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Introduction
Object classification is a significant research task in artificial  intelligence (AI) and 
computer vision domain and has been applied to scene understanding, domestic/ser-
vice robots, and smart factory systems [1, 2]. For autonomous driving, high-precision 
object classification results enable an intelligent driving system to identify obstacles and 
achieve safe autonomous route planning [3]. High-precision object classification results 
are vital as a preliminary step for subsequent work.

Light detection and ranging (LiDAR) sensors have been employed increasingly for 
object classification because such sensors can obtain a large amount of high-resolution 
and accurate 3D point clouds from the surrounding environment [4, 5]. Traditional clas-
sification methods from point clouds primarily analyze and extract features, such as geo-
metric attributes, shape attributes, or structural attributes, and then classify objects by 
training a model [6, 7]. However, the disordered arrangement, inhomogeneous densities, 
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and non-structural distribution characteristics of LiDAR point clouds tend to affect clas-
sification accuracy and speed performance [8]. Therefore, 3D object classification based 
on LiDAR point clouds remains a challenging problem.

Deep learning methods have been widely studied and demonstrate the most advanced 
3D object classification performance, especially Convolutional Neural Networks (CNNs) 
[9]. For weight sharing and kernel function optimization, traditional CNNs require regu-
lar data structures as input; thus, the point cloud is typically processed with multi-view 
or voxel and then input into deep network [10]. However, this process typically causes 
problems, such as geometric structure loss and resolution reduction [11]. In addition, a 
trend in 3D object classification is to mix different representations of point clouds and 
CNN models to generate a sufficient amount of discriminating information about the 
objects [12].

This paper proposes a CNN-based 3D object classification method using the Hough 
space of LiDAR point clouds. The initialized CNN model is trained based on all grids’ 
accumulator counts, which are generated using a projection of the 3D points into Hough 
space and rasterization. In addition, due to a lack of open training datasets, a semi-auto-
matic 3D object labeling tool is developed to divide LiDAR point clouds into four object 
types, i.e., wall, bush, pedestrian, and tree, to train and test the proposed CNN model.

The remainder of this paper is organized as follows. Section “Related works“ provides 
an overview of related work. Section “CNN-based 3D object classification from Hough 
Space“ describes the proposed method. Section “Experiments and analysis“ describes 
the experimental procedures and evaluates classification results. Finally, Section “Con-
clusions“ concludes the paper.

Related works
With its outstanding advantages over traditional digital cameras, LiDAR can acquire 
highly accurate 3D point clouds regardless of illumination, shadow, and texture [13]. 
LiDAR is used in a wide range of applications, such as semantic environment percep-
tion, 3D environment reconstruction, and automatic navigation. Therefore, object classi-
fication from LiDAR point clouds has received increasing attention and has a promising 
future.

Traditionally, object classification methods have been divided into global feature- 
based and local feature-based methods. In global feature-based methods, point clouds 
are first pre-segmented, and potential objects are divided into clusters. Then, researchers 
defined a set of global features and identified the objects as a whole. For example, Rusu 
et al. [14] proposed the view feature histogram (VFH) and added viewpoint information 
into the calculation of the angle between the relative normals to maintain a constant 
rotation scale. However, the VFH depends on only the geometric information of the 
entire 3D object surface and shows low accuracy when identifying objects with similar 
geometric information. To increase the descriptiveness of global features, Wohlkinger 
and Vincze [15] proposed the ensemble of shape functions descriptor, which comprises 
of three shape functions, i.e., distance, angle, and area distribution of the surfaces of 
local point clouds, into a high-performance global shape descriptor. Chen et al. [16] pro-
posed a global Fourier histogram descriptor that uses cylindrical angular coordinate and 
is independent of the rotation around the vertical axis. Generally, global feature-based 
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methods have high calculation speed and accuracy for object classification with simple 
shapes; however, they have insufficient descriptions of details and are sensitive to both 
noise and occlusion.

In local feature-based methods, first, the key points of the scene are extracted directly, 
and then the spatial distribution or geometric properties are computed in the neighbor-
hood of each key point to forge local features. Zhu et al. [17] classified the local shapes 
of point clouds using the surface shape description method to obtain candidate feature 
point areas and only reconstructed a few important feature points to avoid meaning-
less calculations. However, spin-image method suffers from low descriptiveness and 
is easily affected by density. To overcome the low descriptiveness problem, Dong et al. 
[18] proposed a 3D binary shape context (BSC) descriptor that is highly efficient and 
descriptive. This method encodes point density and distance from three orthogonal pro-
jection planes to form abundant local surface information. In addition, their method 
calculates weighted projection features using Gaussian kernel density estimation. Salti 
et al. [19] mixed the signature and histogram structure to generate a signature of his-
tograms of orientation (SHOT). However, these methods suffer from non-uniqueness 
and low accuracy. Guo et al. [20] proposed the Tri-Spin-Image local shape descriptor, 
which can effectively classify objects in the presence of clutter and occlusion. Prkahyas 
et  al. [21] transformed the SHOT descriptor into a binary representation, which they 
called the binary signature of histograms of orientation (B-SHOT). Compared to SHOT, 
B-SHOT is six times faster but requires 32 times more memory. These methods are 
highly descriptive regardless of noise, occlusion, and clutter; however, they incur heavy 
computational burden due to the large-scale and high-capacity characteristics of LiDAR 
point clouds.

In machine learning, Serna et al. [22] segmented connected objects using a watershed 
method after filtering out ground points and noises, and then utilized the Support Vec-
tor Machine with geometric and contextual features to classify objects. Wang et al. [23] 
described object categories using Implicit Shape Model, and extended Hough Forest 
framework to classify objects. Becker et  al. [24] applied two typical machine learning 
models, i.e., the random forest and gradient enhancement tree models, as classifiers, and 
combined color information when detecting semantic classes to achieve high-precision 
object classification. These methods can improve classifier robustness, but typically rely 
on manual feature extraction and off-the-shelf classifiers to predict object labels.

CNNs have better flexibility and universality than traditional machine  learning 
methods and have realized remarkable achievements in object classification [25]. 
However, it is difficult to directly apply CNNs to the analysis of 3D points because 
3D unstructured point clouds are irregular. Su et  al. [26] utilized multiple pictures 
of a 3D meshed object using the multi-view method and developed CNN architec-
ture to combine such information into a compact shape descriptor for object clas-
sification. Zhi et al. [27] proposed a lightweight volumetric CNN architecture named 
LightNet that realizes real-time 3D object classification by predicting both class and 
direction labels from full and partial shapes. Most existing volumetric 3D CNNs have 
very large and complex structures, which results in very high computational costs 
and storage requirements. Qi et al. [28] proposed a novel network structure, named 
PointNet, which combines disordered point clouds with deep learning methods for 
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classification and segmentation. Li et  al. [29] proposed PointCNN, which utilized 
X-Conv to perform X-transformation of point cloud, and then convolved on the 
transformed features. This method moderately solved the problem of mapping disor-
dered and irregular point data into ordered and regular forms. Xu et al. [30] proposed 
SpiderCNN, a parameterized convolution filter, which makes convolution operation 
applicable to irregular point cloud data. These methods are inefficient in the utiliza-
tion of the structural relationship between local neighborhood point pairs. Besides, 
due to the sparse characteristics of point clouds, large amounts of original data is lost 
after convolution, hence robust CNNs for 3D object classification are required.

CNN‑based 3D object classification from Hough space
To overcome the above problems, the Hough space representation of LiDAR point 
clouds is combined with a CNN model to classify 3D objects. As shown in Fig.  1, 
the proposed method involves a semi-automatic object point clouds labeling system, 
object Hough space generation, and CNN-based 3D object classification.

In the proposed method, noisy and ground points, which typically affect classification 
accuracy and result in high computation costs, are filtered out first to eliminate interfer-
ence. All non-ground points are then segmented into individual clusters using an object 
segmentation algorithm. Additionally, a semi-automatic object point clouds labeling tool 
is developed to store the information of these clusters and it manually divided individual 
clusters into four types of objects: wall, bush, pedestrian, and tree objects.

LiDAR point clouds have disordered arrangement and non-structural distribu-
tions; thus, the point storage order in memory is uncertain, which affects classifica-
tion accuracy. To address this issue, object point clouds are projected onto x–z plane. 
These 2D points are transformed into Hough space using the Hough transform algo-
rithm, which relies on the coordinate transformation principle between Cartesian 
coordinate and polar coordinate systems as follows:

Fig. 1  Flowchart of the proposed CNN-based 3D object classification using the Hough space of LiDAR point 
clouds
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As shown in Fig. 2 (a), variable r is the length of the line op, where o is the origin and 
p is a non-ground point. Variable θ is the angle between line op and the x axis. Note that 
the value range of r depends on the size of the collected object sample. The range of 
angle θ is defined as [0, π]. We generate an object Hough space H(r,θ) based on this.

As shown in Fig. 2 (b), the coordinates (x, z) of each point in Cartesian coordinates 
generate an individual curve in the Hough space. In the proposed method, Hough space 
H(r,θ) is rasterized into m × n uniform grids, and the grid resolution is defined manu-
ally according to the specific environment. Matrix A, which comprises of n rows and m 
columns, is applied to store the accumulator count of each grid. Subsequently, for each 
2D point pi and discrete angle θj, the corresponding distance r is computed using Eq. (1). 
The values of i and j are the indexes of 2D points and angles, respectively. The point 

(1)r = x cos(θ)+ z sin(θ)

Fig. 2  Generated Hough space a Line parameters r and θ. b Acquiring accumulator count process
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index i belongs to [1, Ni], where Ni is the number of points in the object point clouds, 
and index j of angle θ is located in [1, n]. After traversing all angles θj, a series of ri,j,k are 
obtained such that the corresponding elements aj,k in matrix A are incremented by one. 
The value of k is the result of dividing r by its resolution, where k∈[1, m] is defined as 
the index of length r. In this manner, the object Hough space generation is finished, and 
matrix A is updated completely when all grids have been computed.

Next, the above accumulator counts are input into a CNN model to classify objects 
and an eleven-layer CNN architecture is designed to adapt these data, as shown in 
Fig. 3. The CNN model includes a 300 × 300 input layer, three convolution (CONV) 
layers with 64 kernels of size 3 × 3 and a stride of 1, two pooling (POOL) layers with 
3 × 3 down sampling, three fully-connected (FC) layers with 2480, 512, and 128 neu-
rons, respectively, and an output layer with four outputs.

The forward-propagation mainly divides into three processes: CONV, Max-POOL, 
and FC. Each element di,j,k of CONV output matrix Di is computed according to the 
Eq. (2).

As shown in Fig. 4, matrices Cr and Di are the input and output of the CONV layer, 
respectively. Note that each element di,j,k belongs to matrix Di. Matrix Ki is a 3 × 3 

(2)di,j,k = σ

(

R
∑

r=1

(

Sr,j,k · Ki

)

+ bi

)

Fig. 3  Structure of the CNN model

Fig. 4  Convolution processing
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matrix, which is the CONV kernel. The value bi belongs to vector B, which is the 
bias. The value of r is the index of the input matrix and belongs to [1, R], where R is 
the number of input matrices. The value of i is the index of output matrix Di, kernel 
matrix Ki, and bias vector bi. Index i is located in [1, T], where T is the number of 
CONV kernels. Element cr,m,n is a member of matrix Cr. The value of m and n are 
the indexes of the rows and columns of the input matrix Cr. Index m belongs to [1, 
M], where M is the length of input matrix Cr. Index n belongs to [1, N], where N is 
the width of input matrix Cr. Matrix Sr,j,k is obtained by sampling matrix Cr with the 
kernels of size 3 × 3 and a stride of 1. The value of j and k are defined as the indexes of 
sampling matrix Sr,j,k, where j∈[1, M] and k∈[1, N]. In addition, σ is the ReLU activa-
tion function.

As shown in Fig.  5, matrices Pi and Ei are the input and output of the POOL layer, 
respectively. The value of i is the index of the input and output matrix and belongs to [1, 
I], where I is the number of POOL input matrices. Matrix Qi,j,k is obtained by sampling 
matrix Pi with 3 × 3 down sampling. Here, ei,j,k∈Ei is computed using Eq. (3). The values 
j∈[1, J/3] and k∈[1, K/3] are the indexes of the rows and columns of matrix Ei, where J 
and K are the length and width of input matrix Pi. The function f is utilized to find the 
maximum value.

In FC processing, vector Xl and Xl+1 are the inputs of the lth and l + 1th layers, respec-
tively. The values of l and l + 1 represent the ordinal number of layers and index l belongs 
to [1, L], where L is the number of FC layer. The values of xj

l and xi
l+1 are members of 

vectors Xl and Xl+1, respectively, and j and i are the indexes of vectors Xl and Xl+1. Index 
j belongs to [1, M], where M is the number of neurons in the lth layer. Index i belongs to 
[1, N], where N is the number of neurons in the l + 1th layer. The value of wij

l is the weight 
of the ith neuron in the l + 1th layer connected to the jth neuron in the lth layer, and the 
value of bi

l is the bias of the ith neuron in the l + 1th layer. The value of xi
l+1 is computed 

using Eq. (4).

Next, the vector Z represents the output neurons of the output layer, and the value of zr 
is a member of Z. Each element yr′ in prediction vector Y′ can be obtained by a softmax 

(3)ei,j,k = f (Qi,j,k)

(4)xl+1
i = σ





M
�

j=1

(wl
ijx

l
j )+ bli





Fig. 5  Max-pooling processing
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function (Eq. (5)). In addition, the value of η, which represents the error of the CNN model, 
is computed using Eq. (6).

Vector Y is a binary object label vector, and the value of yr is a member of vector Y. The 
value of r∈[1, R] is the index of vectors Z, Y′, and Y, where R is the number of outputs in 
the output layer. The forward-propagation process is completed when the loss is obtained. 
Then, all CNN parameters, such as filter kernel, neuron bias, and weight, are adjusted using 
the Gradient descent method in the back-propagation process. Residual error δr

0, which is 
the derivative of the loss function relative to zr, is computed using Eq. (7).

Then, the residual error δj
l of the jth neuron in the lth layer is computed as follows.

In Eq. (8), δk
l+2 is defined as the kth neuron in the l + 2th layer. Index k belongs to [1, K], 

where K is the number of neurons in the l + 2th layer. The value of wki
l+1 is the weight of the 

kth neuron in the l + 2th layer connected to the ith neuron in the l + 1th layer. In addition, 
σ′ is the derivative of the Leaky ReLU activation function. The gradient of weight wij

l and 
bias bi

l are expressed follows.

As shown in Eqs.  (11) and (12), weight wij
l and bias bi

l are updated using the gradient 
descent method. Here, the value of α is the learning rate.

(5)
y′r =

ezr

R
∑

j=1

ezj

(6)η = −

R
∑

r=1

(yr log(y
′

r))

(7)δ0r =

{

y′r − 1 yr = 1
y′r yr = 0

(8)δlj =

�

K
�

k=1

δl+2
k wl+1

ki

�

σ ′





M
�

j=1

(wl
ij
xlj )+ bli





(9)
∂η

∂wl
ij

= δli x
l
j

(10)
∂η

∂bli
= δli

(11)wl
ij = wl

ij − α
∂η

∂wl
ij

(12)bli = bl
i
− α

∂η

∂bl
i
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Then, combined with the above all equations, a large number of data and iterations are 
applied to train the CNN model to minimize error. Finally, a testing dataset is utilized to 
evaluate the object classification performance of the proposed method.

Experiments and analysis
In this experiment, a LiDAR sensor (Velodyne HDL-32E) was employed to acquire 
high-precision 3D points from different environments. The program was executed on 
a 2.10  GHz Intel(R) Xeon(R) Silver 4110 CPU (with 16  GB RAM) with an NVIDIA 
GeForce RTX 2080 Ti GPU. The program utilized the DirectX 9.0 Software Develop-
ment Kit to represent LiDAR point clouds.

Performance of semi‑automatic 3D object labeling library

The generated semi-automatic 3D object labeling tool is shown in Fig. 6. The left part 
of the figure shows a particular 3D point cloud global scene. Here, ground points are 
rendered in black, and non-ground points in green. The right side shows six buttons, 
including two on the top for switching objects and four on the bottom for storing differ-
ent object information. We classified objects into four types, i.e., wall, bush, pedestrian, 
and tree. When selected, an individual cluster can be rendered in red bounded by a red 
box.

As shown in Fig. 7, the four object types have four different spatial distributions. These 
individual clusters were identified manually, and the object information was stored in a 
3D object dataset. This information includes raw 3D point clouds coordinates, the center 
point coordinates of individual objects, the coordinates relative to the center, and the 
object label.

Fig. 6  Display tool of semi-automatic 3D object labeling
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Hough space performance

In this experiment, all object point clouds were mapped into Hough space. Figure  8 
shows the Hough space generated by different object point clouds respectively. Fig-
ure 8a shows images in Hough space generated by wall point clouds. Here, LiDAR point 
clouds were projected to the x–z plane; thus, the wall point clouds gathered into a curve 
that corresponds to the wall points that converged to a point in the Hough space. After 
being projected onto the x–z plane, bush point clouds formed some concentric circles. 
Figure  8b shows images in Hough space generated by the bush point clouds, which 
formed a series of convex curves. In contrast, when tree point clouds were projected 
onto the x–z plane, points near the central point were denser, and points distant from 
the central point were sparse. For the diversity of pedestrian morphology, there was no 
obvious regular distribution for the curve corresponding to pedestrians in the Hough 
space; however, the slope of these curves was relatively gentle and did not fluctuate sig-
nificantly, as shown in Fig. 8c. Figure 8d shows images in Hough space generated using 
tree point clouds, and the projected tree points formed a series of S curves.

Fig. 7  Spatial distributions of 3D point clouds for four object types. a Wall. b Bush. c Pedestrian. e Tree

Fig. 8  Hough spaces generated by four types of object point clouds. a Wall Hough space. b Bush Hough 
space. c Pedestrian Hough space. d Tree Hough space



Page 11 of 14Song et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:19 	

Object classification performance

Through many experiments, we collected 23 LiDAR data in different environments and 
manually labeled 1056 objects using the developed semi-automatic 3D object labeling 
tool. The generated 3D object dataset consisted of 335 walls, 223 bushes, 83 pedestri-
ans, and 415 trees. After the proposed CNN model was initialized, 530 object data were 
input to it as a training dataset and 526 as an evaluation dataset to investigate the 3D 
object classification accuracy of the proposed method.

The confusion matrices in Fig.  9 illustrate that the average recognition accuracy for 
the four object classes was 93.3%. The straightforward structure of bush and pedestrian 
permitted greater recognition accuracy compared to that of other objects. The misclas-
sification ratio between tree and wall was high, mainly due to the sparse characteristics 
of LiDAR point clouds and the loss of original information. In addition, when LiDAR 
was scanning trees at a distance farther away, the obtained tree trunk information was 
in low density, while the leaves were in high density, which caused the misclassification 
between walls and trees. To avoid over fitting, the k-fold cross-validation method was 
applied to our dataset for training and testing. The classification results of bush, pedes-
trian, tree and wall were 99%, 98.8%, 99.1% and 96.7%, respectively.

Figure 10 shows the object classification results captured in different outdoor scenes. 
Here, walls, bushes, pedestrians, and trees were accurately classified and coded in blue, 
red, carmine, and green, respectively.

We also tested our trained model to recognize pedestrian in the Sydney Urban Objects 
Dataset [31]. The recognition rates of pedestrian reached 90.2%. Thus, our generated 3D 
object dataset contained almost typical objects, so as to generate an adaptive learning 
model and have strong compatibility for LiDAR point clouds.

Additionally, the four sample types of pedestrian, tree, pillar and traffic sign in the Syd-
ney Urban Objects Dataset were also used to train and test the proposed CNN model, 
and the classification accuracy achieved 87.3% on average, as shown in Table 1.

As shown in Table  2, the performance of Hough-based Back Propagation Neural 
Network (BPNN) and voxel-based CNN [30] algorithms was evaluated on our gener-
ated object dataset. The Back Propagation Neural Network (BPNN) had a 10000-neuron 
input layer, five hidden layers with 2560, 1024, 512, 256, and 64 neurons, respectively, 
and a 4-neuron output layer. In the voxel-based CNN algorithm, a 32 × 32 × 32 matrix 
was input into the CNN model which also consisted of two CONV layers, two POOL 
layers, three FC layers with 2048, 128, 64 neurons, respectively, and the output layer with 

Fig. 9  Object classification accuracy for four object classes
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four outputs. The average accuracies for the Hough-based BPNN and the voxel-based 
CNN algorithms were 83.8% and 70.7%, respectively. The proposed Hough-based CNN 
method had better classification performance and the average accuracy up to 93.3%.

Conclusions
This paper presented a CNN-based 3D object classification using the Hough space com-
puted from the LiDAR points of 3D objects. Firstly, the 3D points were transformed 
into a Hough space by HT algorithm. Then, a CNN model was trained to classify four 
types of objects, including walls, bushes, pedestrians, and trees. Experimental results 
showed that our object classification accuracy achieved 93.3%. The accuracy of bush 
and pedestrian objects reached 99.1% and 97%, respectively. In this method, the Hough 
space of LiDAR point clouds was utilized to classify objects so as to largely overcome 

Fig. 10  Object classification results using the proposed method

Table 1  Object classification performance on  the  Sydney urban objects dataset and  our 
generated object dataset

Object Our dataset Sydney urban 
objects dataset

Pedestrian 0.970 0.980

Tree 0.951 0.857

Pillar – 0.800

Traffic sign – 0.850

Table 2  Object classification accuracies for the Hough-CNN, Hough-BPNN, and Voxel-CNN

Types Hough-CNN Hough-BPNN Voxel-CNN

Wall 0.819 0.774 0.655

Bush 0.991 0.954 0.933

Pedestrian 0.970 0.939 0.531

Tree 0.951 0.684 0.708

Average accuracy 0.933 0.838 0.707
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the unstructured spatial distribution, disordered arrangement and sparse distribution of 
point clouds. In future, we will enrich the object classes and quantity of our object data-
set, so as to train more adaptive learning models for 3D object classification researches.
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