed of the RF signal, which implies potential for 
higher accuracy [59].

Vision localization is currently widespread on the market, e.g. Kinect [63], Wii [60] 
and LeapMotion [71], and etc. Different from RF localization, vision localization makes 
no interference to ubiquitous RF based devices [61]. The main limitation of vision locali-
zation is that, it is severely constrained by the lightening condition [78] and suffers from 
the privacy issue [53]. Currently it is not applicable to smartphones and smart watches 
because of its high computation overhead and infrastructure requirement [13].

Acoustic localization wins a place as it can achieve a relatively high accuracy and low 
time latency with equipments already embedded in current smart devices. The acoustic 
signal is first applied in outdoor localization to detect aircrafts, which is substituted by 
radars as the RF signal is faster and more effective for long distances. When it comes to 
indoor localization where GPS does not work well [80], the acoustic signal becomes irre-
placeable due to its lower speed, which leads to high accuracy when estimating ToF [59]. 
Cricket [51] is the first indoor localization system which adopts acoustics and utilizes 
ToF. It is actually a combination of acoustic signals and RF signals. It has a very impres-
sive accuracy of 12 cm, while being prevented from wide deployment due to its high 
noise. After Cricket, ToF becomes widespread in acoustic localization. Later in 2012, 
Doppler effect is introduced in [48] to estimate the motion direction and achieves the 
mean angular error within 18◦ . Swadloon [27] further turns Doppler effect to phase shift 
and achieves a maximum tracking error of 1.73 m in an area of 2000 m 2 . AAmouse [76] 
depends on Doppler effect to track a mobile phone. Doppler effect cannot enable fine-
grained localization because of the time-frequency resolution problem [12]. FingerIO 
[46] uses phase shift to dissolve the unsynchronization issue in ToF based localization. 
Its high accuracy inspires LLAP [34] and Strata [77], thus phase shift is widely used to 
acoustic localization.
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Localization can be categorized as range-based localization and range-free localiza-
tion. Range-free localization is more common with the RF signal when high accuracy is 
not the primary principle [59] and coarse accuracy is enabling to most sensor network 
applications [23]. Range-based localization is rigid with the accuracy of measured geo-
graphic data, on which the acoustic signal performs better due to its lower speed [59]. To 
the best of our knowledge, existing acoustic localization systems are range-based, which 
we further divide into two categories: absolute range based localization and relative 
range based localization. Absolute range based localization lRelative range based locali-
zationeverages absolute distances between the target and different anchor nodes to cal-
culate the coordinate of the target. Each location update is obtained from scratch rather 
than renewing the previous location. Relative range based localization first obtains an 
initial location of the target, then updates the location through monitoring the subse-
quent motion of the target.

This survey classifies acoustic localization systems into absolute range based localiza-
tion and relative range based localization. We further subdivide each class based on the 
principles the geographic data is measured. We believe the performance of a localiza-
tion system is more dependent on the granularity of the geographic data. The rest of the 
survey is arranged as follows: we summarize the mutual challenges of acoustic localiza-
tion systems in “Challenges” section and provide a notation table for better reading in 
“Notations” section. Absolute range based acoustic localization and relative range based 
localization are introduced in “Absolute range based localization” and “Relative range 
based localization” sections respectively. In “Future work” section, we analyze the future 
work. We conclude our survey in “Conclusion” section.

Challenges
In spite of different principles and methods, all acoustic localization systems face the fol-
lowing three mutual challenges, which should be taken into considerable consideration 
when we design a new system:

•	 The first one is signal-to-noise ratio (SNR). SNR is the ratio between the power of 
our desired signal to its background noise [59]. The higher the ratio is, the better the 
localization system is. If SNR is too low, the receiver may have trouble detecting the 
desired signal. The received signal is attenuated for long-distance travel and distorted 
by the communication channel. It is also constrained by the maximum energy the 
transmitter can provide [50].

•	 Multipath effect is another common issue [50]. We hope to detect the signal reflected 
by the target or coming from the direct path. Due to the complex environment, the 
received signal is the superposition of signals reflected by different objects. Some-
times we assume signals reflected by objects whose distance to the transmitter 
exceeds a certain distance are too weak to produce an effect. Still, methods are in 
need to distinguish the target.

•	 The third mutual challenge is the frequency selection of speakers and microphones. 
As we have mentioned above, a satisfying localization system shows low requirement 
on infrastructure, so we would better make use of speakers and microphones embed-
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ded in COTS smart devices. For example, EchoLoc [9] employs a smartphone with 
two speakers to track a hand. It has taken into full consideration that the top speaker 
and the bottom speaker are designed for various purposes, so their frequency 
responses are very different.

In addition to the three mutual challenges, different methods are accompanied by new 
challenges. For example, ToF suffers from the time asynchrony and Doppler effect 
undergoes the time-frequency resolution problem [12]. Those challenges will be dis-
cussed when we introduce specific methods in the following sections.

Notations
(Table 1).

Absolute range based localization
Absolute range based localization monitors the range between the transmitter and the 
receiver. Usually, the target serves as a transceiver or a reflecting object. In contrary to 
relative range based localization which studies the displacement of the target, absolute 
range based localization investigates the flight of the signal between the target and an 
anchor node. It achieves tracking through continuous localization from scratch. The 
main mechanism employed in this category is ToF.

Time of Flight

Time of Flight (ToF) is the time it takes for a signal to travel from its transmitter to its 
receiver [59]. If we denote the absolute range between the transmitter and the receiver 
by d, we have d = c × t where c is the speed of sound and t is the ToF. With several 

Table 1  Symbols used in this paper

Symbol Description

A Amplitude

B Bandwidth

c The sound speed

d Distance

fmax The maximum frequency

fmin The minimum frequency

fRx The frequency of the received signal

fTx The frequency of the transmitted signal

Fs Sampling rate

k The slope of a chip signal

Rx Receiver

S(t) Received signal

t Timestamp (usually with a subscript)

td Propagation delay

T Time interval

Tx Transmitter

v The speed of the target

α Attenuation factor

(x, y, z) 3D location coordinate
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anchor nodes (usually one anchor node for 1D localization, two for 3D and three for 3D) 
and their corresponding absolute ranges to the target, we can locate the target.

There are three primary challenges for ToF [41, 50].

•	 The first one is the speed uncertainty. We know that the speed of sound varies 
when the temperature and the humidity change. 1 ◦ C offset in the temperature will 
cause about 0.606 m/s drift in sound speed when the humidity is 0% . Some smart 
devices do have in-built thermometers and hygrometers. Systems like [19, 59] pro-
vide details on how to improve their accuracy with thermometers equipped in COTS 
smartphones, but sensors in COTS smartphones often fail to provide us with precise 
measurements of the surrounding environment.

•	 The main issue we need to conquer in ToF based localization is about unsynchro-
nized clocks. ToF is measured by the difference of timestamps taken by local clocks 
from the transmitter and the receiver. It is of high possibility that they are not syn-
chronized. For indoor scenarios where the mignitude of t is usually one hundred-
thousandth of c, error caused by time offset is far more serious than that caused by 
speed offset. Some localization systems seek helps from complicate instruments like 
getting synced with atomic clocks from GPS. Yet most of them design subtle mecha-
nisms to solve the issue.

•	 Another challenge for ToF is the sending uncertainty ts and receiving uncertainty tr . 
The sending uncertainty refers to the misalignment between the transmitter times-
tamp and the actual signal emission time, while the receiving uncertainty is the mis-
alignment between the receiver timestamp and the actual signal reception time. In 
[50], researchers conducted several experiments to measure the magnitude of ts + tr 
for a COTS mobile phone. They find that the time offset can add up to be several 
milliseconds. Factors like system load, software delay and interrupt handling delay 
can cause uncertainty.

ToF can be partitioned into time difference of arrival, one-way time-of-flight and round-
trip time-of-flight. In this section, we further divide one-way time-of-flight into elapsed 
time between two time-of-arrivals and one-way flight with an anchor network. The for-
mer one is designed specially for device-to-device localization which asks both devices 
to be equipped with one microphone and one speaker. The second type requires one side 
serves as a speaker and the other side as a “listener”.

Time difference of arrival

Time Difference of Arrival (TDoA) eliminates the requirement of the emission time [31]. 
As long as signals are transmitted simultaneously or at a known pattern, we can calcu-
late the distance with TDoA.

Cricket [51] leverages TDoA between the RF signal and the ultrasonic signal to 
achieve in-building localization. With six beacons deployed on the ceil, Cricket can 
achieve a median distance error of 12 cm to locate a mobile listener. Each beacon 
simultaneously emits a specially-designed RF signal and an ultrasonic pulse as illus-
trated in Fig. 1a. The known speeds of the RF signal and the ultrasonic signal as well as 
their TDoA are used to calculate the distance between the listener and each beacon. 
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The ID information of each beacon is decoded in their RF signals so the listener can 
distinguish which beacon corresponds to the calculated distance. The work of Cricket 
has inspired follow-up research on acoustic localization. Due to the fact that cur-
rent smart devices are not equipped with ultrasonic sensors, many subsequent works 
choose inaudible signals among the spectrum of 17–24 kHz considering the sampling 
rate provided by current smart devices.

In [75], an in-car system is designed to locate the driver’s phone by four stereo 
speakers. When the system is triggered by an incoming phone call, the phone will 
send an indication to the stereo system through Bluetooth. After the stereo system 
receives the indication, speakers will transmit high-frequency beeps at a fixed interval 
as illustrated in Fig. 1b, which are later recorded by the phone. To decide the relative 
position of the phone between two speakers i and j, the time difference of two speak-
ers emitting signals �tij and the time difference of detecting signals �t ′ij are compared. 
If �tij > �t ′ij , it means the phone is on the seat next to the speaker j. Otherwise the 
phone is closer to the speaker i. Since �tij is known as a system setting, and �t ′ij is cal-
culated by measurements from the phone, the clock unsynchronization issue between 
the stereo system and the phone is avoided. The main challenge for this system is the 
heavy multipath environment in the car. The correlation and peak detection method 
is no longer applicable. In [75], the first sample of a beep is identified by change-point 
detection. The likelihood that the ith sample Xi comes from a specific beep is defined 
by l(Xi) = Xi − µ where µ is the mean value of all the samples from that beep. Next, 
an evaluation metric si = max{si−1 + l(Xi), 0} is defined and s0 = 0 . The first sample 
whose si exceeds a predefined threshold will be regarded as the starting sample of that 
beep.

The configuration of infrastructure in [32] is similar to that of Cricket. Multiple speakers 
are already in place for locating a moving device. In Cricket, the ID information of each 
anchor is decoded in their RF signals, while rate-adaptive chirps are designed in [32] to dis-
tinguish signals from different anchor speakers. Another different point between Cricket 
and [32] is that the distance to an anchor node is not directly calculated through TDoA in 
[32]. On the other hand, the coordinate of the target is calculated through a system of equa-
tions. Suppose we want to calculate the 3D coordinate of the target, then we need 4 speak-
ers whose coordinates are known, which are denoted by (xi, yi, zi), i = 1, 2, 3, 4 . Each 
speaker simultaneously transmits a unique chirp, and they are received by the receiver one 
after another. If the TDoA of signals from speaker i and j is denoted by Tij , then 

Beacon Client

RF Signal

Ultrasound

a  Different kinds of signals are emitted
simultaneously

Speaker 1

Speaker 2

Microphone

t0 t1 t2

b  Same signals are emitted from different
speakers at a known time schedule

Fig. 1  Two different cases of TDoA
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c×Tij =
√

(xi − x)2 + (yi − y)2 + (zi − z)2−
√

(xj − x)2 + (yj − y)2 + (zj − z)2 where i 

and j range from 1 to 4 and they can not be identical. The coordinate of the target (x, y, z) is 
obtained by solving those equations.

While the TDoA between a RF signal and an ultrasonic signal is applied in Cricket, 
and the TDoAs among multiple speakers are leveraged in [32, 75], AMIL [21] on the 
other hand measures the TDoAs of consecutive beeps emitted by a moving transmitter 
at a predefined pattern. TDoA is actually used for improving accuracy in AMIL. Basi-
cally, it applies inertial sensors to track the transmitter’s coordinate, which is known to 
be unprecise because of the double integration. Supposing that the transmitter emits n 
beeps, its coordinate when emitting the ith beep is (xi, yi) . (x0, y0) is set to be the ori-
gin. The displacement between the transmitter and a passive listener from the first 
beep to the ith beep is ddi =

√

(x − xi)2 + (y− yi)2 −
√

x2 + y2, i = 2, 3, . . . , n where 
(x,  y) is the listener’s coordinate. If we denote the time interval between emitting the 
first beep and the ith beep by �t and the interval between receiving them by �T  , we 
have ddi = c(�T −�t) . n− 2 linear equations are thus obtained and the least squares 
method can be employed to find an approximate solution. To reduce computation over-
head, AMIL picks 3 from the n beeps to calculate the coordinate of the listener.

As a conclusion, the clock unsynchronization issue between the broadcasting system 
and the receiver is avoided in [32, 75], but all the speakers are assumed to share the same 
local clock. For Cricket, the RF signal and the ultrasonic signal are emitted simultane-
ously from the same beacon and received by the listener. The internal time systems of 
both sides are required to be highly consistent when processing the RF signal and the 
ultrasonic signal. AMIL successfully avoids time subtraction with different local clocks 
in a novel way, but it does not show advantage over time latency. Since at least 3 beeps 
are required to locate a 2D position and each beep lasts 50 ms, the total duration adds 
up to 150 ms. The final time latency can be even higher with the computation time.

One‑way Time of Flight

Elapsed time between two time‑of‑arrivals

BeepBeep [50] defines a new concept as Elapsed Time between the two time-of-arrivals 
(ETOA), which is widely applied to acquire device-to-device (D2D) distances later. The 

SA

MA

MB

SB

t1 t2

t3 t4

t5 t6

t*1 t*2

t*3 t*4

t*5 t*6

Local clock 
on Phone A

Local clock 
on Phone B

Fig. 2  Measuring the phone-to-phone distance using ETOA



Page 8 of 24Liu et al. Hum. Cent. Comput. Inf. Sci.            (2020) 10:2 

core of BeepBeep can be summarized as two-way sensing, self-recording and sample 
counting.

BeepBeep demands both devices to be equipped with one speaker and one micro-
phone. Device A and device B emit beeps in turn as shown in Fig. 2. For t1 , t2 , t3 , t4 , t5 , t6 , 
they are the time A emits its signal, the time A records the emission, the time A receives 
its own signal, the time A records the reception, the time B receives the signal from A 
and the time B records its reception of the signal from A. t∗1 , t∗2 , t∗3 , t∗4 , t∗5 and t∗6 are similar 
notations with respect to the signal transmitted from device B.

If we denote the speaker as S and microphone as M, we have d{SA,MA} = c × (t3 − t2) , 
d{SA,MB} = c × (t5 − t2) , d{SB,MB} = c × (t∗3 − t∗2 ) , d{SB,MA} = c × (t∗5 − t∗2 ) where 
d{SA,MA} is the distance between SA and MA . So are the other three notations. Since 
the two signals are emitted within one second, the distance R can be approximated 
by R = 1

2
(d{SA,MB}+d{SB,MA}) =

1

2
(c(t5− t2)+c(t∗

5
− t

∗
2
)) = 1

2
(c(t∗

5
− t3)−c(t∗

4
−

−t5))+
1
2
d{SA,MA} +

1

2
d{SB,MA} . As we can see, the last two terms are constants. As 

for the first two terms, each pair of values is obtained from the same clock and no asyn-
chrony issue will happen. The sum of the first two terms is ETOA. The idea BeepBeep 
proposed has influenced many subsequent research works, not only self-recording which 
expedites relevant 3D localization and multiuser localization, but also sample recording 
which replaces the conventional time measurement and becomes widespread in all the 
succeeding ToF-based models.

In [55], a 3D localization system is designed on the basis of ETOA. After attaining 
the D2D distance through ETOA, three additional procedures are done to achieve 3D 
localization. First, two microphones are required for each device to obtain angle infor-
mation with the assistance of the law of cosines. Second, a lookup table between the 
power and the angle is established as cues for angle estimation. Third, a rotation matrix 
is derived from the data collected by the accelerometer and the digital compass. All the 
information is fed into Extended Kalman Filter (EKF) to calculate the 3D coordinate of 
the target.

Tracko [29] is another 3D localization system applying ETOA as well as Kalman filter. 
In the first step, Bluetooth low energy (BLE) is utilized to detect the presence of other 
devices. The received signal strength of BLE is also applied to calculate a rough range. 
Next, the ETOA of acoustic signals generate a more accurate range. Kalman filter com-
bines the rough range from BLE and the relatively accurate range from acoustic signals 
to determine a 3D position, which is later adjusted by Inertial Measurement Unit (IMU) 
sensors.

FAR [82] modifies the way BeepBeep detects the arriving time of a signal and achieves 
lower latency. BeepBeep detects the arriving signal by correlating the recorded profile 
with the original signal and selects the peak. A autocorrelation is performed on the 
whole area before cross-correlation on a narrow window which is centered around the 
autocorrelation peak. The autocorrelation is between a time-domain sample sequence 
X = {p[i](i,= 1, . . . , n)} and its copied version Y which is delayed by n2 . Note that devices 
emit two identical subsequences in each tone, so X actually consists of two identical 
parts of which the length is n2 . FAR correlates the second part of X with the first part of 
Y. The key is that we can repeatedly apply the cross-correlation result in ith step to the 
(i + 1)-step, through which the time complexity is reduced from O(n2) to O(n). In the 
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end, FAR smoothes the proximity area around the autocorrelation peak of X ∗ Y  and 
applies cross-correlation to this narrow area.

Localization can also be applied to D2D file sharing. In [56], a polar coordinate based 
graph is constructed for each device based on inter-device distances measured by ETOA 
and angles returned by compasses. The relative position map of all the devices will be 
depicted on the screen of each involved device. People can share a file to a partner by 
dragging the file to the icon of the partner’s device reflected in the map.

Ping-Pong [24] is a multiuser localization system which combines ETOA and optimi-
zation techniques. After calculating pairwise distances through ETOA, it introduces an 
arbitrary origin to construct a coordinate system and builds an optimization model. If 
r is a 1× N  matrix where r1i denotes the squared distance between the origin to the 
device j, R is a N × N  matrix where Rij denotes the pairwise distance between the 
device i and the device j, Ping-Pong obtains the 3D position matrix X by minimizing 
2XXT = 1rT + r1T − R+ ǫ where ǫ is the estimation error. The derivation and details 
about the objective function can be found in [73].

Sonoloc [16] is a mobile app which can locate hundreds of devices in a large room. 
During each location updating round, a set of devices T1 are randomly selected to 
emit signals, the unselected devices are called passive devices in this round. Sonoloc 
applies ETOA to calculate the pairwise disance dAB between the transmitter A and 
the transmitter B, it calculates the coordinates of A and B through minimizing 
∑

A,B∈T1
(dAB − �SA −MB�)

2 where SA is the coordinate of A’s speaker and MB is the 
coordinate of B’s microphone. As for the coordinate of a passive device C, Sonoloc cal-
culates the distance difference of C to A and B by TDOA, which is denoted by �d . The 
same value �d can also be inferred through |�SA −MC� − �SB −MC�| . By minimizing 
the difference between the calculated value and the inferred value, the coordinate of MC 
can be obtained.

ETOA is also prevalent when it comes to the initial position acquisition of relative 
range based localization. For example, Montage [80] and TUM [74] both rely on ETOA 
to estimate the initial position, while Montage leverages inertial sensors and TUM uti-
lizes particle filter to track continuous motion.

Symbol‑based time estimation

One-way flight with an anchor network is common for in-building human tracking [27, 
38–40, 46, 81]. ETOA is also one-way flight but its equipment requirement makes it 
more like a relative ranging method between two mobile devices. The mobile device in 
this section receives signals from an anchor network and accomplishes self-localization. 
Anchor speakers achieve synchronization through the wireless communication. Another 
asynchronization issue is between the mobile and the anchor network.

Guoguo [40] applies a pre-defined symbol sequence. Time of Arrival (ToA) is esti-
mated by detecting the first sample [33] of each symbol. Walsh-Hadamard codes are 
employed for their othorgonality. Each of the M anchor speakers is assigned a unique 
sequence consist of L symbols. If the symbol duration is Ts and the guard time between 
two beacons is Tg , then the round period is M(LTs + Tg ) . To increase the update rate, 
Guoguo devises a symbol-interleaved structure. The frame is divided into symbols. 
Each beacon transmit one symbol at a time and in turn. No guard time is set. The round 
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duration is reduced to MTs . To identify the beacon, Guoguo keeps a L length pipeline 
and iteratively performs the code matching. The synchronizaton round at the beginning 
is still LTs + Tg seconds. It requires all the ML symbols to do code matching and explore 
the time offset. Moreover, the L− 1 symbols should be collected for the first update.

Transforming the time interval into the quantum of symbols and their samples is a 
very straightforward idea. Its implementation in acoustics is not easy due to the limited 
bandwidth. Guoguo successfully implements the idea but still occupies the frequency 
band from 15 kHz to 20 kHz. Next, the accuracy of Guoguo is 0.7029 seconds even with 
the symbol-interleaved structure, which is only eligible to track a low-moving human. 
Last but not the least, Guoguo applies statistical approaches to estimate ToAs. It implic-
itly assumes that the noise follows a distribution.

As a short conclusion, BeepBeep and Guoguo both process signals in time-domain. 
Time-domain signals have a drawback as it is more susceptible to pollution.

Round‑trip Time‑of‑Flight

Round-Trip Time-of-Flight (RTOF) [9, 10, 44, 46, 65, 84, 85] is a favored device-free 
choice as Fig. 3 shows. The transmitter emits a distinguishable signal. The microphone 
captures the echo. The distance is estimated through the time between the transmitted 
signal and its reflection. Due to the round trip, the signal travels longer and attenuates 
more severely, which makes RTOF more common in around-device interaction.

Cross-correlation is widely employed [18, 22, 50, 55, 59] to determine the arriving time 
of a signal. The maximum point of the cross-correlation result with respect to the origi-
nal signal and the received signal will be chosen as the first sample of the received signal. 
The difficulty is that cross-correlation is expensive in terms of computation complex-
ity. Suppose the original signal is discretely sampled and represented by n time-domain 
samples p[1], p[2], . . . , p[n] . The received signal, on the other hand, is represented by 
samples q[i](i = 1, 2, . . .) . The cross-correlation result is:

and arg max i p ∗ q[i] is chosen as the first sample of the echo. Cross-correlation is com-
putationally intensive [82]. For smartphones and smart watches, more efficient meth-
ods are in need. FAR [82] designs autocorrelation and the time complexity is decreased 
from O(n2) to O(n), which however sacrifices the accuracy. Note that Eq. (1) calculates 
the cross-correlation in time domain. Later the cross-correlation in frequency domain 

(1)p ∗ q[i] =

n
∑

j=1

p∗[j]q[i + j]

Fig. 3  RTOF
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is proved in [19] that it can reduces the time complexity to O(n log n) while maintain-
ing the accuracy. This cross-correlation substitutes the original cross-correlation and 
becomes widespread in subsequent RTOF based localization systems.

BatTracker [85] adopts the way introduced in [19] to calculate the distance except it 
reduces the time duration of the chirp signal from 10 ms to 1 ms for lower time latency. 
Considering the fact that echoes reflected by objects 5 m away are too weak to be rec-
ognized, the time interval between two consecutive pulses is 5 m×2

c ≈ 30 ms. BatTracker 
further constructs a 3D localization system by picking the top-K strongest peaks of 
cross-correlation result to establish a reference coordinate.

BatMapper [84] builds digital indoor plans using smartphones with two microphones. 
The bottom microphone is designed for capturing human voice and the top one is designed 
for background noise cancellation. Experiments conducted by BatMapper reveal that the 
bottom microphone is sensitive to lower frequency while the top one has higher noise lev-
els. Considering the heterogeneous characteristics, BatMapper designs a two-pulse sig-
nal on the basis of [19]. The first pulse is of higher frequency and longer duration which 
is suitable for the top microphone. The second pulse is for the bottom microphone with 
lower frequency and shorter duration. After cross-correlation, the first leak comes from the 
direct path and is used as the starting point. Due to multipath effect, multiple echoes will be 
detected apart from the one bouncing off the target. BatMapper picks the top-K strongest 
peaks and designs a probabilistic evidence accumulation algorithm to map echoes to differ-
ent reflectors.

EchoTrack [10] is a device-free hand tracking system using smartphones with two speak-
ers and one microphone. The speakers emit chirps in turn and echoes are captured by the 
microphone. By using cross-correlation introduced in [19], EchoTrack detects echoes from 
different speakers, calculates the distances to two speakers and obtains the coordinate 
based on geometry knowledge. The key point of EchoTrack to achieve passive tracking with 
ToF is the design of its two-channel chirp. At first, the left speaker emits an up-chirp which 
lasts 1 ms. After an interval of 1 ms, the right speaker emits a down-chirp lasts another 1 
ms. The synchronization is achieved through audio module embedded in the phone pro-
cessor. EchoTack correlates recorded signal with prerecorded up-chirp and down-chirp 
separately. Left echo and right echo are detected through corresponding cross-correlation. 
By assigning chirps with different growth trend to the two speakers, those overlapped ech-
oes can be effectively distinguished.

AIM [44] is a smartphone-based acoustic imaging system, but its imaging mechanism 
also applies echoes of acoustic signals and the way it deals with background noise is enlight-
ening to acoustic localization. The rationale of AIM is based on Synthetic-Aperture Radar 
(SAR) which is widely used in RF imaging systems [2, 30, 68, 88]. The main idea is moving 
the transmitter along a distance to simulate a large aperture that helps produce high-resolu-
tion images. The user is asked to move his/her phone along a predefined trajectory during 
which the smartphone periodically emits chirps. After echoes are captured by the smart-
phone, a 2-stage interference cancellation is applied. Since the speaker and the microphone 
are omnidirectional, direct path transmission and multipath noises are main interference 
for AIM. In the first-stage interference cancellation, AIM pre-records direct path transmis-
sion in a free space and performs a scaled subtraction to the received superposed signals 
with the help of Automatic Gain Control (AGC) [5]. In the second stage, AIM applies Least 
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Square channel estimation [52] to minimize the difference between measured channel and 
calculated ones 

∑

n(y[n] −
∑

i∈(U1∪U2)
hix[n− i])2 where y[n] is the nth received sample, 

x[n− i] is the (n− i) th transmitted sample and {hi} denotes channel taps. U1 contains all 
the indices of samples from the target while U2 contains all the rest. After obtaining {hi} 
through optimizing the function, the multipath noise and residual direct path interference 
are removed by y[n] −

∑

j∈U2
hjx[n− j].

ToF is a long-lived method in localization. In this survey, we divide ToF-based localiza-
tion into TDoA, one-way ToF and RTOF. ToF is still popular nowadays with creative modi-
fications and most of the systems can achieve cm-level accuracy. The main issue challenging 
ToF-based localization from mm-level accuracy is that, its distance resolution is limited by 
the sampling rate. The maximum sampling rate a smart device can provide now is 48 kHz. 
If the sound speed is 343 m/s, then miscounting one sample will lead to the error of 0.71 
cm. In practice, it is common to miscount several samples, so the location accuracy is often 
in the scale of centimeters.

Relative range based localization
Relative range based localization studies the motion of the target. It first obtains the ini-
tial location of the target in some way, then updates the location through monitoring the 
motion of the target. The displacement between two sequential locations is defined as the 
relative range, in contrary to their respective absolute ranges to pre-defined anchor nodes.

Frequency‑modulated continuous wave

Frequency-modulated continuous wave (FMCW) is a common chirp as illustrated in Fig. 4. 
FMCW is originally introduced in RTOF based localization [9, 84, 85] because it is distin-
guishable from background noise and has good pulse compressibility [21]. The main feature 
of FMCW is, its frequency ranges linearly from fmin to fmax within each period.

Before high-preCision Acoustic Tracker (CAT) [42] proposes distributed FMCW, tra-
ditional FMCW is widely exploited in RF-based localization [1, 3, 6, 17, 28]. Traditional 
FMCW bears a potential peril of the asynchronization between the transmitter and the 
receiver. Each position update is prescribed within a single sweep of the FMCW. If the 
starting time stamp of each sweep is normalized as 0 and the current time stamp is t, the 
transmitted signal STx(t) and the received signal SRx(t) are

0 T 2T
Time

fmin

fmax

Fr
eq

ue
nc

y

Transmitted
Received

FFT FFT

f

t

Fig. 4  FMCW
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After filtering out the high frequency component of their product, the receiver obtains

If we plug td = d+vt
c  into Eq.  (2) and ignore terms with 1

c2
 , then (STxSRx)LPF can be 

approximated by

The frequency of this signal is f = Bv
c + Bd

cT +
fminv
c  as the mean value of t is T2  . When v 

approaches 0, there will be a peak at BdcT  in the frequency spectrum. The distance d can 
thus be estimated by cfTB .

The potential peril is that the construction of Eq.  (2) assumes the synchronization 
between the transmitter and the receiver. To downgrade the peril, CAT [42] introduces 
a constant time offset as T0 and then goes through the same deduction of Traditional 
FMCW. The result turns to be dn =

cfT
B + cT0 where n denotes the nth sweep. To elimi-

nate T0 , CAT tracks the target by monitoring its displacement to the initial position.
The rough idea is acquiring the propagation delay. A less sophisticated method could 

be emitting a highly-compressed pulse and counting the time samples during its travel, 
which incurs asynchronization and processing delay issue as we introduce in time-based 
localization. Although CAT dissolves those issues, its ranging resolution is limited by B 
[81]. The accuracy actually does not show much advantage, that is the reason why CAT 
collaborates FMCW with IMU sensors and Doppler effect. Rabit [43] further employs 
the distributed FMCW introduced by CAT to video taping and achieves impressive 
results.

FMCW is also adopted in ApneaApp [45] and ACG [54]. They are mobile health sens-
ing apps. The FMCW is emitted from a mobile device, reflected from the user’s body and 
captured by the same device. Due to the propagation delay, there exist a frequency shift 
between the emitted signal and the received signal as Fig. 4 shows. The frequency shift 
can be mapped back to the propagation delay through the constant frequency slope. The 
frequency shift caused by the chest motion is very minute. If Fast Fourier Transform 
(FFT) [8] is performed on a single chirp, it is likely that the frequency shift can not be 
detected in most cases. ApneaApp collects ten chirps and reduces the size of the FFT bin 
by a factor of 10. This method is applicable as long as the length of ten chirps is smaller 
than the breathing interval. ApneaApp tracks the chest movement caused by breathing 
while ACG monitors that of heartbeats. The heartbeat signal is in orders of magnitudes 
weaker than the breath signal. ACG adopts the FMCW sonar ApneaApp proposes. After 
the reflected FMCW is captured, ACG first down-converts it to baseband, and then 
applies ApneaApp’s way to select the spatial bin which includes the heartbeat signal. As 

STx(t) = cos

(

2π fmint +
πBt2

T

)

SRx(t) =α cos

(

2π fmin(t − td)+
πB(t − td)

2

T

)

(2)(STxSRx)LPF =
α

2
cos

(

2π fmintd +
2πBttd

T
−

πBt2d
T

)

α

2
cos 2π

(

Bv

cT
t2 +

fminv

c
t +

Bd

cT
t +

fmind

c

)
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the heartbeat signal is too feeble, ApneaApp turns to phase measuring in the following 
steps.

Doppler effect

When there exists a relative motion between the receiver and the transmitter, the 
received frequency would be different from the transmitted frequency like Fig. 5 demon-
strates. Doppler effect [72] quantifies the phenomenon by the following formula:

The dominant rationale of Doppler effect is the variation of the signal propagation 
path length [53, 69]. As an alternative way, we can calculate v through Eq. (3) and inte-
grate the result over time to obtain the propagation path length change. With a known 
initial path length, location information is accessible. This method incurs smaller accu-
mulated error compared to the double integration of accelerations collected by IMU. 
The key point is converted to how to get a precise and instantaneous fRx.

According to Nyquist–Shannon sampling theorem, if the sampling rate is at least twice 
of the maximum frequency, the signal can be recovered through FFT. On the one hand, 
frequency information is usually resilient to noises. On the other hand, however, the 
application of FFT incurs the time-frequency resolution problem [12]. The frequency 
resolution �f  is the ratio of sampling rate Fs over the FFT size. For an analysis window of 
L time-domain samples, the frequency resolution is:

where t is the duration of the analysis window. In other words, a smaller frequency reso-
lution contradicts a shorter tracking latency.

AAmouse [76] applies a sampling rate of 44.1 kHz and conducts Short-Term Fourier 
Transform (STFT) [4] on every 1764 samples. The time latency is 40 ms. The peak fre-
quency from every analysis window will be chosen to calculate the velocity, which will 
later be considered as the average velocity during this 40 ms and used to calculate the 
relative range. AAmouse tries to apply zero padding to supply more input data, which 
actually does not solve the problem. The assumption of the constant velocity during each 
analysis window will also incur an accumulated error.

(3)v =
fTx − fRx

fRx
c

�f =
Fs

L
=

Fs

Fs × t
=

1

t

Away from the speaker Towards the speaker
Fig. 5  Doppler effect
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Constrained by the time-frequency resolution problem, Doppler effect can only pro-
vide a coarse-grained velocity [42, 48, 85] or a direction estimation [7, 11, 20, 66]. Some 
systems utilize the velocity to improve their tracking accuracy. For example, BatTracker 
[85] samples signals at a rate of 48 kHz and performs FFT on every 48 samples, which 
incurs a velocity resolution around 1 m/s. The resulted velocity is used only as a hue to 
promote the raw tracking prediction made by the IMU. CAT [42] plugs the velocity into 
an objective function to improve the final accuracy.

Phase shift

Phase-based localization can achieve a balance between high location accuracy and low 
time latency. Directly measuring the phase of a path is hard [69]. Several methods are 
introduced in this section to access phase shift. Table 2 shows a comparation between 
several typical approaches.

To the best of our knowledge, Swadloon [27] is the first acoustic localization sys-
tem which turns the displacement into phase shift. The transmitter emits the continu-
ous wave. After Band Pass Filter (BPF) and AGC at the receiver side, the signal will be 
cos(2π fTxt + φ(t)) where φ(t) is the phase shift incurred by Doppler effect. The velocity 
of the mobile device is v(t) = c

2πFRx

dφ(t)
dt  and its displacement can be calculated through 

�d(t) = c
2πFRx

(φ(t)− φ(0)) . Swadloon applies Phase Locked Loop (PLL) to calculate 
φ(t) . PLL is a control system which produces a signal whose phase θ(t) converges to that 
of the target signal φ(t) . It consists of phase detector (PD), loop filter (LF) and voltage 
controlled oscillator (VCO) as illustrated in Fig. 6. PD compares the difference between 
current generated signal and the target signal. LF is usually a Low Pass Filter (LPF) which 
filters out high frequency and noise. VCO modulates a new signal according to the result 
of LPF. The new signal is then fed back to PD. PLL iterates the above steps until the output 
signal θ(t) is very similar to φ(t) . The output signal θ(t) is updated by θn+1 = θn +

dJPLL
dθ

 
where JPLL(θ) = LPF{cos(2πFTxt+φ(t)) cos(2πFTxt+θ(t))} ≈ 1

2LPF{cos(φ(t)−θ(t))} . 
In this way, max(JPLL(θ(t))) = JPLL(φ(t)) . θ(t) converges to φ(t) after enough iterations.

The whole procedure includes BPF, AGC, PLL and linear regression, which incurs 
large computation overhead. In the experiments, it takes the phone 3.9 seconds to pro-
cess 1 second of signal samples on average. To achieve realtime tracking, Swadloon lets 
the phone process 20% of the samples for a trade-off.

FingerIO [46] is a finger tracking system for around-device interaction. Strictly 
speaking, FingerIO is a ToF-based localization system which applies the normal 
RTOF procedure. It performs correlation on the received signal with the original sig-
nal to identify the timestamp corresponding to the target echo. As we have discussed 
in “Absolute range based localization” section, this coarse result may contain several 
samples offset. FingerIO turns to phase shift to fine-tune the result, that is the rea-
son why we put it here for a better comparation. It acheives an impressive result with 
mm-level accuracy and propels the follow-up research work about phase shift. At the 
transmitter side, inverse Fast Fourier transform (IFFT) is performed on 64 random bits 
{Xn|n = 1, . . . , 64} to get 64 time-domain samples xk =

∑63
n=0 Xne

i2πkn
63 , k = 0, . . . , 63 . 

The first 20 samples is appended to the end to form a cyclic suffix. At the receiver side, 
if the first sample of the echo is correctly decided, FFT can be performed to retrieve 
the data bits through Xn =

∑63
n=0 xke

− i2πkn
64  . If the first sample is mistaken by E samples 
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( E < 64 as the presence of a silence seperation), the corresponding FFT process would 
be XE

n =
∑63

n=0 xk+Ee
− i2πkn

64  . With the help of the cyclic suffix, XE
n = Xne

i2πEn
N  . The sam-

ple offset is converted to phase increment. Since we already know {Xn|n = 1, . . . ,N } , E 
can be obtained according to the one-to-one mapping between emitted and received 
OFDM symbols. After abating the offset, FingerIO reduces the distance error within 1 
cm. OFDM actually requires high bandwidth. FingerIO splits 0–24 kHz into 64 subcarri-
ers and sets the audible frequencies to be zero. The bandwidth of each subcarrier is 375 
Hz, which is not very robust to frequency offset.

LLAP [70] and PatternListener [86] adopt the coherent detector to obtain a complex 
signal which can be used to extract the phase information. LLAP is a gesture-tracking 
system. The transmitted signal is A cos(2π ft) , which later gets reflected by the moving 
finger. If the path length is denoted as d(t), the received signal is A′ cos(2π f (t − d(t)

c )− θ) 
where θ is caused by hardware delay and phase inversion. LLAP multiplies the received 
signal by cos(2π ft) and gets A

′

2 (cos(−2π f d(t)
c − θ)+ cos(4π ft − 2π f d(t)

c − θ)) . The sec-
ond term is removed by a low-pass CIC filter. The first term remains and is denoted by 
I(t) = A′

2 (cos(−2π f d(t)
c − θ)) . Meanwhile, it multiplies the received signal by sin(2π ft) , 

completes the same procedure above and obtains Q(t) = A′

2 (sin(−2π f d(t)
c − θ)) . 

I(t) and Q(t) are the real and imaginary part of the complex signal, and the phase 
at t can be calculated by φ(t) = arctg(Q(t)

I(t) ) . The path change between t1 and t2 is 
d(t1)− d(t2) = (φ(t1)− φ(t2))×

�

2π  . An illustration of the whole process is provided in 
Fig. 7. PatternListener adopts LLAP’s idea and develops an acoustic attack that can crack 
Android pattern lock. The ideal model is based on the assumption that the received sig-
nal only consists of the target echo. Considering multipath effect, the received signal is 
actually a combination of static-path signals and dynamic-path signals. The dynamic-
path signals can be extracted through Local Extreme Value Detection algorithm, which 
LLAP designs based on Empirical Mode Decomposition algorithm [26]. The dynamic-
path signals also contain echoes reflected from other moving surroundings. To solve the 
issue, multiple frequencies with a fixed interval are emitted simultaneously, different 

Phase 
detector

Loop
filter VCOΦ

initial θ
θ

If not converge

Fig. 6  PLL

cos(2πft)

sin(2πft) CIC filter

CIC filter
I(t)

Q(t)

φ (t)

arg(I(t)+jQ(t))

Fig. 7  LLAP
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outputs are taken in a comprehensive consideration using linear regression and generate 
the final result.

Channel impulse response (CIR) is also a good choice to get access to phase shift [64, 
77]. Suppose the passband signal x(t) is emitted from the speaker, later a superposition of 
L multiple reflections with different delays τi(i = 1, . . . , L) and amplitudes ai is received:

where fc and s(t) denote the center frequency of the passband and the base-
band signal respectively. h(t) =

∑L
i=1 aie

−j2π fcτi
δ(t − τi) is defined as CIR. 

If CIR is sampled by a time interval of Ts , we can get the nth channel tap 
h[n] =

∑L
i=1 aie

−j2π fcτi
δ(t − τi)sinc(n− τiW ) . The relationship of consecutive location 

updating rounds, path delays and channel taps is illustrated in Fig. 8.
Strata [77] combines phase based relative range with channel difference based absolute 

range. The key finding of Strata is that CIR is influenced by the moving finger. So in each 
location updating round, Strata adopts a pilot sequence to estimate CIR by Least-Square 
channel estimation [52]. As soon as CIR is obtained, Strata quickly determines the kth 
channel tap which is affected by the moving finger in the tth update round. The change 
of that channel tap from the (t − 1) th round to the t-round is:

The corresponding phase shift is:

∠(hd[k]
t+1

) is calculated in the same way, and its difference from ∠(hd[k]t) is:

With the assumption that τd(t + 1) = τd(t) , we can derive ∠(e−j2π fcτd(t)) and calcu-
late the relative range through �d = �

2π∠(e
−j2π fcτd(t)) . The absolute range is obtained 

through minimizing the weighted sum of two differences, one is the difference between 
measured CIR change and inferred CIR change, the other is the difference between 
measured delay change and inferred delay change. More details can be found in [77]. The 

y(t) =

L
∑

i=1

aix(t − τi) =

L
∑

i=1

aie
−j2π fcτi s(t − τi) = h(t) ∗ x(t)

(4)
hd[k]

t = h[k]t − h[k]t−1

= aLk (e
−j2π fc(τLk (t−1)+τd(t)) − e−j2π fcτLk (t−1)

)

∠(hd[k]
t
) = ∠(e−j2π fcτLk (t−1)

)+
∠(e−j2π fcτd(t))

2
+

π

2

∠(e−j2π fcτd(t)
)+

∠(e−j2π fcτd(t+1)
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Fig. 8  Strata
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absolute range is introduced only for improving accuracy and calculating the initial loca-
tion. The final 2D coordinate is acquired with the help of two microphones.

While Strata applies 26-bit GSM pilot sequence due to its good performance on syn-
chronization and channel estimation [52], VSkin [64] employs Zadoff-Chu (ZC) 
sequence for its low auto-correlation and constant amplitude. VSkin leverages EKF to 
track channel coefficients and represents the result with I/Q components as 
y(t) = (Ih[n],Qh[n]) . The instantaneous curvature of the I/Q trace is k(t) = det(y′(t),y′′(t))

�y′(t)�3
 

and the phase shift of the dynamic part during the round t − 1 ∼ t is:

The relative range is obtained as the way Strata does.
LLAP, Strata and VSkin are all gesture capturing systems. The main difference between 

LLAP and the two CIR based systems is, LLAP regards the phase shift caused by all 
the reflectors as an integral after removing possible noises, while the other two oper-
ate on individual paths with different delays. As for Strata and VSkin, the former one is 
designed for in-air gestures happening around 20 cm away from the screen, while the 
latter one is designed for gestures performed on the surface of a smart device. When it 
comes to how to decide the target reflection path, Strata first identifies dynamic paths 
through channel variation and then selects the one with the smallest maximum phase 
change. VSkin picks the path with largest magnitude change as the target path.

Vernier [81] is another active localization system which achieves very low time latency. 
The median time latency is around 10 ms while mm-level location accuracy is kept. Ver-
nier first utilizes the law of cosines to obtain the initial position of a device, then applies 
phase shift to calculate relative ranges and updates the position. The relative range dur-
ing T is �d =

c�φ

2πFTx
− cT = (Nmax�− cT )± � where Nmax is the maximum number of 

cycles the signal contains. The approximation error is within a wavelength if we approxi-
mate the original formula with Nmax�− cT  . If we consider p circles with q samples, 
where p and q are two integers which make the smallest integer pq =

FTx
Fs

 , it is proved in 
the article that the relative phases of q samples are uniformly distributed in [0, 2π ] . For 
two analysis windows of q samples, the phase shift between their corresponding first 
samples is an integral multiple of 2πq  . This integer can be obtained through counting the 
number of local maxima. Vernier achieves an attractive result on time latency, but the 
experiment setting is kind of fragile since the device moves in a relatively small area.

Future work
Currently the fundamental issue which limits acoustic localization from widespread 
employment is the severe attenuation of aerial acoustic signals [40]. As we can see in 
“One-way Time of Flight” section, most RTOF based systems track hand or finger rather 
than device or human, this is because echoes bouncing off reflectors which are 5–6 m 
away are too weak to be observed. For remote device or human tracking, more anchor 
speakers are in need. On the other hand, acoustic localization has irreplaceable qualities 
as low demand for additional infrastructure to COTS devices, high location accuracy 

�θ = 2 arcsin
k(t)|y(t)− y(t − 1)|

2
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achievement and privacy-preserving property. For further exploitation, we consider the 
following four aspects of high research potential.

•	 New patterns of acoustic signals: The emitted signal can significantly affect the per-
formance of acoustic localization. A good signal design is expected to satisfy the 
three requirements: (1) The signal is supposed to be distinguishable from back-
ground noise. (2) The signal works for COTS smart devices. (3) The signal should not 
disturb human’s normal life and incur health damage. Chirps and continuous waves 
are frequently employed signals. Recently, OFDM and other modulated signals are 
also borrowed from wireless communication technologies and achieve surprising 
results.

•	 Keep up with the development of COTS devices: We must admit that the develop-
ment of smart devices makes contribution to more advanced localization systems. 
Back in 2000, Cricket needs specially-designed beacons to locate a mobile device 
equipped with an API. Each Cricket beacon costs less than 10 dollars but several bea-
cons are required to be deployed on the ceil of a room. EchoTrack [10] in 2017 are 
already using smartphones with two speakers which are designed to provide users 
with stereo playback, while BatMapper [84] in the same year makes use of smart-
phones with one speaker but two microphones for better voice capturing. When it 
comes to future work, we believe manufacturers will ameliorate hardware capacities, 
which provides acoustic localization with new possibility.

•	 Excavation of new observations and phenomena: New observations and phenomena 
are crucial for breaking current limitations and prompting new research directions. 
Take Doppler effect for example, it was only introduced to acoustic localization sev-
eral years ago. Recently an uncared-for observation draws attention as the nonlinear-
ity of the microphone hardware. The nonlinearity of electric components were found 
producing new frequencies [25]. This property is now employed to make ultrasonics 
audible to COTS smart devices [57, 58, 79], which may break the dilemma of ena-
bling ultrasonic localization on smart devices.

•	 Inter-field technologies: Traditionally, triangular geometry is widely applied to com-
pute locations with obtained geographic data. Recent years have witnessed a trend 
towards the utilization of probability models and optimization techniques. We con-
sider future collaboration with machine learning and deep learning as prospective. 
For a start, RF-finger [67] tests convolutional neural network (CNN) on RF based 
gesture recognition and achieves good performance. WordRecorder [15] combines 
acoustic signals with CNN to recognize handwriting. Long short-term memory 
(LSTM) neural network is leveraged in [37] for mobile devices tracking.

The demand of localization is getting higher and higher. Body tracking systems are 
expected to track users without asking them to wear additional devices or completing 
specific motions. Finger tracking systems are supposed to work when there is an occlu-
sion between the hand and the screen. High accuracy and low time latency are no longer 
the only expectations.
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Conclusion
We present a comprehensive survey for range-based acoustic indoor localization. We 
divide range-based localization into absolute range based localization and relative range 
based localization. While absolute range based localization mainly employs ToF, relative 
range based localization utilizes FMCW, Doppler effect and phase shift. We further ana-
lyze the techniques leveraged in the subcategories and show their unique characteristics 
as well as limitations. Potential research directions are also provided for future study.
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