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Introduction
Melanoma belongs to the category of inoperable type of skin cancers, and its occur-
rence rate has increased tremendously over the past three decades [1]. According to sta-
tistics provided by the World Health Organization (WHO), almost 132,000 new cases 
of melanoma are reported each year worldwide. It has been reported [2] that diagnosis 
of melanoma, in its early stages, significantly increases chances of the patient’s survival. 
Dermatoscopy, also knows as dermoscopy is a non-invasive clinical procedure used for 
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melanoma detection, in which physicians apply gel on the affected skin, prior to examin-
ing it with a dermoscope. It allows recognition of sub-surface structures of the infected 
skin that are invisible to naked eye. With this clinical procedure, the skin lesion is ampli-
fied up to 100 times, thereby easing the examination [3].

For the diagnosis of melanoma, dermatologists mostly rely on ABCD rule [4], seven-
point checklist [5], and Menzie’s method [6]. These aforementioned methods have been 
formally approved at the 2000 Consensus Net Meeting on Dermoscopy (CNMD) [7], 
and are widely exploited by the physicians for diagnostics. Even though, these meth-
ods of manual inspection have shown improved performance, due to a number of con-
straints, including a large number of patients, human error and infrastructure etc., they 
have not proven feasible. Additionally, melanoma, at its initial stages, exhibits a similar 
type of features like benign lesions, which makes it difficult to recognize; Fig. 1 presents 
two such examples. Furthermore, physician analysis may also be quite subjective, since it 
clearly depends on their clinical experience and human vision as well—making the diag-
nosis procedure quite challenging.

To handle such constraints, there still exists a requirement for an automated system 
that has a capacity to differentiate melanoma from benign at its very initial stages. Com-
puter-aided diagnosis (CAD) system maybe useful for the physicians to use technologi-
cal developments in the field of dermoscopy, and it may also provide a second opinion. 
The CAD systems adopt various machine learning techniques, for example, extracting 
various features (color, shape, and texture) from each dermoscopic image, followed by 
applying a state-of-the-art classifier [8, 9]. These classification approaches mostly rely on 

Fig. 1  A few examples of pigmented skin lesions: a benign lesion, b malignant lesion
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the extracted set of features for the training, which are broadly divided into three main 
levels: low, mid, and higher levels [10]. Various existing classification methods exploit 
the extracted features by simply concatenating them in order to generate a fused feature 
vector. Feature fusion methodology, on one hand, increases the classification accuracy 
by taking into account all the advantages from the host models, but on the other hand 
increases the computational time and memory requirements [11].

Recently, convolutional neural networks (CNN) [12] have been introduced in this 
domain, and their models have been widely accepted for feature extraction—lead-
ing to improved classification [13, 14]. In such solutions, discriminant deep features 
are extracted by using set of convolution, pooling and feedforward layers from the 
images, by embedding a concept of transfer learning (TL) using fine-tuning and fea-
tures descriptors [15]. To achieve further improvement in the classification results, 
in terms of overall accuracy (OA), computational time, and memory, feature selec-
tion process plays a pivotal role by identifying the most discriminate features. This 
is something we exploit in the proposed framework, entropy-controlled neighbor-
hood component analysis (ECNCA), for skin lesion classification. The latter exploits 
the resilience of deep features and utilizes them in the lower dimensions—preserving 
the original feature space information. We demonstrate that our approach utilizes less 
than 3% deep features—equivalent to 97.55% average reduction rate, and is substan-
tively superior to state-of-the-art approaches in terms of OA. Most of the existing lit-
erature, to the best of our knowledge, does not reduce the deep features to this level.

The exclusive contributions of this work are enumerated below: 

1	 We exploit behavior of the selected layers of deep architectures, including DenseNet 
201, Inception-ResNet-v2, and Inception-V3, on the performance of classifiers.

2	 We propose to fine-tune the existing pre-trained models with smaller learning rate 
and keep weights of the initial layers frozen to avoid distortion of the complete 
model. We exploit feature fusion technique, which takes advantage of all the three 
selected architectures to generate a denser feature space.

3	 We propose a hierarchical architecture for feature selection and dimensionality 
reduction, which in the initial step relies upon entropy for feature selection, followed 
by dimensionality reduction using neighborhood component analysis (NCA).

The rest of the article is organized as follows. In the following section, "Literature 
review" section, we present a detailed overview of the existing literature in this domain. 
"Mathematical model" section presents the mathematical model, whereas, materials and 
methods are discussed in "Materials and methods" section. The proposed framework is 
detailed in "Proposed framework" section, and "Results and discussion" section contains 
the experimental results and discussions. We conclude the manuscript in "Conclusion".

Literature review
In literature, several CAD systems [16, 17] have been proposed for melanoma detec-
tion, which, to some extent, try to mimic the procedure performed by dermatologists, 
based on a range of features extracted using machine learning approaches. These 
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systems mostly follow four primary steps [18]: (1) preprocessing, (2) lesion segmenta-
tion, (3) feature extraction and selection, and (4) classification.

Lesion image segmentation is one of the primary steps that have abiding effects [19] 
on this classification process. Accurate segmentation of a lesion is an arduous task due 
to a number of reasons; range of lesion sizes, shapes, colors, and skin texture. Secondly, 
sometimes there exists a smooth transition between skin color and lesion [19, 20]. In 
addition to that, a few other constraints include specular reflection, presence of hair, fal-
loff towards the edges, and air and immersion-fluid bubbles. Sumithra [21] proposed 
to initially remove the unwanted hair from lesion prior to applying the segmentation 
algorithm. Feature extraction was performed subsequently using color and texture fea-
tures. For the classification both support vector machine (SVM), and K-nearest neigh-
bor (KNN) were used. Similarly, Attia et al. [22] implemented a hybrid framework for 
hair segmentation by combining convolutional and recurrent layers. They utilized deep 
encoded features for hair delineation, which are later fed into recurrent layers to inscribe 
the spatial dependencies among the incoherent image patches. The segmentation accu-
racy calculated using Jaccard Index is 77.8% in comparison to the existing methods, 
66.5%.

Joseph [23] used fast marching and 2D derivative of Gaussian in painting algorithm for 
hair artifact removal. Cheerla et al. [24] proposed automatic method for segmentation. 
They used otsu’s thresholding for segmentation, and for texture feature extraction local 
binary patterns (LBP) [25] was utilized. Neural network classifiers were used for clas-
sification, which yielded 97% sensitivity and 93% specificity. Hawas et al. [26] proposed 
an optimized clustering estimation using neutrosophic graph-cut (OCE-NGC) algo-
rithm for skin lesion segmentation. They made use of bio-inspired technique (genetic 
algorithm), which optimizes the histogram-based clustering procedure, which searches 
the optimal centroid/threshold values. In the following step, they grouped the pixels 
by using the generated threshold value using neutrosophic c-means algorithm. Finally, 
a graph-cut methodology [27] is implemented to segregate the foreground and back-
ground regions in the dermoscopic image. Authors claimed to achieve 97.12% average 
accuracy and 86.28% average Jaccard values. Similarly, [28] implemented a novel scheme 
(transform domain representation-driven CNN) for skin lesion segmentation. They 
trained the model from scratch and successfully managed to cope with the constraints 
including small data set, artifact removal, excessive data augmentation, and contrast 
stretching. Authors claimed to achieve 6% higher Jaccard index and a less training time 
on a publicly available ISBI 2016 and 2017 datasets. Euijoon et al. [29] proposed a sali-
ency [30] based segmentation algorithm, in which detection of background was based 
on spatial layout including color and boundary information. To minimize detection 
error, they implemented Bayesian framework.

Features play a vital role in classification, which are extracted by following local, global 
or local–global scenarios [7]. Barata et al. [31] adopted a local–global method for detect-
ing melanoma from dermoscopic images. Local methods were applied to extract fea-
tures using bag-of-words, whilst, global methods were explored for the classification of 
skin lesions. Promising results were achieved in terms of greater sensitivity and speci-
ficity. Abbas et al. [32] suggested a perceptually oriented framework for border identi-
fication—combining the strengths of both edge and region based segmentation. Later, 
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a hill-climbing [33] approach was efficiently utilized to identify the region-of-interest 
(ROI), followed by an adaptive threshold mechanism to detect the optimal lesion border.

Chatterjee et al. [34] proposed a cross-correlation based technique for feature extrac-
tion with an application to skin lesion classification. The authors considered both spatial 
and spectral features of lesion region based on visual coherency using cross-correla-
tion technique. kernel patches are later selected based on the skin disease categories, 
which are later classified using proposed multi-label ensemble multi-class classifier. 
The acquired sensitivities of a set of classes including nevus, melanoma, BCC and SK 
diseases are 99.01%, 98.7%, 98.87%, and 99.41%. Lei et al. [35] proposed a lesion detec-
tion and recognition methodology—built on a multi-scale lesion-biased representation 
(MLR) and joint reverse classification. This proposed algorithm takes advantage of scales 
and rotations to detect lesion, compared to the conventional single rotation method. 
Omer et  al. [36] provided a unique solution for skin lesion segmentation using global 
thresholding based on color features. As a following feature extraction step, they utilized 
2D fast Fourier transform (2D-FFT) and 2D discrete Fourier transform (2D-DFT). Mah-
bod et al. [37] introduced an ensemble technique by combining inter and intra-architec-
ture of CNN. The extracted deep features from each CNN network are later utilized in 
classification using multi-SVM classifiers. The proposed method proved to be robust in 
terms of feature extraction, fusion and classification for skin lesion images. Kahn et al. 
[18] presented a techniques for classification of skin lesion using probabilistic distri-
bution, and for feature selection entropy based method was used. Al-masni et al. [38] 
investigated a set of deep frameworks both for segmentation and classification. Initially, 
they implemented a full resolution convolution network for lesion segmentation. Later, 
the lesion regions are used to extricate the features using multiple deep architectures 
including Inception-ResNet-v2, and DenseNet 201. Proposed framework is trained on 
three datasets, ISIC 2016, ISIC 2017, and ISIC 2018, to achieving the promising results. 
Similarly, a pool of researchers [39–41] are utilizing deep frameworks to detect multiple 
abnormalities with an application to skin lesion classification.

From the detailed review, it is concluded that various existing methods show improved 
performance on dermoscopic images, but the following conditions were already satisfied: 

1	 High contrast distinctness between the lesion area and the surrounding region.
2	 Color uniformity inside the lesion area.
3	 Marginal existence or absence of different artifacts including dark corners, hair, color 

chart, to name but a few.

Therefore, considering the aforementioned conditions, our primary focus is to develop a 
technique which efficiently handles the negation of given conditions.

Mathematical model
Given a dermoscopic image database, we are required to assign a label to each and every 
image—belonging to a class of either benign or malignant. Let us consider D ⊂ R(r×c×p) 
be a demoscopic image, ψ = ψ(j)|j ∈ R be a formally specified image dataset, where 
(

(

ψ1(j), . . . ,ψk(j) ⊂ ψ
)

∈ R

)

 are the pixel values of k-channels. The number of classes C 

is provided by the user, therefore a class is discriminated as 
∼

ψ —a modified version of ψ , 
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interpreted as 
∼

ψ : ψ →
∼

ψ . The modeling of ψ to achieve output 
∼

ψ is described in terms 
of:

where ψ f  represents the extracted features after applying transfer learning, ψ fu repre-
sents the fused features from fully connected layers of different architectures, and κ(ψ fu) 
is the selected features’ representation after processing through a hierarchical structural 
design.

Materials and methods
Convolutional neural networks

CNN are one of the most powerful deep feedforward neural network models used for 
object detection and classification [42]. In CNN, all neurons are connected to a set of 
neurons in the next layer in a feedforward fashion. The CNN’s basic architecture, as 
given in Fig. 2, incorporates three primary sub-blocks, comprising convolution, pooling, 
and fully connected layers.

1	 Convolution layer A fundamental unit in the CNN architecture, called convolution 
layer, is supposed to detect and extract local features from an input image sample 
X
(r×c×p)
p  , where r = c for a square input. Let us consider an input image sample, 

Xp = {x1, x2, . . . , xn} , where n represents size of the training dataset. For each input 
image, the corresponding output is yp = {y1, y2, . . . , yn} , where yp ∈ {1, 2, . . . ,C} , 
C represents the number of classes. Convolution layer includes a kernel that slides 
across the input image as X (r×c×p) ∗ H (r

′
×c

′
×p) , and local features f ∈ fl are extracted 

using the following relation: 

 where Fl
i provides feature map output for the layer, l; ωl

i + b
j
l are the trainable param-

eters for layer, l; δ(.) represents an activation function.
2	 Pooling layer Addition of a pooling layer is another substantial concept in CNN, 

which is considered to be a non-linear down sampling technique. It is a meaning-
ful combination of two fundamental concepts, max pooling and convolution. Here 

(1)
∼

ψ �
(

ψ f
,ψ fs

, κ(ψ fs)
)

∈ Z3

(2)Fl
i = σ

(

n
∑

i=1

xl−1
i × δli + b

j
l

)

Fig. 2  Basic architecture of convolutional neural network
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max-pooling step extracts a set of maximum responses with an objective of feature 
reduction, as well as robustness against noise and variations. Configuration of max-
pooling is represented with the help of the following equation: 

3	 Fully Connected Layer Convolution and pooling layers are followed by a fully con-
nected feedforward layer, FC. It follows the same principle of traditional fully con-
nected feedforward network having set of inputs and output units. This layer extracts 
responses based on features’ weights calculated from the previous layer. 

Transfer learning

Conventional algorithms work by making an assumption that the feature characteris-
tics of both training and testing data are quite identical and can be comfortably approxi-
mated [43]. Several pretrained models are trained on natural images, and hence not 
suitable for the specialized applications. Additionally, data collection for the real world 
applications is a tedious task. Therefore, TL is a solution to provide accurate classifi-
cation with a limited number of training samples. This concept is briefly defined as a 
system’s capability to transfer the skills and knowledge learnt while solving one class of 
problems to a different class of problems, (source–target relation), Fig. 3. The real poten-
tial of TL may be best leveraged when the target and source domain datasets are highly 
disparate in size, such that target domain dataset is significantly smaller than the source 
domain dataset [44]. Given a source domain, DS =

{(

xS1 , y
S
1

)

, . . . ,
(

xSi , y
S
i

)

, . . . ,
(

xSn , y
S
n

)}

, 
where 

(

xSn , y
S
n

)

∈ R; with specified learning tasks, LS , and target domain 
DT =

{(

xT1 , y
T
1

)

, . . . ,
(

xTi , y
T
i

)

, . . . ,
(

xTm, y
T
m

)}

 having learning task LT , 
(

xTn , y
T
n

)

∈ R . Let 
((m, n)|(n ≪ m) ) be a training data size and yD1  and yT1  are their respective labels. The 
fundamental function of TL is to boost the learning capability of the target function DT

—utilizing the knowledge gained from the source DS and the target DT .

(3)Fl
i = max

(

zl−1
2i−1

, zl−1
2i

)

, l = 2ς ∀ ς ∈ R

(4)V l
j = Sig

(

n
∑

i=1

xl−1
i × ωl

ji × b
j
l

)

Fig. 3  A fundamental model of transfer learning
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Pre‑trained CNN models

Several researchers have proposed set of CNN architectures for computer vision appli-
cations like segmentation and classification, etc. [53, 54]. In this work, we utilize three 
widely used pre-trained models for features extraction including Inception-V3, Incep-
tion-ResNet-V2 and DenseNet-201. The selection of these models is on the basis of their 
performance in terms of their Top-1 accuracy, Table 1.

Inception‑V3

Inception-V3 is trained on ImageNet database. It comprises two fundamental units: fea-
ture extraction and classification. Inception-V3 employs inception units that allow the 
framework to escalate the depth and width of a network, but also lower the computa-
tional parameters.

Inception‑ResNet‑V2

Inception-ResNet-V2 is an extension of inception-V3, and is also trained on ImageNet 
database. In its core, it combines the inception with ResNet module. The remaining 
connections allow bypasses in the model to make the network behave more robustly. 
Inception-Resnet-v2 fuses the computational adeptness of the Inception units with the 
optimization leverage contributed by the residual connections.

DenseNet‑201

DenseNet 201 is also trained on ImageNet database. It is designed on a more sophisti-
cated connectivity pattern that iteratively integrates all output features in a regular feed-
forward fashion. Moreover, it mitigates the vanishing-gradient problem, reduces number 
of input/functional parameters, and strengthens feature propagation.

Dataset

In this work, we have performed our simulations on four publicly available datasets: 

Table 1  Pretrained deep models description: following a yearly sequence

Model Year Source Top-1 accuracy 
(ImagNet) (%)

AlexNet 2012 [45] BVLC 57.1

VGG16 2014 [46] Oxford 70.5

VGG19 2014 [46] Oxford 71.3

Inception V1 2015 [47] Google 67.9

SqueezeNet 2016 [48] DeepScale 59.5

ResNet 50 2016 [49] MSR 75.3

ResNet 101 2016 [49] MSR 76.4

DenseNet201 2016 [50] – 77.0

Inception V2 2016 [51] Google 72.2

Inception V3 2016 [51] Google 76.9

Inception V4 2017 [52] Google 80.2

InceptionResNet V2 2017 [52] Google 79.79
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1	 PH2 : This dataset is composed of 200 RGB images, classified as 160 benign and 40 
melanoma. These images were collected at the Hospital Pedro Hispano, Matosinhos 
during clinical examination with the help of dermoscope [55]. The ground truth is 
also provided, which is segmented manually with the help of physicians; classified as 
normal, atypical nevus (benign) or melanoma.

2	 ISIC-MSK: The second dataset used in this research is International Skin Imag-
ing Collaboration (ISIC) [56]. This dataset contains 225 RGB dermoscopic images, 
acquired from various international hospitals with the help of different devices.

3	 ISIC-UDA: It is another subdataset of ISIC. We have collected 557 images having 446 
training and 111 testing samples from ISIC-UDA dataset.

4	 ISBI-2017: ISBI-2017 [57] is another publicly available dataset used for characteri-
zation of skin cancer in dermoscopic images. It contains 2750 images, with 2200 
training and 550 testing samples. The ISBI-2017 dataset has three disease classes: 
melanoma, keratosis and benign; however, since keratosis is a common benign skin 
condition, we have divided the samples into two: malignant and benign.

Manual annotations of all datasets, discussed above, by dermatologists have been pro-
vided as ground truths for the evaluation purposes. Repartition of above mentioned 
datasets is shown in Table 2. Note that we have divided the target dataset into two sets 
with pre-defined 80% for training and 20% for testing. The training set comprises a com-
bination of training set (70%)—used to train the models, and the validation set (10%) for 
models’ evaluation/fine tuning.

Proposed framework
In dermoscopy, cancer classification is still an outstanding challenge, which is efficiently 
dealt with by the proposed design; discussed below. Most of the constraints enumerated 
in "Literature review" section are successfully undertaken, and a cascaded framework is 
proposed, which comprises four fundamental blocks: preprocessing, lesion segmenta-
tion, feature extraction and selection, and labeling/classification. Figure  4 summarizes 
the adopted methodology.

Preprocessing

The preprocessing step copes with image imperfections introduced at the initial step 
of acquisition, by eliminating multiple artifacts, such as hair or ruler markings. Con-
trarily, their presence may affect segmentation, which, in turn, leads to an inaccurate 
classification. Ideally, the collected image should be free from these artifacts, however, 
due to certain complications, its strenuous to remove the hair. Therefore, an algorithmic 

Table 2  Splitting datasets into training and testing samples

Dataset Total images Training/validation set Testing set

PH
2 200 160 40

ISIC MSK 225 180 45

ISIC UDA 557 446 111

ISBI 2017 2750 2200 550
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Fig. 4  Proposed system architecture for skin lesion segmentation and classification
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approach, rather than the latter, is preferably followed. In this work, a widely used soft-
ware, Dull Razor [58], is utilized, which is capable of localizing the hair and extricate 
them by implementing bilinear interpolation. Additionally, it also implements an adap-
tive median filter to smoothen the replaced hair pixel.

Lesion/image segmentation

Segmentation is one critical step that plays its primary role in classification of the skin 
lesion. In addition to solving various problems, including color variations, hair presence, 
and lesion irregularity, a robust segmentation method has a capacity to identify infected 
regions with improved accuracy. Once the images have been transformed to keep the 
same aspect ratio, the following two steps are performed in turn to complete the seg-
mentation process: 

1	 Contrast stretching, to make lesion (foreground) region distinct compared to the 
background.

2	 Segment the lesion region based on mean and mean deviation based segmentation 
procedure.

The immediate objective behind implementing contrast stretching scheme is to make 
foreground (lesion region) maximally differentiable compared to the background. Addi-
tionally, introduction of this pre-processing step refines images to much extent which 
leads to improved classification accuracy [59]. Initially, each channel of a three dimen-
sional RGB image ( ID ∈ Rr×c×p ) is processed independently to make foreground region 
visually distinguishable. A series of interlinked steps needs to be followed by each chan-
nel; those steps are enumerate below: 

1	 Initially, gradients are computed for each single channel using Sobel–Feldman opera-
tor, with a fixed kernel size of (3× 3).

2	 Divide each channel into equal sized blocks (4, 8, 12, …), and rearrange them in a 
descending order. Now weights are assigned to each block according to gradient 
magnitude. 

where wi
b(i = 1, . . . , 4) is a weight coefficient and ξ represents threshold values 

against computed gradient.
3	 Compute the overall weighted gray value against each block 

 where nk(b) represents number of gray pixels encased in block k.
To get improved results, few aspects are stringently considered; (a) standard block 
size, (b) optimized weight criteria, and (c) selection of regions with maximum 

(5)Wξ =















w1
b if Is(x, y) ≤ ξ1;

w2
b if ξ1 < Is(x, y) ≤ ξ2;

w3
b if ξ2 < Is(x, y) ≤ ξ3;

w4
b otherwise.

(6)Wg (b) =

4
∑

k=1

ξ ibnj(b)
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information. Upon assiduous examination of dermoscopic images, regions with maxi-
mum information (lesion) are in the possible range of 25% to 75%. Therefore, worst 
case is considered and we partition the image 12 basic cells, with a ratio of 8.3%. 
Later, based on the criteria of maximum information these cells are selected (summa-
tion of pixels against each cell). Finally, according to edge points, weights are assigned 
for each block, Ec

p.

where Ec
max represents cells with maximum edges. An addition of post log operation fur-

ther refines the channel [18], Ic(x, y) , compared to original, Is(x, y).

where β is chosen to be 3 by following a trial and error method.
Addition of a contrast stretching block facilitates segmentation step in extracting 

lesion area with improved accuracy. The probabilistic methods (mean segmentation 
and mean deviation based segmentation) are applied independently on a same image 
which are later subjected to image fusion in the following step.

Mean segmentation is calculated using:

where ϕthresh is Otsu’s threshold, ς is a scaling factor—selected to be 7 by following trial 
and error method. C is a constant and its value is in the range of 0 to 1.

Similarly mean deviation based segmentation is also calculated on enhanced image 
by following an activation function, having σMD calculated to be 0.7979 by following 
trial and error method.

Segmented image from both distributions are later fused to get the resultant image.

Sample segmentation results are provided in Fig. 5, where it can be observed that 
they are visually similar when compared with the available ground truths. In some 

(7)Cwi =
Ec
p

Ec
max

(8)I lc = C × log(β + Ic(x, y))

(9)I(µ) =
1

(1+ (
µ

I lc
))ς

+
1

2µ
+ C

(10)IMS
µ =

{

1 if I(µ) ≥ ϕthresh;

0 otherwise.

(11)I(κ) =
1

(

1+

(

σMD

Ilc

))ς +
1

2σMD
+ C

(12)IMD
(κ ,σ 2)

=

{

1 if I(κ) ≥ ϕthresh;

0 otherwise.

(13)Iseg = IMD
(κ ,σ 2)

∩ IMS
µ
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Fig. 5  Segmentation results: (1) original image; (2) fused segmented image; (3) mapped RGB image; (4) 
ground truth

Fig. 6  Segmented skin lesions: a correctly segmented, b incorrectly segmented
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cases, the foreground and background are not distinct enough; the segmentation, in 
such cases, does not pan out sufficiently acceptable. This may be correlated with the 
images given in Fig. 6.

Deep features extraction

The proposed framework can be observed in Fig. 4, showing various stages from extrac-
tion to the final classification. Following the segmentation step, the proposed hierarchi-
cal design is applied on the extracted set of features to conserve the salient deep features.

Feature layers

It has been observed that the systems relying on deep features extracted from a single 
layer and utilizing a single pre-trained model, are not robust enough [60]. Therefore, 
alternative strategies are opted—multiple models and even multiple layers are utilized. 
The most discriminant features from all the three re-trained (transfer learning) mod-
els are selected by exploiting three fundamental output layers, fc1000 and predictions. 
During the training phase, transferred weights are kept frozen on their initial values to 
extract off-the-shelf deep features. A complete information regarding the selected deep 
layers, along with their notations, is provided in Table 3. The fully connected layers of 
Densenet-201, Inception-Resnet-V2, and Inception-V3 are selected as FV0, FV1, and 
FV2 respectively.

Fusion mechanism

Rather than utilizing independent features from the selected pre-trained models, we 
adopted a feature fusion strategy. Feature sets originating from different re-trained mod-
els are consolidated to generate a fused feature set to retain most discriminant features. 
Our objective here is to explore the classifier’s behavior upon fusing multiple ConvNet 
fetures. A rudimentary strategy of feature fusion is opted by serially concatenating them 
to construct a resultant feature vector, which takes advantage of all feature spaces. Let us 
consider a joint vector FV ∈ R{1×3} = {FV i

k} , where i ∈ {1, 2, 3}—representing selected 
pre-trained architecture, and k ∈ {1, 2, 3} be a selected layer.

The fused feature vector FV κ = FV i
k ||FV

j
l  , exhibits set of two or three pre-trained 

models, having κ = {1, . . . , 4} combinations. Its not imperative for the systems that 
adopt feature fusion strategy to perform better than those which are using single layer. 
Fusion strategy increases features redundancy, which makes the classifier behave inef-
ficiently. Therefore, an addition of feature selection and dimensionality reduction steps 
not only decrease the redundancy but also computation time—leads to an improved 
classification accuracy. On contrary, overall classification accuracy increases.

Table 3  Fully connected layers of different pre-trained models and their notations

Pre-trained model FC-layer Feature-
vector 
notation

Densenet201 fc1000 FV0

Inception-Resnet V2 Predictions FV1

Inception V3 Predictions FV2
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Entropy‑controlled NCA

Our proposed strategy revolves around the core concept—achieve best classifica-
tion accuracy by exploiting minimum number of features. In this regard, a hierarchical 
framework is implemented, which consolidates both feature selection and dimensional-
ity reduction—so as to avoid the problem of curse of dimensionality.

Feature selection

The resultant fused vector FV κ , may include redundant or irrelevant features which are 
formally passed through an attribute or variable selection procedure. This complete pro-
cess of selecting a subset of most discriminant variables is termed as feature selection 
[60]. In the proposed work, the concept of entropy [61] is utilized, which has a capacity 
to analyze uncertain data and unveil the signal’s randomness by exhibiting the system’s 
disorder.

Let FV κ = {(x1, t1), . . . , (xk , tk), . . . , (xN , tN )} be a set of training matrix containing N 
labels, where X ∈ {xj}

N
j=1

∈ Rν is a ν-dimension feature vector, and T = {tj}
N
j=1 are the 

class labels with tj ∈ [0, 1] to be a binary class. This feature space has φ measure with the 
probability φ(X) = 1 , then the entropy is calculated as:

where φ(xj) is an observation probability for a particular features xi ∈ X . The basic pur-
pose of applying entropy is to identify a set of unique features having natural variability, 
whilst entropy value tends towards 0 with minimum feature variability. The concept of 
entropy has been adopted in one of the recent works [18], where the authors proposed 
to apply entropy on a distance matrix generated from feature space—yielding restricted 
OA. On the other hand, in the proposed approach, we assign ranks to the features, FV E , 
having (R < N ) dimensions. The top 80% features with maximum entropy value are 
included to generate the resultant set. This rank based selection criteria at this stage only 
down-samples the original feature space, while keeping the original information con-
served for the next level, dimensionality reduction.

Dimensionality reduction

Classifiers behave ineptly when there exists too many variables or these variables are 
highly correlated. At this stage, dimensionality reduction techniques play their vital 
role by reducing the number of random variables and retain the resultant vectors in the 
lower dimensions, FV S , where (S ≪ R) . For this application, we are implementing NCA 
as a dimensionality reduction technique, on contrary, it is mostly used as a feature selec-
tion method. NCA, originally introduced by Goldberger et  al. [62], is a distance met-
ric learning algorithm which selects the projection in the projected space by optimizing 
the performance of nearest neighbor classifier. NCA learns projections from both fea-
tures and their associated labels that will be cogent enough at partitioning classes in 
the projected space. For the function, NCA optimizes the criterion related to leave-
one-out (LOO) accuracy of a stochastic NN classifier in the projection of space induced 

(14)E(X) = −

N
∑

j=1

(xj)logφ(xj)
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by the training set. Selected entropy-controlled fused training vector, FV E , consists of 
{(x1, t1), . . . , (xR, tR)} , where {xj , yj} ∈ Rm . NCA learns a projection matrix Q ∈ Rs×m , 
representing transformation that projects xj into s dimensional space, ̟j = Qxj ∈ Rs , 
and s ≤ m . The projection matrix Q construe a Mahalanobis distance metric, calculated 
between two samples xj and xk in the projected space.

The primary objective of this method is to learn a projection Q that maximizes the sepa-
ration of a labeled data by construing the cost function, in the transformed space, based 
on soft-neighbor assignments. Stating a rationale that every sample xj keeps the neigh-
boring sample xk as a reference with some associated probability, pjk.

where Υ (ψ) = exp(−φ/ς) represents a kernel function having kernel width ς to an input 
argument that has a clear influence on the data samples probability—this additional step 
makes the model more robust and influential. Under the power of stochastic selection 
rule, the optimization criterion comfortably be defined by utilizing soft-neighbor assign-
ments. The probability that the quantity xj will be assigned a correct class label.

The optimization criterion searches to maximize the correct labels under leave-one-out 
policy:

To perform a featured reduction, as well to avoid the problem of overfitting, a regulari-
zation term � > 0 is introduced as a standard weight in the cost function which can be 
tuned via cross validation [63], given as:

This complete criterion gives rise to a gradient rule, used to maximize the projection 
matrix Q and solve by differentiating Ξ(Q) with respect to qk as follow:

(15)D(xj , xk) = (Qxj −Qxk)
T (Qxj −Qxk)

(16)pjk =

{

Υ (−D(xj ,xk )
∑

j �=k Υ (−D(xj ,xk ))
if j �= k ,

0 otherwise.

(17)pj =
∑

k∈Cj

ωjkpjk

(18)ωjk =

{

1 iff ωj = ωk ,

0 otherwise .

(19)Ξ(Q) =
∑

j

∑

k

ωjpij =
∑

j

pj

(20)Ξ(Q) =
∑

j

∑

k

ωjpij − �

d
∑

k=1

q2k

(21)
∂Ξ(Q)

∂q(k)
= 2qk





1

τ

�

j



pi
�

j �=k

pjk |xik − xjk |



−
�

j

ωjkpjk |xik − xjk | − �




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To maximize the objective function, several gradient optimizers can be employed. How-
ever, in this article, we employed conjugate gradient method. Algorithm 1 explains the 
proposed approach from feature extraction (after transfer learning) to final classification.

Results and discussion
Simulations are performed on four publicly available datasets, Table  2. Three families 
of state-of-the-art classifiers are utilized for classification including KNN, SVM, and 
Ensemble (ES). The evaluation of the proposed framework is carried out using three 
simulation setups: in the first, the classification results are obtained from a few selected 
individual layers of the pre-trained models. The second simulation setup incorporates 
two cases: while in the first, we simply fuse the selected layers; in the second, we com-
bine NCA technique with the proposed feature reduction approach. We have also tested 
the proposed technique with other state-of-the-art classifiers. All the base parameters 
for the selected classifiers are given in Table  4. Additionally, a fair comparison with 
recent methods is also provided with remarks on the effectiveness of the proposed tech-
nique, in comparison to the state-of-the-art approaches.

Evaluation of the single layer features

Figure  7 presents classification results of each of the different layers used on the four 
datasets discussed in "Dataset" section. It has been observed that the models that were 
pre-trained by CNN architectures are powerful features representatives. From the 
selected pre-trained models, it has been observed that DenseNet-201 and Inception-
ResNet-V2 show almost similar performance on all datasets. For example, in ISIC-UDA 
dataset, OA of FV0 is found to be 80.5%, whereas, OA of FV1 is 81.6%. It has also been 
observed that Inception-V3 shows decline in performance; hence, it is not a suitable 
candidate for skin cancer detection.
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Evaluation of the proposed technique

Prior to the feature selection and dimensionality reduction step, the extracted features 
from various architectural layers are concatenated. Table 5 shows reduction percentage 
of fused feature vectors achieved after applying a hierarchical framework of entropy and 
NCA, before the classification phase. It is evident from the figures that maximum reduc-
tion percentage achieved is 98.50% on PH2 dataset, whilst, average reduction on all data-
set is 95.17% . We create four combinational feature vectors from each dataset.

Table 6 presents a comparison of classification results, in terms of OA, for two differ-
ent cases: (1) simple fusion approach, (2) entropy-controlled NCA (proposed). The two 
cases are implemented on fused feature vector, and on four different datasets, using the 
selected classifiers. Discussion for the two cases are given below:

•	 Case 1: on PH2 dataset, the best classification accuracy achieved is 83.2% using Fine 
KNN (F-KNN), 82.2% using SVM and 82.4% using ES-KNN classifier, when FV0–
FV1–FV2 are fused. Similarly, on ISIC-MSK dataset, by using the same fusion, 
F-KNN outperforms SVM and ES-KNN by achieving 76.4%. In case of ISIC-UDA, 
F-KNN yields 76.5% classification accuracy, which is greater than SVM (73.5%) 
and ES-KNN (76.0%). On ISBI-2017 dataset ES-KNN gives 76.1% accuracy, which 
is greater than both SVM and F-KNN. It has been observed, and hence concluded, 
that irrespective of the given dataset, the best classification results are obtained with 
the fusion of FV0–FV1–FV2, thereby validating the strength of the feature fusion 
approach.

•	 Case 2: using entropy-controlled feature fusion approach, on PH2 , ISIC-MSK, 
and ISIC-UDA datasets, F-KNN yields the best accuracy of 98.8%, 99.2%, and 
97.1% respectively, courtesy the feature fusion approach. In case of ISB1-2017 
dataset, however, ES-KNN gives maximum accuracy of 95.9%. Note that the 
number of image samples in ISBI-2017 is larger as compared to other datasets; it 
may be concluded that ES-KNN gives classification results better as compared to 
other classifiers for datasets having greater number of samples.

Table 4  Selected classifiers and their base parameters

Classifier Base parameters

Fine tree Maximum splits: 100 split criterion: Gini’s Diversity Index

Medium tree Maximum splits: 20 split criterion: Gini’s Diversity Index

Coarse tree Maximum splits: 4 split criterion: Gini’s Diversity Index

Linear SVM Kernel function: linear multi-class method: one-vs-one

Q-SVM Kernel function: quadratic multi-class method: one-vs-one

Cubic SVM Kernel function: cubic multi-class method: one-vs-one

Fine KNN Number of neighbors: 1 distance metric: Euclidean distance weight: equal

Medium KNN Number of neighbors: 10 distance metric: Euclidean distance weight: equal

W-KNN Number of neighbors: 10 distance metric: Euclidean distance weight: squared inverse

Ensemble-BT Ensemble method: AdaBoost learner type: decision tree maximum splits: 20 number of 
learners: 30

Ensemble subset KNN Ensemble method: subspace learner type: nearest neighbor number of learners: 30

Ensemble RUSB Ensemble method: RUSBoost learner type: decision tree number of learners: 30 maxi-
mum splits: 20
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In Table 7, the average classification time and average accuracy of all datasets are 
shown. From this table it is evident that the proposed technique outperforms sim-
ple fusion approach with substantial time margin and with maximum classification 
accuracy. Additionally, a confidence interval is plotted in Fig. 8 against all selected 
datasets and using two different classifiers (F-KNN, ES-KNN), which works best 
compared to others. Moreover, to provide a better insight and to facilitate research-
ers working in this domain, a comprehensive comparison of set of classifiers is also 
provided, Table 8. From the stats, its quite clear that the classifiers belong to the fam-
ily of KNN performs best both in terms of average classification accuracy (94.73%) 
and average computational time (1.30 s). The second best family in this domain is 
SVM—showing average classification accuracy of 93.83% and average computational 
time of 1.96 s. Ensemble and Tree family is not showing improved results in terms of 
average classification accuracy (89.87%, 84.91%), whilst, average computational time 
of ensemble family is 6.05 sec, but tree family is time efficient by taking only 1.57 s. 
Same trend is being followed in calculating AUC.

Comparison with state of the art techniques

A comprehensive comparison with existing techniques utilizing PH2 , ISBI-2017 and 
ISIC-MSK datasets is given in Table 9. It can be clearly observed that our proposed 
methodology achieves best classification accuracy on all the given datasets. The maxi-
mum classification accuracy achieved by the previous works on PH2 dataset is 96.00% 
using color and texture features, while using the proposed methodology, it is 98.80%. 

Table 5  Features fusion and reduction percentage

* Shows the highest value among all datasets

Vector fusion Input dimension Output dimension Percentage 
reduction (%)

PH
2

 FV0–FV1 160 × 2000 160 × 50 97.50

 FV0–FV2 160 × 2000 160 × 53 97.35

 FV1–FV2 160 × 2000 160 × 55 97.25

 FV0–FV1–FV2 160 × 3000 160 × 45 98.50*

ISIC-MSK

 FV0–FV1 180 × 2000 180 × 99 95.05

 FV0–FV2 180 × 2000 180 × 125 93.75

 FV1–FV2 180 × 2000 180 × 167 91.65

 FV0–FV1–FV2 180 × 3000 180 × 95 96.83

ISIC-UDA

 FV0–FV1 446 × 2000 446 × 227 88.65

 FV0–FV2 446 × 2000 446 × 197 90.15

 FV1–FV2 446 × 2000 446 × 161 91.95

 FV0–FV1–FV2 446 × 3000 446 × 104 96.53

ISBI-2017

 FV0–FV1 2200 × 2000 2200 × 107 95.13

 FV0–FV2 2200 × 2000 2200 × 65 97.05

 FV1–FV2 2200 × 2000 2200 × 53 97.59

 FV0–FV1–FV2 2200 × 3000 2200 × 49 98.37
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Table 6  Classification results of  the  proposed technique compared to  simple feature 
fusion with four datasets using F-KNN, ES-KNN and SVM

* Shows the highest value in each dataset

Vector Fusion OA (%)

Feature Fusion Approach Proposed (ECNCA)

F-KNN SVM ES-KNN F-KNN SVM ES-KNN

PH
2

FV0-FV1 82.8 80.0 80.1 96.9 93.7 95.1

FV0-FV2 82.1 81.7 81.7 95.1 94.8 93.2

FV1-FV2 82.9 82.0 82.1 97.4 95.0 97.1

FV0-FV1-FV2 83.2 82.2 82.4 98.8∗ 95.1 98.1

ISIC-MSK

FV0-FV1 74.2 71.7 74.6 93.7 87.2 88.8

FV0-FV2 73.9 71.0 73.0 89.1 89.0 87.4

FV1-FV2 73.1 72.5 75.1 86.5 91.0 89.7

FV0-FV1-FV2 76.4 74.8 74.9 99.2∗ 95.1 96.9

ISIC-UDA

FV0-FV1 71.9 70.0 75.9 88.8 80.1 84.7

FV0-FV2 73.3 71.2 74.1 90.7 84.5 88.0

FV1-FV2 74.1 75.9 75.8 92.8 82.7 94.2

FV0-FV1-FV2 76.5 73.5 76.0 97.1∗ 93.3 95.7

ISBI-2017

FV0-FV1 73.2 70.9 71.1 88.5 88.0 88.8

FV0-FV2 74.7 70.7 72.8 89.7 87.3 89.3

FV1-FV2 72.1 70.5 73.3 90.0 88.9 90.7

FV0-FV1-FV2 75.3 75.1 76.1 94.1 93.4 95.9∗

Table 7  Average classification time and accuracy on all datasets

Dataset Average classification time (s) Average accuracy

Entropy-controlled Simple fusion Entropy-controlled Simple fusion

PH2 0.60 36 98.80 83.20

ISIC-MSK 0.73 43 99.20 74.40

ISIC-UDA 1.62 96 97.10 76.50

ISBI-2017 7.59 455 95.90 76.10

Fig. 8  Confidence interval on all selected datasets using state-of-the-art classifiers (F-KNN, ES-KNN)
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Table 8  Performance comparison of state-of-the-art classifiers on selected datasets using 
set of performance measures

Classifier Dataset Performance Measures

I II III IV OA (%) Recall Precision FNR FPR AUC​ Time 
(sec)

Fine Tree � 87.5 83.0 80.5 12.5 0.17 0.84 0.76

� 79.1 78.5 79.0 20.9 0.22 0.73 0.93

� 82.6 72.9 72.9 17.4 0.34 0.69 1.87

� 89.3 77.9 78.9 10.2 0.20 0.73 5.04

Medium Tree � 87.5 83.0 80.5 12.5 0.17 0.84 0.58

� 79.1 78.5 79.0 20.9 0.22 0.73 0.76

� 84.2 74.9 74.4 15.8 0.32 0.72 1.70

� 87.8 69.4 75.4 11.7 0.29 0.73 2.16

Coarse Tree � 86.9 78.0 80.0 13.1 0.22 0.77 0.59

� 80.4 79.0 80.5 19.6 0.22 0.74 0.73

� 87.1 70.9 71.4 12.9 0.36 0.67 1.60

� 87.5 68.4 74.4 12 0.30 0.67 2.06

Linear SVM � 93.1 87.5 90.5 6.9 0.12 0.97 0.60

� 88.7 88.0 88.5 11.3 0.13 0.91 0.78

� 95.2 80.9 90.9 4.8 0.26 0.91 1.78

� 91.3 72.9 84.9 8.2 0.25 0.84 4.3

Quadratic SVM � 95.6 93.0 93.5 4.4 0.07 0.99 0.61

� 90.9 90.5 91.0 9.1 0.10 0.93 0.78

� 96.2 87.9 91.9 3.8 0.19 0.94 1.71

� 94.0 82.4 88.4 5.5 0.20 0.88 4.5

Cubic SVM � 96.9 93.5 97.0 3.1 0.07 1.00 0.61

� 91.8 91.5 91.5 8.2 0.09 0.96 0.78

� 96.6 89.4 92.9 3.4 0.18 0.95 1.69

� 95.6 87.4 89.4 3.9 0.21 0.90 5.42

F-KNN � 98.8∗ 97.0 99.0 1.2 0.03 0.97 0.60

� 99.2∗ 99.0 99.0 0.8 0.02 0.94 0.73

� 97.1∗ 93.9 93.4 2.9 0.13 0.88 1.62

� 95.8 92.9 92.4 4.6 0.19 0.86 2.53

Medium KNN � 92.5 81.5 95.5 7.5 0.19 1.00 0.63

� 91.8 91.0 91.5 8.2 0.10 0.96 0.72

� 95.5 78.9 91.9 4.5 0.28 0.90 1.50

� 89.3 62.4 91.4 10.2 0.35 0.86 2.15

Weighted KNN � 93.1 83.0 96.0 6.9 0.17 1.00 0.62

� 94.4 93.5 95.0 5.6 0.07 0.98 0.72

� 95.2 80.9 90.9 4.8 0.26 0.92 1.60

� 94.1 75.9 87.9 5.4 0.22 0.91 2.12

Ensemble BT � 80.0 50.0 40.0 20 0.20 0.90 0.78

� 82.6 82.0 82.5 17.4 0.19 0.83 3.47

� 93.2 81.4 86.4 6.8 0.26 0.85 7.87

� 92.3 73.4 88.9 7.2 0.25 0.87 13.48

Ensemble S-KNN � 98.1 95.5 99.0 1.9 0.04 1.00 4.06

� 96.2 96.0 96.0 3.8 0.05 0.99 3.49

� 96.8 89.9 91.4 3.2 0.17 0.92 5.36

� 95.9∗ 93.4 95.4 3.6 0.17 0.92 7.59
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Similarly on ISBI-2017 dataset, the maximum accuracy achieved by the proposed 
methodology is 95.90%, compared to other methods, e.g. [64] achieving 94.08% on 
the same dataset. Similarly on ISIC-MSK, the accuracy achieved by [18] is 97.20%, 
while the proposed methodology gives 99.20%.

Conclusion
Considering the recent success of deep architectures, we presented an effective 
approach for the classification of skin lesion. Comparing with conventional techniques, 
we introduced a hierarchical framework of discriminant features selection followed by 
a dimensionality reduction step. We exploited extracted information from the selected 
pre-trained models after fine tuning, which contributed significantly in the improve-
ment of classification accuracy. With the proposed method, we utilized less than 3% of 
total features, which not only improves the classification accuracy by removing redun-
dancy but also minimizes the computational time. After implementing this idea, we are 
in a position to put forth a few claims including: (a) fusion of extracted features from set 
of pre-trained models improves the overall accuracy, (b) an addition of feature selection 
and dimensionality reduction step significantly improve the classification results. As a 
future work, an improved segmentation criteria will be our primary focus along with the 

Table 9  Comparison with state-of-the-art methods

Ref Year Dataset Method OA (%)

[65] 2016 PH
2 ABCD rule 90.00

[66] 2016 PH
2 wavelet transform with morphological operations 93.87

[15] 2017 PH
2 multistage fully convolutional network 94.24

[67] 2017 PH
2 color and texture features 96.00

[68] 2018 ISBI-2017 regularised discriminant learning 83.20

[13] 2018 ISBI-2017 fully convolutional residual networks & lesion index 
calculation unit

85.70

[69] 2018 ISBI-2017 Ensemble Of Deep Neural Networks 84.8%

[18] 2018 ISIC-MSK probabilistic distribution and best features selection 97.20

Proposed 2019 ISBI-2017 ECNCA 95.90

Proposed 2019 ISIC-UDA ECNCA 97.10

Proposed 2019 ISIC-MSK ECNCA 99.20

Proposed 2019 PH
2 ECNCA 98.80

Table 8  (continued)

* Shows the highest value in each dataset

Classifier Dataset Performance Measures

I II III IV OA (%) Recall Precision FNR FPR AUC​ Time 
(sec)

Ensemble RUSB � 88.8 86.0 81.5 11.2 0.14 0.93 4.74

� 85.7 85.0 85.5 14.3 0.16 0.88 5.24

� 85.5 87.9 83.4 14.5 0.21 0.88 7.09

� 83.3 82.4 74.9 16.2 0.20 0.85 9.45
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extended feature selection criteria. Moreover, we will include a few more and challeng-
ing datasets in order to provide a comprehensive comparison.
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