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Introduction
Computer-aided diagnosis (CAD) based on deep learning has already been studied 
extensively [1]. In particular, many successful studies have applied convolutional 
neural networks (CNNs) [2, 3] to medical image processing. Studies of the classi-
fication of pathology [4–6], lesion segmentation [7–9] and body detection [10–13] 
using CNNs have been carried out with good performance. However, CNNs learn the 
intensity of the images. If test an image with a completely different intensity from the 
learned image, the performance of the CNN greatly degrades. This problem is even 
more prominent in the medical imaging domain. Unlike the domain of real-world 
images, medical images are grayscale, and features of lesions in the images can be very 
detailed and complex. Unfortunately, medical images show different intensity distri-
butions depending on the characteristics of the imaging equipment and the operating 
methods of the radiologist, and it is very difficult to extract the features of lesions 
that are valid for all intensity. Therefore, CNNs for medical imaging suffer from poor 
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performance for new medical images with intensity distributions that are completely 
different from training data sets. This unstable performance change makes it impos-
sible to commercialize that CNNs for medical domain, because it is impossible to 
obtain a data set that considers all conditions in the image-shooting environment. 
Also, because of the infinite number of new data sets with a variety of intensities, 
training new ones to the network each time is a very expensive task. Therefore, in 
order to solve this problem practically, generalization of new data sets needs to be 
considered.

Traditionally, histogram processing, such as histogram equalization and histogram 
matching, was used to adjust the similarity of intensity distribution. However, it is 
very difficult to adjust the intensity distribution of all input images to the distribution 
of a training data set with these methods.

The task of transforming image data from an arbitrary domain into a target domain 
is known as image-to-image translation. This is a kind of domain adaptation. Image-
to-image translation has been actively researched using generative adversarial net-
works (GANs) [14–16] and variational auto-encoders (VAEs) [17, 18].

The Pix2Pix network [19] performs image-to-image translation using a paired data 
set. For each image in the original domain, the paired data set contains an image con-
verted to the target domain. It is not easy to get a paired data set like this, but Cycle-
GAN [20] and UNIT [21] solved this limitation and proposed that a GAN can learn 
with an unpaired data set. In the medical imaging domain, it is practically impossi-
ble to obtain a true paired data set. Therefore, much research has been done through 
GANs that can be trained with unpaired data sets. Figure 1 shows example of paired 
and unpaired image dataset. The paired data shows what multiple chest X-rays of a 
single person taken on several machines might look like. In reality, this data is virtu-
ally unattainable, and the paired data above shows fake images that we created. The 
unpaired data shows X-rays of people taken on different machines. This is usually the 
data set we are dealing with. The intensities of the two sets are very different.

GANs have been applied to medical imaging in earnest since 2017 [22]. In particu-
lar, many studies show data augmentation using GANs for image synthesis [23, 24], 
and most of them were conducted using magnetic resonance (MR) and computed 
tomography (CT) data. Data augmentation is useful for training the network, but 
it is not a good method for maintaining existing network performance; MR and CT 

Fig. 1  Examples of our paired data and unpaired data
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can obtain high-quality images but are less accessible than X-rays. Therefore, image 
synthesis needs to be considered to maintain a network’s performance of the X-ray 
target.

In this paper, we propose a generalization framework that adjusts a set of X-ray images 
with arbitrary intensity distribution to match the intensity distribution of a training set, 
using CycleGAN and UNIT as generalizers to maintain the accuracy of a medical-image 
classification network (Fig. 2).

Contributions

This paper presents two contributions:

1.	 A solution of performance degradation for lesion classification and other tasks via 
the generalization of medical-image intensity distribution.

2.	 Data augmentation using intensity generalization in the medical image domain suf-
fering from a lack of data.

Paper organization

The rest of the paper is organized as follows: In “Related works” section, we introduce 
traditional intensity generalization using histogram processing and recent research in 
image-to-image translation tasks using GANs, finally providing some GAN applications 
for the medical image domain. In “Methods” section, we detail the architecture of our 
proposed generalization network that adjusts the intensity of new test images to those 
of the original training data set. We also provide brief details of CycleGAN and UNIT as 
generalizers in our network. Performance comparisons of the proposed networks are in 
“Experiments” section. Finally, in “Conclusion” section, we present our conclusions.

Related works
To adjust the intensity of arbitrary image data sets to the intensity of a specific image 
data set is a difficult task. We introduce the traditional approach and new approach with 
generative adversarial networks to solve this problem in this section.

Fig. 2  Our proposed framework for generalization between medical images
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Traditional method

Traditionally, histogram matching was used to solve this problem. Histogram matching 
(or histogram specification) is the method in which an input histogram matches a tar-
get histogram using their cumulative distribution function (CDF). The cumulative his-
togram is calculated from each image; any value to be matched to another histogram, xj, 
has a cumulative histogram value given by G(xi). This is the cumulative distribution value 
in the target image, namely H(xj). The input data value, xi, is replaced by xj, where G(xi) is 
equal to H(xj). However, this method cannot handle matching histograms between two 
different data sets and simply uses CDF matching of both histograms. Therefore, it can-
not be used for challenges such as finding the probability distribution or the manifold in 
the training data set.

Generative adversarial networks

A GAN is a generative model that estimates the probability distribution of training data 
sets, p(x), and generates new data, G(x), similar to that distribution. This allows the GAN 
to find the manifold in a specific domain. Sampling in a well-approximated manifold 
space yields results that are similar to the original but have different details. A GAN con-
sists of two neural networks: the generator and the discriminator. The generator learns 
to generate images that can fool the discriminator. The discriminator learns whether an 
input image is an original image or a fake image from the generator. That is, the gen-
erator and discriminator have different goals. The discriminator needs to maximize 
log(D(x)), while the generator needs to minimize log(1–D(G(z))) where z is a random 
vector. Therefore, this network can be considered adversarial. Vanilla GAN loss is called 
adversarial loss [14], defined in Eq. 1 as follows:

The vanilla GAN generates z with random noise. Because of this, the generator at the 
beginning of the training always produces a completely fake image. This allows the dis-
criminator to completely distinguish whether the input is fake or not. That is, D(G(z)) 
becomes 1, and a learning generator is impossible. Therefore, we will have maximized 
log(D(G(z))) instead of minimizing log(1–logD(G(z))).

To solve the problem of a z vector with random noise, a conditional GAN (cGAN) [25] 
is proposed. We can use the conditional input vector, c, to add to the random noise of z 
using concatenation for a better output image. In the cGAN, a new vector combining z 
and c becomes the input for the generator and the loss function, providing Eq. 2 below, 
where y is a given label vector.

The c vector does not have a specific type. For example, image labels can be used as the 
c vector [26].

There are some popular methods using cGAN in image-to-image translation. Pix2Pix 
proposes a modified loss function for cGAN in Eq. 3 combined with L1 regularization 
in Eq.  4 for denoising the generated result. Also, their L1 loss contains self-similarity 

(1)min
G

max
D

LGAN = Ex∼p(x)[logD(x)]+ Ez∼p(z)[log(1− D(G(z)))]

(2)min
G

max
D

LcGAN = Ex∼p(x)[logD(x|y)]+ Ez∼p(z)

[

log(1− D
(

G
(

z|y
))

)
]
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between G(x,z) and label y. However, in the actual implementation of Eq.  3, we don’t 
need random noise because our input image is sufficiently complex.

This network shows good performance but has the limitation that it is only trained by 
a paired data set. To solve the unpaired data set problem, CycleGAN improved Pix2Pix 
is proposed. They use an idea called cycle-consistency loss (or reconstructed loss) that 
performs bidirectional conversion between the source domain and the target domain.

In addition to the cGAN, there are many GAN variants. There are networks that use 
auxiliary classifiers or VAE. In addition to image-to-image translations using cGAN, 
UNITs that use VAE and weight sharing have been widely used.

GANs for computer‑aided diagnosis

Various GAN methods have already been applied to CAD, especially in the synthesis, 
segmentation, reconstruction (such as enhancement or denoising), and classification 
fields. Most studies have focused on synthesis and segmentation [22] so that these are 
well suited for image-to-image translation.

For the segmentation researches, Li et al. [27] proposed cGAN combining with Pix-
2Pix and ACGAN [28] for MR segmentation. Dai et al. [29] proposed SCAN network, 
which shows that adversarial loss can be applied to organ segmentation in X-rays.

For the synthesis researches, the performance of converting between MR and CT is 
outstanding. Emami et  al. [30] synthesized brain MRIs from CT using cGAN with a 
paired data set. On the other hand, Wolterink et al. [24] synthesized MRI images into 
CT images using CycleGAN with an unpaired data set. Dar et  al. [31, 32] studied the 
transformation between T1- and T2-weighted MR images using CycleGAN. Mahmood 
et  al. [33] applied adversarial training methods to depth-estimation from monocular 
endoscopy.

Although there have not been many studies, some studies have used GAN for classi-
fication. Madani et al. [34] shows that DCGAN [16] can be used for classification. They 
used a discriminator as a classifier and conducted data augmentation using generated 
images in the training process.

The research so far has the following unsatisfactory points:

1.	 Most studies focus on MR and CT images. There are few studies on X-ray images. 
X-ray images are readily available in many areas regardless of the medical infrastruc-
ture, so application to X-rays is meaningful, too.

2.	 There is no research on maintaining the performance of the classifier to make it 
robust regardless of the intensity difference. Research has only focused on data aug-
mentation.

3.	 Most of the research has utilized CycleGAN and Pix2Pix for their tasks and compare 
their performance. This trend is evident regardless of the application. However, there 
is no performance comparison between UNIT based VAE and CycleGAN.

(3)LcGAN−pix2pix = Ex,y

[

logD
(

x, y
)]

+ Ex,z[log(1− D(x,G(x, z)))]

(4)LL1(G) = Ex,y,z[� y− G(x, z) �1]
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Therefore, we propose generalizing medical image intensity to maintain the perfor-
mance of a network using GAN, comparing the performance of CycleGAN and UNIT.

Methods
We propose a generalization method for a new data set with a different intensity distri-
bution from the training data set to maintain the performance of good existing classifi-
cation networks (Fig. 3).

However, it is impossible to collect such a paired data set in a medical image domain. 
For example, it requires shooting one person on several machines at the same time to 
obtain a varied intensity distribution data set for one medical image. This is an impos-
sible task and, indeed, unnecessary. Therefore, our generalizer is chosen a GAN that 
should be trained with an unpaired data set.

Our chosen CycleGAN and UNIT are popular image-to-image translation GANs that 
can be trained with unpaired data sets and work well in various domains as well as medi-
cal imaging. We introduce two networks below.

Generalizer using CycleGAN

The CycleGAN is the widely used network for style transfer tasks. The results of 
this network tend to maintain features of the original domain, such as the shape of 
instance, as much as possible. Figure  4 shows the structure of a CycleGAN used to 
generalize the intensity distribution of medical images. The key idea is cycle con-
sistency, that is the loss between the original domain image and the reconstructed 
image for the training of an unpaired data set. The reconstructed image is retrans-
formed from the fake image to the original domain image. First, the generator GXY 
generates a domain-transformed image, GXY(X), and then obtains a reconstructed 
image, GYX(GXY(X)), through GYX that reconstructs the transformed image, GXY(X), 
into the original domain. By reducing the loss between the original domain image 

Fig. 3  The flow chart of our overall workflow
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and the reconstructed image, the network maintains the characteristics of the original 
domain. Conversely, the same method applies to converting from a target domain to 
the original domain.

In this case, CycleGAN uses forward–backward cycle-consistency losses. Forward 
cycle-consistency loss is the loss in converting from domain X to domain Y and then 
retransforming back to the original domain (Fig.  4a). Backward cycle-consistency 
loss, on the other hand, is the loss when converting from the target domain to the 
original domain and then back to the target domain (Fig. 4b). This cycle-consistency 
loss is similar to L1 loss containing self-similarity (Eq. 4), and it summarized in Eq. 5. 
The final objective function is constructed by adding it to the existing GAN loss.

For model stability and to avoid mode collapse, CycleGAN uses a least-square loss 
function [35] instead of vanilla GAN loss (Eq. 1) in Eq. 6.

Then their final loss function is in Eq. 7.

(5)
Lcyc(GXY ,GYX ) = Ex∼p(x)[� GYX (GXY (x))− x �1]

+ Ey∼p(y)

[

� GXY

(

GYX

(

y
))

− y �1
]

(6)
LLSGAN−cycleGAN (GXY ,GYX ) = Ey∼p(y)

[

(

DY

(

y
)

− 1
)2
]

+Ex∼p(x)

[

DY (GXY (x))
2
]

Fig. 4  CycleGAN as a generalizer in the medical domain: a forward cycle-consistency, b backward 
cycle-consistency loss
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Generalizer using UNIT

The UNIT consists of two structures combined with VAE and GANs as shown Fig. 5, and 
their core idea is a shared latent vector for inferring joint distribution between different 
domain data sets. The aim of the shared latent vector is to limit the space of joint distri-
bution. A single generator is conceptually divided into an encoder, Ge, and a decoder, Gd. 
The two encoders, GeA and GeB, respectively, generate latent vectors, z ~ q(z|x) through 
weight sharing. q is treated by random vector of N(E(x), I) where I is an identity matrix. 
These vectors are reshared in the decoders GdA and GdB, and the decoders also share 
weights. Therefore, UNIT is quite complex, using VAE and GAN losses together.

Suppose we have different domain data, A and B, for the same x. The entire loss func-
tion is shown in Eq. (8). UNIT also learns in both directions by applying cycle-consist-
ency, but we represent the loss of only one direction. The other loss is easily obtained by 
changing the domain.

Two VAE trained by minimize a variational upper bound [19], in Eq. 9.

GAN loss is based on cGAN loss as follows:

To model cycle-consistency condition, the loss is given by Eq. 11.

(7)

LCycleGAN (GXY ,GYX ,DX ,DY ) = LLSGAN−cycleGAN (GXY ,DY )

+ LLSGAN−cycleGAN (GYX ,DX )+ �Lcyc(GXY ,GYX )

(8)
LUNITA(GeA,GdA,DA) = LVAEA(GeA,GdA)+LGANA(GeB,GdA,DA)+LccA(GeA,GdA,GeB,GdB)

(9)
LVAEA(GeA,GdA) = �1KL(qA(zA|xA) � pη(z))+ �2EzA∼qA(zA|xA)[log(pGeA(xA|zA))]

(10)
LGANA(GeA,GdA) = �0ExA∼PXA

[logDA(xA)]+ �0EzB∼qB(zA|xA)[log(1− DA(GA(zB)))]

(11)

LccA(GeA,GdA,GeB,GdB) = �3KL
(

qA(zA|xA) � pη(z)
)

+ �3KL
(

qB(zB|GdB(zA)) � pη(z)
)

− �4EzB∼qB(zB|GdB(zA))[logpGeA(xA|zB)]

Fig. 5  UNIT as a generalizer in medical domain. a Pair of encoder-decoder network in domain A, b in domain B
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We use CycleGAN and UNIT as generalizers. Both networks have very different struc-
tures depending on whether VAE is used or not. In the next section, we will compare 
their performance as generalizers for both networks.

Experiments
This section presents the experimental methods and evaluation result. We propose three 
conditions for evaluation of our generalization framework and four methods to solve 
these conditions. Moreover, we compare the performance of three generalizers includ-
ing UNIT, GAN and histogram matching. Also, we describe our datasets in this section.

Experiment data

Figure 6 shows an example of the unpaired medical image data set used in the experi-
ments of this paper. Our data set includes frontal chest X-ray image data, labeled tuber-
culosis (TB) or non-TB from the National Library of Medicine and National Institutes of 
Health (Bethesda, MD, USA) [36–38].

There were two data sets: the Shenzhen data set from Shenzhen No. 3, People’s Hos-
pital, captured with Philips DR Digital Diagnose systems, and the Montgomery County 
(MC) data set from the Department of Health and Human Services of Montgomery 
County (MD, USA), captured with a Eureka stationary X-ray machine.

The Shenzhen data set consisted of 336 cases with TB and 326 non-TB cases. The MC 
data set consisted of 58 cases with TB and 80 non-TB cases. Because both data sets were 
captured using different machines, the intensity distribution of the two data sets is com-
pletely different, so the network cannot find lesions in other test data sets, even though 
its original classification performance is high.

Experimental process

The experiment was divided into a generalization step and a classification step. Our 
test scenario assumes a situation where a new MC data set comes to the classifier that 
learned the Shenzhen data set. In other words, the MC data set was used as a test set for 
generalization performance, and the Shenzhen data set was used as a training set to train 
the classifier. Our classifier is based pretrained AlexNet [2] with 0.95 ± 0.02 area under 

Fig. 6  Intensity distribution of our unpaired dataset
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curve (AUC). The MC data sets are generalized by two generalizers, which are Cycle-
GAN and UNIT, respectively. In the generalization step, the intensity distribution of the 
MC data set was adjusted to the Shenzhen data set using each generalizer.

Unlike with simple translation, the generalization of medical images requires the pres-
ervation of highly advanced features. In particular, detailed feature retention is necessary 
to distinguish the presence or absence of lesions.

For evaluation, we have to consider as three conditions:

1.	 From the MC data set M, pM(mi) and the generalized result, G(mi), should have dif-
ferent distributions, where m ~ p(M).

2.	 From the Shenzhen data set S, p(S) and G(M) should have similar distributions.
3.	 The conversion from mi to G(mi) should minimize the loss of meaningful features.

Conditions (1) and (2) can be judged visually, but it is very difficult to confirm in con-
dition (3). We propose the following methods to solve this problem:

1.	 Show visualizations using the two generalizers.
2.	 Use the histogram as a simple measure for conditions (1) and (2) to identify the dif-

ference between the original image and the transformed image.
3.	 Use the structural similarity index (SSIM) for condition (3). G(mi) should have a 

structural similarity with m. Otherwise, the image may become completely different 
and the original lesion may be lost.

4.	 Compare the accuracy of the classification test to area under curve (AUC) and 
receiver operating characteristic (ROC) curve to assist the SSIM. Test the actual per-
formance by testing generalized G(M) on the classifier that only learned the real S.

Experimental result

Figure 7 shows the results of generalization using CycleGAN (Fig. 7a), UNIT (Fig. 7b), 
and histogram matching (Fig.  7c). Figure  8 shows the histogram comparison of each 
method. Table 1 also shows the mean SSIM score of each image and their standard devi-
ation (std).  

The difference in the results can be seen with the naked eye. The generalized image 
using CycleGAN is very similar to the training set, which is the target domain, and the 
intensity of the generalized result (red) is similar to the training domain (blue) in Fig. 8a. 
Compared with the distribution of the MC domain, the results are also the most distant 
(Fig. 8b). CycleGAN also showed good performance in the SSIM results (Table 1) as well 
as in visual information and histogram results. The SSIM is 0.737, a higher score than 
other methods. Also, the std is small, meaning CycleGAN is a stable method for the gen-
eralization task. It can be confirmed that all the features of the lung are maintained as 
the intensity transformation is properly performed.

Generalization with UNIT, on the other hand, has bad results. As a result of the visu-
alization, the biggest problem was that the blurring was very severe (Fig. 7b). Therefore, 
UNIT did not show intensities similar to the target domain in the histogram results (yel-
low) in Fig. 8a, it is the furthest distribution from the target domain. This can be seen 



Page 11 of 15Lee et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:17 	

immediately in the SSIM results. The SSIM of UNIT was 0.691, which was lower than 
histogram matching. However, UNIT performed better than histogram matching. As 
can be seen in Fig. 9, histogram matching was completely blacked out, and the features 
had completely disappeared. This shows that UNIT did not preserve the structural char-
acteristics of the original domain.

Fig. 7  The overall visualization from the MC domain to the Shenzhen training domain of each generalizers a 
CycleGAN, b UNIT, c histogram matching, d examples in the original domain
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Through the above experiments of visualization, we have found that CycleGAN pre-
serves the features of the original image best. This can be analyzed by the effect of the 
additional identity loss (Eq. 12) used in CycleGAN.

This is minimized when an image in the generator’s target domain is given as input. 
That is, when the image in the target domain comes in, the generator does nothing. 
This is especially good for coloring. UNIT also showed poor results in the preserva-
tion of features. However, it is difficult to be sure whether the results are preserving 
the features well by only evaluating the visualization results. Therefore, we use a pre-
trained classifier to test the accuracy of the resulting data sets. The accuracy was con-
firmed by a ROC curve and AUC.

(12)Lidentity(GXY ,GYX ) = Ex∼p(x)[� GYX (x)− x �1]+ Ey∼p(y)

[

� GXY

(

y
)

− y �1
]

Fig. 8  Histogram comparisons between 3 methods and each original domain. a Comparison with the 
Shenzhen training domain (blue), b comparison with the MC test domain (blue)

Table 1  The SSIM between three methods and the original data set

We calculate the SSIM for each image, average that, and get the standard deviation (std). We denote the result as 
mean ± std. The CycleGAN generalizer shows 0.737 of the SSIM (given in italic), higher than the SSIM of other methods

Methods SSIM (%)

Generalizer—CycleGAN 73.7 ± 5.92

Generalizer—UNIT 69.1 ± 4.84

Histogram matched dataset 73.2 ± 8.23

Fig. 9  Visualization of detailed patches in each result. a CycleGAN, b UNIT, c histogram matching
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Figure 10 shows the ROC curve results. The difference in the curves of methods can 
be seen clearly. As seen in Table 2, the AUC of the CycleGAN is 0.84 and UNIT is 0.81. 
This is a novel score, because the AUC of the original data set is 0.73. This shows that the 
generalized image through the GANs performed appropriate conversion to the target 
domain while preserving the important features.

We have shown through experiments that the intensity generalization of medical 
images through GAN is effective. Generalizers using CycleGAN (given in italic) showed 
the best performance in all experiments

Conclusion
In this paper, we proposed a method to generalize the intensity of arbitrary medical 
images by using a GAN generalizer using CycleGAN and UNIT (based on VAE) to main-
tain the accuracy of a medical-image classification network. Performing generalizations 
without losing important features of lesions is a very sensitive task, and we evaluated 
the results in the following way. We created three data sets, based on two generalizers 
and histogram matching. We presented the detailed result images and intensity distri-
bution of the data sets using histograms and measured the similarity of the generalized 
results numerically using SSIM. We also evaluated the accuracy of the proposed method 
and the existing method with AUC. As a result, both generalization methods using the 
GAN were 0.5 to 1.0 higher than the AUC of the original data set. We confirmed that the 

Fig. 10  ROC curve in each method including CycleGAN (green), UNIT(red), Original MC domain data(MC) 
and histogram matching(orange)

Table 2  AUC between four methods: the original data set, our two generalized data sets, 
and the histogram-matched data set

Methods AUC​

Generalizer—CycleGAN 0.84

Generalizer—UNIT 0.81

Original dataset 0.73

Histogram matched dataset 0.70
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intensity distribution of our proposed method creates images very similar to the training 
domain data set without significant feature loss. We have also shown that CycleGAN, 
which maintains the characteristics of instances, is more suitable for the generalization 
of medical images. These results show that our proposed generalization is an effective 
method to maintain performance in a classification network that suffers from perfor-
mance degradation due to differences in the intensity of medical images. Recently, struc-
ture of generator that greatly improves the quality of the generated image [39, 40] and 
model with advanced few-shot capability [41] are proposed. As future work, Applying 
these methods to our generalization module would allow the robustness and accuracy of 
our framework.
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