
A scenario generation pipeline
for autonomous vehicle simulators
Mingyun Wen, Jisun Park and Kyungeun Cho* 

Introduction
Autonomous driving has been a hot research topic since the end of the last century [1]
because it promises many benefits, such as increased safety, reduced traffic congestion,
and time savings. The first thing to consider when developing human-centric autono-
mous vehicles is safety [2]. The development of autonomous vehicles in the real world
faces many problems, such as bad weather and difficulties in data collection.

The rapid development of computer hardware and artificial intelligence has
allowed the development of simulators that provide efficient and convenient virtual
environments for data collection and algorithm testing. In the past few decades, a
variety of simulators have been developed for various purposes in machine learning
[3], such as training employees [4, 5], soldiers [6], collecting training datasets [7],
training models, and testing algorithms [8–11]. Compared with real-world testing,

Abstract 

To develop a realistic simulator for autonomous vehicle testing, the simulation of vari-
ous scenarios that may occur near vehicles in the real world is necessary. In this paper,
we propose a new scenario generation pipeline focused on generating scenarios in a
specific area near an autonomous vehicle. In this method, a scenario map is generated
to define the scenario simulation area. A convolutional neural network (CNN)-based
scenario agent selector is introduced to evaluate whether the selected agents can
generate a realistic scenario, and a collision event detector handles the collision mes-
sage to trigger an accident event. The proposed event-centric action dispatcher in the
pipeline enables agents near events to perform related actions when the events occur
near the autonomous vehicle. The proposed scenario generation pipeline can gener-
ate scenarios containing pedestrians, animals, and vehicles, and, advantageously, no
user intervention is required during the simulation. In addition, a virtual environment
for autonomous driving is also implemented to test the proposed scenario generation
pipeline. The results show that the CNN-based scenario agent selector chose agents
that provided realistic scenarios with 92.67% accuracy, and the event-centric action
dispatcher generated a visually realistic scenario by letting the agents surrounding the
event generate related actions.

Keywords:  Artificial intelligence, Scenario generation, Convolutional neural network,
Autonomous driving

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24
https://doi.org/10.1186/s13673-020-00231-z

*Correspondence:
cke@dongguk.edu
Department of Multimedia
Engineering, Dongguk
University-Seoul, 30
Pildong‑ro 1‑gil, Jung‑gu,
Seoul 04620, Republic
of Korea

http://orcid.org/0000-0003-2219-0848
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00231-z&domain=pdf

Page 2 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

simulation greatly reduces labor costs and time, as well as the risk of environmen-
tal factors or human error breaking expensive equipment. To build a simulator for
autonomous vehicles equipped with various kinds of sensors, in addition to realistic
visual effects [11], realistic simulation of possible real-world scenarios is also essen-
tial. A scenario usually means a series of actions of agents occurring over a period of
time. In other words, a simulator should model various scenarios encountered by a
vehicle in the real world. In this way, a vehicle model validated by such a simulator
is more likely to succeed when applied to the real world. However, existing simula-
tors [8, 10] have failed to achieve this goal. For example, in the simulator reported in
Ref. [8], aside from walking on sidewalks and crosswalks, pedestrians do not interact
with the vehicles. In the simulator reported in Ref. [10], pedestrians are not even
modeled. Therefore, scenario generation still requires significant work.

The use of comprehensive mathematical descriptions to explain the scenarios
occurring on roads is challenging because of their diversity and complexity [12, 13].
Deep learning provides a simple and efficient way to train mathematical models to
obtain solutions to various problems [14], providing that good quality training data
is available. In this paper, we integrated a convolutional neural network (CNN) with
our scenario generation pipeline to evaluate whether the selected agents for scenario
generation can achieve realistic results.

This paper proposes a pipeline for generating various kinds of scenarios in a simu-
lator for autonomous vehicles. The simulator is used to provide a complete testing
environment for the development of algorithms for autonomous vehicles, and vari-
ous realistic scenarios are expected to be generated. A scenario is generated around
the autonomous vehicle in a specific area described by a scenario node. The genera-
tion process is as follows. First, a scenario map consisting of many scenario nodes
is generated. Each scenario node contains actions that must be invoked when the
autonomous vehicle enters the corresponding area of each scenario node. Next,
an event is triggered by a collision event detector or the execution of a specified
action. Then the CNN-based scenario agent selector selects agents to generate sce-
narios considering their relative positions and directions in the virtual environment.
Finally, to promote the development of scenarios, an event-centric action dispatcher
is utilized to guide the selected agents to react automatically when events occur, for
example, car accidents.

The proposed scenario generation pipeline makes the following contributions to
the development of simulators for autonomous vehicles: (1) it can generate scenarios
in real time according to information concerning the agents around the autonomous
vehicle instead of generating a scenario over the entire virtual environment; (2) it is
the first attempt to generate a scenario including cars, pedestrians, and animals, i.e.,
not just cars or only cars and pedestrians; and (3) it is the first time that CNN has
been used to select agents to generate scenarios for autonomous driving simulators.

This paper is organized as follows. The next section presents a review of related
works about scenario generation. Section “Scenario generation pipeline” presents
the proposed scenario generation pipeline. Section “Experiments and analysis”
shows the experiments and results. Section “Conclusion” concludes the paper.

Page 3 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

Related works
In this section, existing scenario generation methods are discussed. Even though sce-
nario generation has been extensively studied, there are few studies involving autono-
mous driving simulators. The discussed scenario generation methods are related to
various domains and are classified as heuristic-based methods, annotation-based meth-
ods, script-based methods, and graphical-user-interface (GUI)-based methods.

Heuristic-based methods are often used in scenario generation. These can be divided
into rule-based methods and genetic algorithm (GA)-based methods. In rule-based
methods, usually a set of constraints between the actions of a character is defined [15],
and a multi-layered architecture is applied to model a character’s behavior in a virtual
environment [16]; in addition, a cognitive model is included to locate the composite
actions in action sequences. These methods focus on decision making without consid-
ering the movements of the agents. In Ref. [17] a planning-based scenario generation
system for describing hierarchical tasks focusing on generating a partially perturbed
environment instead of character actions was described. In Ref. [18], scenarios were
generated by specifying scenario generation rules using functional L-systems. In the
studies reported in Refs. [17, 18], scenarios were generated in an offline way that can-
not dynamically change with the simulation status. In contrast, in the study in Ref. [19],
a heuristic search technique was used to generate complicated multi-actor behaviors.
However, this approach cannot accept user input and requires the user to have intensive
domain knowledge. In contrast, in Ref. [20], the generation of different character behav-
iors based on personalities in earthquake scenarios was proposed. However, the evacu-
ation points of the scene were predefined in an extensible markup language (XML) file,
and the preparation of these files is time-consuming. The simulation of agent behavior
in emergency scenarios usually focuses on movement only [21–25]. GAs have also been
utilized for scenario generation [4, 6, 26–28] where they have been used to search for
scenarios that maximize a set of evaluation criterion. However, in these approaches, sce-
nario generation occurs in an offline manner.

Annotation-based scenario generation methods are also frequently used. For example,
in Ref. [29], situations annotated with the actions that characters can perform were used.
The characters can carry out basic actions, and, when they enter a new situation, addi-
tional actions allowed by the new situation are added to the characters using a probabil-
istic mechanism to ensure that the characters react appropriately. In Ref. [30], a similar
method of scenario generation was reported. However, the environmental objects were
annotated with character actions. The advantage of annotation-based scenario gen-
eration is that it makes action planning in the virtual environment very efficient and
straightforward. Nevertheless, it requires significant work to make annotations when the
environment is very large, and only rigid and repeatable scenarios can be generated.

Some researchers have utilized script-based methods. For example, in Ref. [5], the
ATTAC tool was introduced to allow non-technical users to create scenarios. The
ATTAC-L modeling language can translate the user-specified scenario into XML files
that can be interpreted by a game engine. In addition, in Refs. [31, 32], the PRESTO
script, which can be used to describe the behavior of non-player characters (NPCs) in
a virtual environment, was introduced to control multi-agent actions. The script-based
approach uses a predefined set of sequences to describe the scenario, so significant

Page 4 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

modifications to the scripts are often required when small changes need to be applied.
Therefore, script-based methods cannot be easily generalized in different scenarios.

There are also methods based on graphical user interfaces (GUI). For example, in Ref.
[33], a visual authoring tool, CANVAS, which allows users to make multi-actor scenario
within minutes, was presented, and, in Ref. [34], a user-centered interface to model sce-
narios on driving simulators was proposed. In contrast, Ref. [35] focused on generating
scenarios containing cooperative tasks. However, the trajectories of agents are specified
by users, which is tedious work. Thus, although GUI-based scenario generation allows
non-technical users to create scenarios, the manual authoring of all the scenarios is a
time-consuming and tedious process.

In this paper, we present an efficient scenario generation pipeline in a virtual environ-
ment for autonomous driving. In the scenario module, scenarios are classified as custom
or automatic scenarios. The custom scenario is under the full control of the user via a
GUI-based authoring tool. GUI-based event generation allows users to produce creative
scenarios. In contrast, automatic scenarios are generated automatically considering the
status of the surrounding agents in a large virtual environment. The custom scenario will
not be introduced in this paper because many researchers have already covered this area
[15, 34]. However, automatic event generation will be illustrated in Sect. “Scenario gen-
eration pipeline”. To ensure the integrity and diversity of the scenario, an event-centric
action dispatcher module is proposed.

Scenario generation pipeline
In this section, the scenario generation pipeline is explained. Given that a virtual envi-
ronment should provide sufficient space for autonomous driving, the simulation of the
whole environment is not feasible, not just because of computational limitations but
because large scenarios are difficult to manage [36]. Therefore, the scenario simulation
focuses on generating one scenario near the autonomous vehicle. The scenario genera-
tion pipeline is focused on the scenario map generator, activation of the scenario node,
CNN-based scenario agent selector, and event-centric action dispatcher.

Scenario generation pipeline

The scenario generation pipeline is shown in Fig. 1. The simulator is divided into the
virtual environment and control system. The virtual environment provides the simula-
tion environment, and the control system controls the movement of agents in the virtual
environment.

The location and direction of the autonomous vehicle is calculated by the autonomous
vehicle monitor. The scenario node finder finds the nearest scenario node that lies on the
road that the autonomous vehicle is on or about to be on; this is achieved by utilizing
a scenario map. The collision handler delivers the collision messages from the virtual
environment to the scenario module. The destination positions of the chosen agents are
decided by the target position generator utilizing heuristic methods based on the relative
location and direction of the selected agents and the structure of the surrounding roads.
The information about roads and agents in an area is extracted by an information extrac-
tor given the center position and radius of the target area. The basic execution of agent
actions is controlled by the agent basic action controller when they are not within the

Page 5 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

area of activated scenario node. The path finder generates control information, including
the speed, direction, and animation, for controlling the movement of the agents in the
virtual environment.

Scenario map generator

To generate scenarios on roads, a scenario map is generated. Let R =

(

ps, pe,Rp,Rn, Jp, Jn
)

denote a road in the virtual environment, in which ps and pe denote the start- and end-
points of road R , respectively, Rp and Jp denote the neighboring road and junction,
respectively, connected to ps , and Rn and Jn denote the neighboring road and junction,
respectively, connected to pe . The vehicles in the virtual environment should drive from
the start-point to the end-point of a road. Figure 2 shows a representation of a curved
road. The shape of a curved road is rounded but represented by multiple straight lines.

A junction is used to solve the situation in which a road is connected to multiple roads.
A junction consists of a set of road pairs. Let J =

{

(Ri,Ro)1, (Ri,Ro)2, . . . , (Ri,Ro)N
}

denote a junction for which Ri is the road whose end-point connects to the junction, and
Ro is the road whose start-point is connected to J  . Vehicles can move from Ri to Ro , and,

Fig. 1  Overview of the scenario generation pipeline

Fig. 2  Representation of a curved road

Page 6 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

at a junction, a vehicle may choose one road to follow from multiple roads, as shown in
Fig. 3.

The roads in the virtual environment can, thus, be connected with each other to gen-
erate a directed graph. The directed graph generation process is shown in Algorithm 1.
First, all roads are analyzed to obtain the road pairs. One road pair includes two neigh-
boring roads in which the end-point of the first road is connected to the start-point of
the second road. All road pairs are added to the graph iteratively. Then, a directed graph
is created in which a vertex denotes a road. A list is associated with a vertex to save adja-

cent roads whose start-points are connected to the end-point of the vertex.

Algorithm 1: Directed graph generation of roads
Input: All roads, junctions
Output: Directed graph

Create empty list road_pairs

repeat
Add road pair (,) to road_pairs if exists

Add road pair (,) to road_pairs if exists

until all road are analyzed

repeat
Add all road pairs of (,) in current junction to road_pairs

until all junctions are analyzed

Create graph

repeat
Add first road of a pair into as a vertex

Add second road of a pair into the list that is associated with the vertex of first

road

until all road pairs are added into directed graph

The scenario map is a set of scenario nodes. Its generation involves traversing the
graph. The depth-first search algorithm is utilized to traverse through the directed
graph. Let d be the distance between two neighboring scenario nodes. Points are sam-
pled on the roads in intervals of distance d . At the position of the sampled point, a
scenario node is created. When the remaining length, dr , of a road is not sufficient to
sample a point, the length of the road next to it is added to dr to calculate the first sce-
nario node. Because junctions are ignored in the calculation of distance in this method,
the actual distance between two scenario nodes can be longer than d . During generation,
the identities (IDs) of scenario nodes generated on each road are saved. During simula-
tion, the scenario only occurs around the autonomous vehicle. Given the ID of the road

Fig. 3  Relationship representations of roads and junctions

Page 7 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

that the autonomous vehicle is currently running on, the scenario nodes that are close to
the autonomous vehicle can be efficiently found. Each scenario node is assigned with an
initial action. The probability of being chosen for each initial action can be configured
by the user. When a scenario node is activated, the initial action of a scenario node is
scheduled.

CNN‑based scenario agent selector

When an action is chosen and executed by a scenario node or event-centric action dis-
patcher, the appropriate agents for the execution of the action must be determined. The
choice of the right agent to perform the action is critical for achieving a natural scenario
simulation. For example, when the scenario requires the vehicle to perform a hithuman
action, the human should not be behind the vehicle because the vehicle cannot change
its orientation significantly in a short time. To ensure that selected agents can perform
a given action naturally, we use CNN to evaluate the rationality of the selected agents
because CNN has been shown to perform classification tasks well [37].

The input data format of the CNN is an image. However, to reduce the amount of data
transfer between the virtual environment and the control system, only the raw data con-
taining the state of the agents and roads is transferred to the control system. To convert
the received raw data into a pictorial format, a top-view image of the entire virtual envi-
ronment is pre-read into memory before simulation. The input image is generated by
cropping a portion of the top-view image and placing the current scenario node on its
center position. The width and height are both the same as the diameter of the scenario
node. The agents near the scenario node are also pasted into the image based on their
positions and directions using repository resources of vehicles, animals, and pedestrians.

The CNN structure is illustrated in Fig. 4. We define the structure of the building block
as Conv-ReLU-Pooling-Batch normalization. The CNN consists of five building blocks
followed by dropout and flatten layers, as well as two groups of Dense-ReLU-Batch nor-
malization layers and a dense layer. Then, the output is fed into a Softmax layer to output
the classification result. The building block incorporates a convolutional layer, a ReLU
action layer, a max pooling layer, and a batch normalization layer. The number of filters,
n, is chosen empirically.

Collision event detector

An event is a situation resulting from agent-executed actions. Different reactions can be
generated based on different events. There are two types of events based on the response

Fig. 4  Structure of the CNN

Page 8 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

time of the surrounding agents. The first type of event is a non-collision event, which
occurs directly when the owners of the actions are executing the actions. Non-collision
events include quarreling, fighting, and dancing. When the agents execute these kinds
of actions, the surrounding agents can react directly. Another type of event is an acci-
dent event. The triggering of this event requires the owners of the actions to finish the
actions, for example, collision between vehicles. For the former, the events related to the
actions are directly added to the event pool. For the latter, the agents who execute the
actions related to the collision event are saved in a collision agent pool. Agents in the
collision agent pool have an expiration time, and, when the expiration time is up, the
agent is removed from the pool. The scenario module must monitor the execution status
to generate accidents. Thus, a collision event detector is proposed. The collision event
detector processes collision messages. A collision message contains agents that collide
together, as well as the position where they collide. When the same agent appears in the
collision agent pool and collision message, the actions of the agents executed by the sce-
nario have caused an accident. Thus, the agent will be removed from the collision event
detector, and the collision message is also removed. Then, a new event is generated and
added to the event pool.

Event‑centric action dispatcher

When there are events in the event pool, the agents surrounding the position of these
events are expected to react appropriately. The event-centric action generator assigns
actions to the surrounding agents through a series of actions that are pre-grouped by
event categories. The purpose of this is to promote the development of scenarios by
dispatching actions related to events that occur near the autonomous vehicle. This is
achieved by either recognizing actions in videos related to traffic using existing reports
[38, 39] or intuitive authoring.

The process of generating the corresponding actions for surrounding agents according
to the event is intuitive. The scenario module iteratively analyzes the existing events and
collects the surrounding agents in the place where an event is generated. Random reac-
tions are assigned to these agents, and the used agents and the execution times for the
reactions are recorded to prevent the repeated assignment of new reactions.

Experiments and analysis
Because there are no autonomous driving simulators in virtual environments featuring
scenario generation, we could not compare the performance of our pipeline with those
of others. In this section, the experimental methods and results are given first, and, sub-
sequently, the experimental analysis is presented.

Experimental methods

The simulation experiments were carried out on a desktop computer with an i7-6700
3.40 GHz CPU and a NVIDIA GeForce GTX 1060 graphics card. The virtual environ-
ment was developed in Unity, and the control system was implemented in Python. The
communication between virtual environment and the control system was achieved by
transmission control protocol (TCP).

Page 9 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

To verify the proposed scenario generation pipeline, we show the results of the sce-
nario map generator, the CNN-based scenario agent selector, and the event-centric
action dispatcher. Because the collision event detector serves the event-centric action
dispatcher, the performance can be evaluated with the event-centric action dispatcher.
The CNN-based scenario agent selector and event-centric action dispatcher are
addressed in the experimental section.

CNN‑based scenario agent selector

Although there are many free surveillance videos containing traffic scenes on the Inter-
net, we found it difficult to obtain training data from these videos. Specifically, because
of the different camera shooting angles, the quality of these videos is uneven, and it is
not possible to provide reliable training data for the CNN model. Therefore, the training
data were collected from the simulator and labeled by an expert. Because CNN requires
image input, sending images between Unity 3D and Python slows the simulation; thus,
we used the method described in “Scenario generation pipeline” and “Experiments
and analysis” to synthesize input images in Python. The range of the collected data was
64 m by 64 m, correspondingly, the size of the generated input image was 128 by 128.
The collected data stores information about agents and roads surrounding the autono-
mous vehicle, and the information about the agent includes the location and direction,
whereas the road information includes the road start-point, end-point, and direction.
We grouped the actions that can cause events into three categories based on the agent
type, as shown in Table 1. The movements of pedestrians and animals are similar and
consider their orientations, but their movements are different from those of vehicles.

By letting the same event happen repeatedly in the virtual environment, we collected
data for the three events. We randomly selected agents from the agents in the vicinity of
the autonomous driving vehicle according to the types of agents needed for the event;
this allowed us to include a range of cases. The data were artificially labeled as positive or
negative to determine whether the selected agents participating in the event were appro-
priate. Most of the data were labeled as negative and randomly discarded to equalize the
data set. After labeling, we obtained the training data set and the test data set, as shown
in Tables 2 and 3, respectively.

Definition of event‑centric actions

We grouped the partial actions of agents into three groups based on the designed
consequences. The response actions are defined by analyzing related videos, for

Table 1  Grouping of actions by agent type

Category Name Subject type Target object types

Action type 1 Take vehicle
Be hit
Run to vehicle

Human
Human
Human

Vehicle
Vehicle
Vehicle

Action type 2 Fight
Quarrel
Be attacked
Talk

Human
Human
Human
Human

Human
Human
Human, animal
Human

Action type 3 Hit Vehicle Human, vehicle, animal

Page 10 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

example, we analyzed accident videos to summarize typical responses. The results
are shown in Table 4. For example, the run to vehicle and vehicle hit actions may
result in accident events, the quarrel and fight actions cause conflict events, and the
sing and dance actions may result in a show event because they would attract other
agents.

To allow the agent to react realistically to an event that has occurred, we defined
the response actions of events, as shown in Table 5. For example, when an accident
occurs, the driver may get out of the vehicle to check the injured pedestrian, check
the car, stop, or continue driving.

Experimental results

In this section, we show the results of the scenario map generator, CNN-based sce-
nario agent selector, and event-centric action dispatcher. Because collision event
detection serves the event-centric action dispatcher, it is not evaluated here.

Table 2  Training data set

Category Positive data Negative data Total

Action type 1 482 620 1102

Action type 2 718 906 1624

Action type 3 482 618 1100

Table 3  Testing data set

Category Positive data Negative data Total

Action type 1 40 60 100

Action type 2 46 54 100

Action type 3 39 61 100

Table 4  Source actions of events

Event type Human Vehicle

Accidents Be hit, cross the road, take vehi-
cle, run to vehicle

Hit, turn, drive forward, drive backward, change lane,
rush to accelerate, rush to decelerate, rush to brake,
lose control, stop

Conflict Fight, quarrel

Show Sing, dance

Table 5  Response actions to events

Event type Human Vehicle Animal

Accidents Get out of vehicle, run, walk, cross the road, take a picture, wait,
check car, fight, phone call, check injured, talk

Drive forward, stop Run

Conflict Run, walk, take a picture, wait, phone call, cheer, check injured, talk,
get out of vehicle

Drive forward, stop Run

Show Wait, walk, cross the road, get out of vehicle, take a picture, cheer Drive forward Run

Page 11 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

Results from the scenario map generator

The output of the scenario generator is shown in Fig. 5. Each blue point in the sce-
nario map represents one scenario node. To reduce computational cost, the scenario
is only simulated in the region surrounding the scenario node when the autonomous
vehicle enters the scenario area. The right part of the image shows the list of scenario
nodes. The user can choose a scenario node to change the type of scenario node to a
custom scenario.

Evaluation of CNN‑based scenario agent selector

To verify the performance of the CNN-based scenario agent selector, we compared
the predicted accuracy with three kinds of support vector machines (SVMs) based
on different kernel functions using the testing data. The input of the SVMs is differ-
ent from that of the CNN, i.e., a vector including information about agents and roads
around the autonomous vehicle, as mentioned in “Results from the scenario map gen-
erator” section. The results of this comparison are shown in Table 6. The results show
that the radial basis function (RBF)-based SVM performed better than the linear
function(L)-based SVM and polynomial function(P)-based SVM. The performance of
the CNN on the test data sets was significantly better than those of the SVM-based
methods.

Fig. 5  Generated scenario map

Table 6  Accuracy compared with SVMs having different kernels

Methods Action type 1 (%) Action type 2 (%) Action type 3 (%) Average (%)

SVM(L) 71 64 68 67.67

SVM(P) 78 73 79 76.67

SVM(RBF) 86 74 78 79.33

CNN 90 96 94 92.67

Page 12 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

The trained model was applied in the virtual environment to select agents in the
generated scenario. In Fig. 6a, the agents selected by CNN are labeled with red boxes.
Figure 6b shows the accident event after execution.

Evaluation of event‑centric action dispatcher

Figure 7 shows examples of accidents simulated in the virtual environment using the
proposed event-centric action dispatcher. In the left column of Fig. 7, two vehicles
were selected as the scenario agents (shown in the red box). After execution, an acci-
dent occurred, and the scenario generation module received the collision message and

Fig. 6  Execution of an initial action in one scenario node. a Agents selected by CNN, b Accident after
execution

Fig. 7  Execution of the event-centric action dispatcher. a Selection of scenario agents, b Actions of
surrounding agents

Page 13 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

triggered the actions related to the accident involving the surrounding agents (shown in
the yellow box in the right column of Fig. 7).

Experimental analysis

The scenario map generated by the scenario map generator distributes scenario nodes
over the whole map. The positions of the scenario nodes in the scenario map vary
because of the randomizing algorithm used at the beginning of scenario generation,
which guarantees that different terrains are covered over repeated simulations. The
proposed CNN-based scenario agent selector accurately determined whether the agent
selection generated a realistic scenario. Furthermore, the trained CNN model is more
accurate than the output of the three SVMs, having an average accuracy of 92.67%. From
the right column of Fig. 7, we know that the proposed event-centric action dispatcher
module allows natural responses from agents close to the corresponding event locations.

Conclusion
In this paper, we have proposed a pipeline that generates various scenarios for autono-
mous vehicle simulations. The key contributions of the proposed pipeline are the train-
ing of a CNN for the selection of appropriate agents and the generation of realistic
scenarios involving pedestrians, animals, and vehicles and the application of an event-
centric action dispatcher module to generate related actions for agents surrounding the
event location in real time. We simulated various scenarios in a virtual environment by
not only generating the scenarios but also generating the related actions of the surround-
ing agents to ensure that the simulation conforms to reality. For real time performance,
the scenario simulated only the environment surrounding the autonomous vehicle,
and this was achieved by generating a scenario map. The experiments showed that the
CNN-based scenario agent selector can achieve a high accuracy of 92.67%. With the
assistance of the event-centric action dispatcher module, the scenario generation pipe-
line successfully generated convincing scenarios in the virtual environment designed for
autonomous driving. The experimental results show that this pipeline can be utilized
to generate scenarios in a virtual environment for autonomous driving. Ultimately, the
actions dispatched by the event-centric action dispatcher are classified based on human
experience. However, manual summarization is time-consuming when additional events
are needed. In the future, approaches applying an action recognition model via deep
learning to video data classified based on event categories to recognize the action set
related to corresponding event automatically will be our priority.
Acknowledgements
Not applicable.

Authors’ contributions
MW wrote the source codes and the manuscript. JP provided action data for generation of scenario. KC provided full
guidance. All authors read and approved the final manuscript.

Funding
This research was supported by a grant from Defense Acquisition Program Administration and Agency for Defense
Development, under contract #UE171095RD and the MSIT (Ministry of Science, ICT), Korea, under the High-Potential
Individuals Global Training Program)(2019-0-01585) supervised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation).

Availability of data and materials
Not applicable.

Page 14 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24

Competing interests
The authors declare that they have no competing interests.

Received: 28 September 2019 Accepted: 29 April 2020

References
	1.	 Kanade T, Thorpe C and Whittaker W (1986) Autonomous Land Vehicle Project at CMU. Proc. 1986 ACM Computer

Conference, February, pp. 71-80
	2.	 Fridman L (2018) Human-centered autonomous vehicle systems: Principles of effective shared autonomy. arXiv

preprint arXiv​:1810.01835​,2018, pp.1-9
	3.	 Luo L, Cai W, Zhou S, Lees M, Yin H (2015) A review of interactive narrative systems and technologies: a training

perspective. Simulation 91(2):126–147
	4.	 Luo L, Yin H, Cai W, Zhong J, Lees M (2017) Design and evaluation of a data-driven scenario generation framework

for game-based training. IEEE Transact Comput Intell AI Games 9(3):213–226
	5.	 Janssens O, Samyny K, Van de Walle R and Van Hoecke S (2014) Educational virtual game scenario generation for

serious games. 2014 IEEE 3nd International Conference on Serious Games and Applications for Health (SeGAH), Rio
de Janeiro, 14–16 May, pp. 1-8

	6.	 Zook A, Lee-Urban S, Riedl MO, Holden HK, Sottilare RA, Brawner KW (2012) Automated Scenario Generation:
Toward Tailored and Optimized Military Training in Virtual Environments. FDG ‘12 Proceedings of the International
Conference on the Foundations of Digital Games, 30 May-1 June, Raleigh, North Carolina, USA, pp. 164–171

	7.	 Ros G, Sellart L, Materzynska J, Vazquez D and Lopez AM (2016) The SYNTHIA Dataset: A Large Collection of Syn-
thetic Images for Semantic Segmentation of Urban Scenes. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 27-30 June, pp. 3234-3243

	8.	 Dosovitskiy A, Ros G, Codevilla F, Lopez A and Koltun V (2017) CARLA: An Open Urban Driving Simulator. Conference
on Robot Learning (CoRL), Mountain View, California, 13-15 November, pp. 1-16

	9.	 Shah S, Dey D, Lovett C and Kapoor A (2018) AirSim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles. In: Hutter M., Siegwart R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol
5. Springer, Cham, 12–15 September, Zürich, Switzerland, pp. 621–635

	10.	 Wymann B, Espi ́e E, Guionneau C, Dimitrakakis C, Coulom R and Sumner A (2015) TORCS, The Open Racing Car
Simulator. http://www.torcs​.org, pp. 1-5

	11.	 Müller M, Casser V, Lahoud J, Smith N, Ghanem B (2018) Sim4CV: a photo-realistic simulator for computer vision
applications. Int J Comput Vision 126(9):902–919

	12.	 Alireza S, Rahil H (2019) A state-of-the-art survey of malware detection approaches using data mining techniques.
Hum Centric Comput Inform Sci 8(1):3

	13.	 Hyejin S, Kihoon L, Nammee M (2019) User Modeling using user preference and user life pattern based on personal
bio data and SNS data. J Inf Process Syst 15(3):645–654

	14.	 Zhoua L, Pana S, Wanga J, Vasilakosb AV (2017) Machine learning on big data: opportunities and challenges. Neuro-
computing 237:350–361

	15.	 Paris S and Donikian S (2009) Activity-Driven Populace: A Cognitive Approach to Crowd Simulation. in IEEE Com-
puter Graphics and Applications, 21 July; 29(4): 34–43

	16.	 Lim CK, Tan KL, Zaidan AA, Zaidan BB (2019) A proposed methodology of bringing past life in digital cultural herit-
age through crowd simulation: a case study in George Town Malaysia. Mult Tools Appl 19:1–37

	17.	 Hullett K and Hullett K (2009) Scenario generation for emergency rescue training games. FDG ‘09 Proceedings of the
4th International Conference on Foundations of Digital Games, 26–30 April, Orlando, Florida, pp. 99-106

	18.	 Martin GA, Hughes CE, Schatz S and Nicholson D (2010) The use of functional L-systems for scenario generation in
serious games. PCGames ‘10 Proceedings of the 2010 Workshop on Procedural Content Generation in Games, 18
June, Monterey, California, pp. 1-5

	19.	 Kapadia M, Singh S, Reinman G and Faloutsos P (2011) A Behavior-Authoring Framework for Multiactor Simulations.
in IEEE Computer Graphics and Applications, November-December 2011; 31(6): pp. 45-55

	20.	 Liu T, Liu Z, Ma M, Chen T, Liu C and Chai Y (2019) 3D visual simulation of individual and crowd behavior in earth-
quake evacuation. Simulation: Transactions of the Society for Modeling and Simulation International 2019; 95(1): pp.
65-81

	21.	 Liu Z, Liu T, Ma M, Hsu H H, Ni Z and Chai Y (2018) A perception‐based emotion contagion model in crowd emer-
gent evacuation simulation: Computer Animation and Virtual Worlds; 29(3-4): pp. e1817

	22.	 Başak A E, Güdükbay U and Durupınar F (2018) Using real life incidents for creating realistic virtual crowds with data-
driven emotion contagion: Computers & Graphics; 72: pp. 70-81.

	23.	 Xu M, Xie X, Lv P, Niu J, Wang H, Li C, Zhu R, Deng Z and Zhou B (2019) Crowd behavior simulation with emotional
contagion in unexpected multihazard situations: IEEE Transactions on Systems, Man, and Cybernetics: Systems;
PP(99)(2019): pp.1-15

	24.	 Chen L, Jung C R, Musse S R, Moneimne M, Wang C, Fruchter R, Bazjanac V, Chen G and Badler N I (2018) Crowd
simulation incorporating thermal environments and responsive behaviors: PRESENCE: Teleoperators and Virtual
Environments; 26(4): pp.436-452

	25.	 Lyu, L and Jinling Z (2018) Toward modeling emotional crowds: IEEE Access; 6: pp. 55893-55906
	26.	 Luo L, Yin H, Cai W, Lees M, Zhou S (2013) Interactive scenario generation for mission-based virtual training. Comput

Anima Virtual Worlds 24(3–4):345–354

http://arxiv.org/abs/1810.01835%2c2018
http://www.torcs.org

Page 15 of 15Wen et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:24 	

	27.	 Luo L, Yin H, Zhong J, Cai W, Lees M and Zhou S (2013) Mission-based scenario modeling and generation for virtual
training. AIIDE’13 Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, 14-18 October, Boston, MA, USA, pp. 44-50

	28.	 Luo L, Yin H, Cai W, Lees M, Othman NB, Zhou S (2014) Towards a data-driven approach to scenario generation for
serious games. Computer Anim Virtual Worlds 25(3–4):395–404

	29.	 Sung M, Gleicher M, Chenney S (2004) Scalable behaviors for crowd simulation. Computer Graphics Forum
23(3):519–528

	30.	 Maïm J, Haegler S, Yersin B, Mueller P, Thalmann D and Gool LV (2007) Populating ancient pompeii with crowds of
virtual romans. VAST’07 Proceedings of the 8th International conference on Virtual Reality, Archaeology and Intel-
ligent Cultural Heritage, 26-30 November, Brighton, UK, pp. 109-116

	31.	 Busetta P, Robol M, Calanca P and Giorgini P (2017) PRESTO Script: scripting for serious games. AI & Games Sympo-
sium at AISB 2017, 18-22 April, Bath, UK, pp. 1-6

	32.	 Puel D (2018) An authoring system for VR-based firefighting commanders training: Electronic Imaging; 2018(3): pp.
469-1

	33.	 Kapadia M, Frey S, Shoulson A, Sumner RW and Gross M (2016) Canvas: Computer-assisted narrative animation
synthesis. In Proceedings of the ACM SIG-GRAPH/Eurographics Symposium on Computer Animation, SCA’16, Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association. 11-13 July, pp. 199–209

	34.	 Bhatti G, Brémond R, Jessel J-P, Dang N-T, Vienne F, Millet M (2015) Design and evaluation of a user-centered inter-
face to model scenarios on driving simulators. Trans Res Part C Emerg Technol 50:3–12

	35.	 Wong SK, Chou YH, and Yang HY (2018) A framework for simulating agent-based cooperative tasks in crowd
simulation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 15–18 May,
Montreal, Quebec, Canada, pp. 1–10

	36.	 Abdelgawad K, Henning S, Biemelt P, Gausemeier S, Trächtler A (2016) Advanced traffic simulation framework for
networked driving simulators. IFAC-PapersOnLine 49(11):101–108

	37.	 Krizhevsky A, Sutskever I and Hinton GE (2012) ImageNet classification with deep convolutional neural networks.
NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, 3-6
December, Lake Tahoe, Nevada, USA, pp. 1097-1105

	38.	 You SD, Chien-Hung L, Woei-Kae C (2018) Comparative study of singing voice detection based on deep neural
networks and ensemble learning. Hum-Centric Comput Inform Sci 8(1):34

	39.	 Min-Ji S, Myung-Ho K (2019) A system for improving data leakage detection based on association relationship
between data leakage patterns. J Inf Process Syst 15(3):520–537

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A scenario generation pipeline for autonomous vehicle simulators
	Abstract
	Introduction
	Related works
	Scenario generation pipeline
	Scenario generation pipeline
	Scenario map generator
	CNN-based scenario agent selector
	Collision event detector
	Event-centric action dispatcher

	Experiments and analysis
	Experimental methods
	CNN-based scenario agent selector
	Definition of event-centric actions

	Experimental results
	Results from the scenario map generator
	Evaluation of CNN-based scenario agent selector
	Evaluation of event-centric action dispatcher

	Experimental analysis

	Conclusion
	Acknowledgements
	References

