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Introduction
Autonomous driving has been a hot research topic since the end of the last century [1] 
because it promises many benefits, such as increased safety, reduced traffic congestion, 
and time savings. The first thing to consider when developing human-centric autono-
mous vehicles is safety [2]. The development of autonomous vehicles in the real world 
faces many problems, such as bad weather and difficulties in data collection.

The rapid development of computer hardware and artificial intelligence has 
allowed the development of simulators that provide efficient and convenient virtual 
environments for data collection and algorithm testing. In the past few decades, a 
variety of simulators have been developed for various purposes in machine learning 
[3], such as training employees [4, 5], soldiers [6], collecting training datasets [7], 
training models, and testing algorithms [8–11]. Compared with real-world testing, 
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simulation greatly reduces labor costs and time, as well as the risk of environmen-
tal factors or human error breaking expensive equipment. To build a simulator for 
autonomous vehicles equipped with various kinds of sensors, in addition to realistic 
visual effects [11], realistic simulation of possible real-world scenarios is also essen-
tial. A scenario usually means a series of actions of agents occurring over a period of 
time. In other words, a simulator should model various scenarios encountered by a 
vehicle in the real world. In this way, a vehicle model validated by such a simulator 
is more likely to succeed when applied to the real world. However, existing simula-
tors [8, 10] have failed to achieve this goal. For example, in the simulator reported in 
Ref. [8], aside from walking on sidewalks and crosswalks, pedestrians do not interact 
with the vehicles. In the simulator reported in Ref. [10], pedestrians are not even 
modeled. Therefore, scenario generation still requires significant work.

The use of comprehensive mathematical descriptions to explain the scenarios 
occurring on roads is challenging because of their diversity and complexity [12, 13]. 
Deep learning provides a simple and efficient way to train mathematical models to 
obtain solutions to various problems [14], providing that good quality training data 
is available. In this paper, we integrated a convolutional neural network (CNN) with 
our scenario generation pipeline to evaluate whether the selected agents for scenario 
generation can achieve realistic results.

This paper proposes a pipeline for generating various kinds of scenarios in a simu-
lator for autonomous vehicles. The simulator is used to provide a complete testing 
environment for the development of algorithms for autonomous vehicles, and vari-
ous realistic scenarios are expected to be generated. A scenario is generated around 
the autonomous vehicle in a specific area described by a scenario node. The genera-
tion process is as follows. First, a scenario map consisting of many scenario nodes 
is generated. Each scenario node contains actions that must be invoked when the 
autonomous vehicle enters the corresponding area of each scenario node. Next, 
an event is triggered by a collision event detector or the execution of a specified 
action. Then the CNN-based scenario agent selector selects agents to generate sce-
narios considering their relative positions and directions in the virtual environment. 
Finally, to promote the development of scenarios, an event-centric action dispatcher 
is utilized to guide the selected agents to react automatically when events occur, for 
example, car accidents.

The proposed scenario generation pipeline makes the following contributions to 
the development of simulators for autonomous vehicles: (1) it can generate scenarios 
in real time according to information concerning the agents around the autonomous 
vehicle instead of generating a scenario over the entire virtual environment; (2) it is 
the first attempt to generate a scenario including cars, pedestrians, and animals, i.e., 
not just cars or only cars and pedestrians; and (3) it is the first time that CNN has 
been used to select agents to generate scenarios for autonomous driving simulators.

This paper is organized as follows. The next section presents a review of related 
works about scenario generation. Section “Scenario generation pipeline” presents 
the proposed scenario generation pipeline. Section “Experiments and analysis” 
shows the experiments and results. Section “Conclusion” concludes the paper.
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Related works
In this section, existing scenario generation methods are discussed. Even though sce-
nario generation has been extensively studied, there are few studies involving autono-
mous driving simulators. The discussed scenario generation methods are related to 
various domains and are classified as heuristic-based methods, annotation-based meth-
ods, script-based methods, and graphical-user-interface (GUI)-based methods.

Heuristic-based methods are often used in scenario generation. These can be divided 
into rule-based methods and genetic algorithm (GA)-based methods. In rule-based 
methods, usually a set of constraints between the actions of a character is defined [15], 
and a multi-layered architecture is applied to model a character’s behavior in a virtual 
environment [16]; in addition, a cognitive model is included to locate the composite 
actions in action sequences. These methods focus on decision making without consid-
ering the movements of the agents. In Ref. [17] a planning-based scenario generation 
system for describing hierarchical tasks focusing on generating a partially perturbed 
environment instead of character actions was described. In Ref. [18], scenarios were 
generated by specifying scenario generation rules using functional L-systems. In the 
studies reported in Refs. [17, 18], scenarios were generated in an offline way that can-
not dynamically change with the simulation status. In contrast, in the study in Ref. [19], 
a heuristic search technique was used to generate complicated multi-actor behaviors. 
However, this approach cannot accept user input and requires the user to have intensive 
domain knowledge. In contrast, in Ref. [20], the generation of different character behav-
iors based on personalities in earthquake scenarios was proposed. However, the evacu-
ation points of the scene were predefined in an extensible markup language (XML) file, 
and the preparation of these files is time-consuming. The simulation of agent behavior 
in emergency scenarios usually focuses on movement only [21–25]. GAs have also been 
utilized for scenario generation [4, 6, 26–28] where they have been used to search for 
scenarios that maximize a set of evaluation criterion. However, in these approaches, sce-
nario generation occurs in an offline manner.

Annotation-based scenario generation methods are also frequently used. For example, 
in Ref. [29], situations annotated with the actions that characters can perform were used. 
The characters can carry out basic actions, and, when they enter a new situation, addi-
tional actions allowed by the new situation are added to the characters using a probabil-
istic mechanism to ensure that the characters react appropriately. In Ref. [30], a similar 
method of scenario generation was reported. However, the environmental objects were 
annotated with character actions. The advantage of annotation-based scenario gen-
eration is that it makes action planning in the virtual environment very efficient and 
straightforward. Nevertheless, it requires significant work to make annotations when the 
environment is very large, and only rigid and repeatable scenarios can be generated.

Some researchers have utilized script-based methods. For example, in Ref. [5], the 
ATTAC tool was introduced to allow non-technical users to create scenarios. The 
ATTAC-L modeling language can translate the user-specified scenario into XML files 
that can be interpreted by a game engine. In addition, in Refs. [31, 32], the PRESTO 
script, which can be used to describe the behavior of non-player characters (NPCs) in 
a virtual environment, was introduced to control multi-agent actions. The script-based 
approach uses a predefined set of sequences to describe the scenario, so significant 
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modifications to the scripts are often required when small changes need to be applied. 
Therefore, script-based methods cannot be easily generalized in different scenarios.

There are also methods based on graphical user interfaces (GUI). For example, in Ref. 
[33], a visual authoring tool, CANVAS, which allows users to make multi-actor scenario 
within minutes, was presented, and, in Ref. [34], a user-centered interface to model sce-
narios on driving simulators was proposed. In contrast, Ref. [35] focused on generating 
scenarios containing cooperative tasks. However, the trajectories of agents are specified 
by users, which is tedious work. Thus, although GUI-based scenario generation allows 
non-technical users to create scenarios, the manual authoring of all the scenarios is a 
time-consuming and tedious process.

In this paper, we present an efficient scenario generation pipeline in a virtual environ-
ment for autonomous driving. In the scenario module, scenarios are classified as custom 
or automatic scenarios. The custom scenario is under the full control of the user via a 
GUI-based authoring tool. GUI-based event generation allows users to produce creative 
scenarios. In contrast, automatic scenarios are generated automatically considering the 
status of the surrounding agents in a large virtual environment. The custom scenario will 
not be introduced in this paper because many researchers have already covered this area 
[15, 34]. However, automatic event generation will be illustrated in Sect. “Scenario gen-
eration pipeline”. To ensure the integrity and diversity of the scenario, an event-centric 
action dispatcher module is proposed.

Scenario generation pipeline
In this section, the scenario generation pipeline is explained. Given that a virtual envi-
ronment should provide sufficient space for autonomous driving, the simulation of the 
whole environment is not feasible, not just because of computational limitations but 
because large scenarios are difficult to manage [36]. Therefore, the scenario simulation 
focuses on generating one scenario near the autonomous vehicle. The scenario genera-
tion pipeline is focused on the scenario map generator, activation of the scenario node, 
CNN-based scenario agent selector, and event-centric action dispatcher.

Scenario generation pipeline

The scenario generation pipeline is shown in Fig.  1. The simulator is divided into the 
virtual environment and control system. The virtual environment provides the simula-
tion environment, and the control system controls the movement of agents in the virtual 
environment.

The location and direction of the autonomous vehicle is calculated by the autonomous 
vehicle monitor. The scenario node finder finds the nearest scenario node that lies on the 
road that the autonomous vehicle is on or about to be on; this is achieved by utilizing 
a scenario map. The collision handler delivers the collision messages from the virtual 
environment to the scenario module. The destination positions of the chosen agents are 
decided by the target position generator utilizing heuristic methods based on the relative 
location and direction of the selected agents and the structure of the surrounding roads. 
The information about roads and agents in an area is extracted by an information extrac-
tor given the center position and radius of the target area. The basic execution of agent 
actions is controlled by the agent basic action controller when they are not within the 
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area of activated scenario node. The path finder generates control information, including 
the speed, direction, and animation, for controlling the movement of the agents in the 
virtual environment.

Scenario map generator

To generate scenarios on roads, a scenario map is generated. Let R =

(

ps, pe,Rp,Rn, Jp, Jn
)

 
denote a road in the virtual environment, in which ps and pe denote the start- and end-
points of road R , respectively, Rp and Jp denote the neighboring road and junction, 
respectively, connected to ps , and Rn and Jn denote the neighboring road and junction, 
respectively, connected to pe . The vehicles in the virtual environment should drive from 
the start-point to the end-point of a road. Figure 2 shows a representation of a curved 
road. The shape of a curved road is rounded but represented by multiple straight lines.

A junction is used to solve the situation in which a road is connected to multiple roads. 
A junction consists of a set of road pairs. Let J =

{

(Ri,Ro)1, (Ri,Ro)2, . . . , (Ri,Ro)N
}

 
denote a junction for which Ri is the road whose end-point connects to the junction, and 
Ro is the road whose start-point is connected to J  . Vehicles can move from Ri to Ro , and, 

Fig. 1  Overview of the scenario generation pipeline

Fig. 2  Representation of a curved road
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at a junction, a vehicle may choose one road to follow from multiple roads, as shown in 
Fig. 3.

The roads in the virtual environment can, thus, be connected with each other to gen-
erate a directed graph. The directed graph generation process is shown in Algorithm 1. 
First, all roads are analyzed to obtain the road pairs. One road pair includes two neigh-
boring roads in which the end-point of the first road is connected to the start-point of 
the second road. All road pairs are added to the graph iteratively. Then, a directed graph 
is created in which a vertex denotes a road. A list is associated with a vertex to save adja-

cent roads whose start-points are connected to the end-point of the vertex.

Algorithm 1: Directed graph generation of roads
Input: All roads, junctions
Output: Directed graph 

Create empty list road_pairs

repeat 
Add road pair ( , ) to road_pairs if exists

Add road pair ( , ) to road_pairs if exists

until all road are analyzed

repeat 
Add all road pairs of ( , ) in current junction to road_pairs 

until all junctions are analyzed 

Create graph 

repeat
Add first road of a pair into as a vertex

Add second road of a pair into the list that is associated with the vertex of first 

road

until all road pairs are added into directed graph

The scenario map is a set of scenario nodes. Its generation involves traversing the 
graph. The depth-first search algorithm is utilized to traverse through the directed 
graph. Let d be the distance between two neighboring scenario nodes. Points are sam-
pled on the roads in intervals of distance d . At the position of the sampled point, a 
scenario node is created. When the remaining length, dr , of a road is not sufficient to 
sample a point, the length of the road next to it is added to dr to calculate the first sce-
nario node. Because junctions are ignored in the calculation of distance in this method, 
the actual distance between two scenario nodes can be longer than d . During generation, 
the identities (IDs) of scenario nodes generated on each road are saved. During simula-
tion, the scenario only occurs around the autonomous vehicle. Given the ID of the road 

Fig. 3  Relationship representations of roads and junctions
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that the autonomous vehicle is currently running on, the scenario nodes that are close to 
the autonomous vehicle can be efficiently found. Each scenario node is assigned with an 
initial action. The probability of being chosen for each initial action can be configured 
by the user. When a scenario node is activated, the initial action of a scenario node is 
scheduled.

CNN‑based scenario agent selector

When an action is chosen and executed by a scenario node or event-centric action dis-
patcher, the appropriate agents for the execution of the action must be determined. The 
choice of the right agent to perform the action is critical for achieving a natural scenario 
simulation. For example, when the scenario requires the vehicle to perform a hithuman 
action, the human should not be behind the vehicle because the vehicle cannot change 
its orientation significantly in a short time. To ensure that selected agents can perform 
a given action naturally, we use CNN to evaluate the rationality of the selected agents 
because CNN has been shown to perform classification tasks well [37].

The input data format of the CNN is an image. However, to reduce the amount of data 
transfer between the virtual environment and the control system, only the raw data con-
taining the state of the agents and roads is transferred to the control system. To convert 
the received raw data into a pictorial format, a top-view image of the entire virtual envi-
ronment is pre-read into memory before simulation. The input image is generated by 
cropping a portion of the top-view image and placing the current scenario node on its 
center position. The width and height are both the same as the diameter of the scenario 
node. The agents near the scenario node are also pasted into the image based on their 
positions and directions using repository resources of vehicles, animals, and pedestrians.

The CNN structure is illustrated in Fig. 4. We define the structure of the building block 
as Conv-ReLU-Pooling-Batch normalization. The CNN consists of five building blocks 
followed by dropout and flatten layers, as well as two groups of Dense-ReLU-Batch nor-
malization layers and a dense layer. Then, the output is fed into a Softmax layer to output 
the classification result. The building block incorporates a convolutional layer, a ReLU 
action layer, a max pooling layer, and a batch normalization layer. The number of filters, 
n, is chosen empirically.

Collision event detector

An event is a situation resulting from agent-executed actions. Different reactions can be 
generated based on different events. There are two types of events based on the response 

Fig. 4  Structure of the CNN
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time of the surrounding agents. The first type of event is a non-collision event, which 
occurs directly when the owners of the actions are executing the actions. Non-collision 
events include quarreling, fighting, and dancing. When the agents execute these kinds 
of actions, the surrounding agents can react directly. Another type of event is an acci-
dent event. The triggering of this event requires the owners of the actions to finish the 
actions, for example, collision between vehicles. For the former, the events related to the 
actions are directly added to the event pool. For the latter, the agents who execute the 
actions related to the collision event are saved in a collision agent pool. Agents in the 
collision agent pool have an expiration time, and, when the expiration time is up, the 
agent is removed from the pool. The scenario module must monitor the execution status 
to generate accidents. Thus, a collision event detector is proposed. The collision event 
detector processes collision messages. A collision message contains agents that collide 
together, as well as the position where they collide. When the same agent appears in the 
collision agent pool and collision message, the actions of the agents executed by the sce-
nario have caused an accident. Thus, the agent will be removed from the collision event 
detector, and the collision message is also removed. Then, a new event is generated and 
added to the event pool.

Event‑centric action dispatcher

When there are events in the event pool, the agents surrounding the position of these 
events are expected to react appropriately. The event-centric action generator assigns 
actions to the surrounding agents through a series of actions that are pre-grouped by 
event categories. The purpose of this is to promote the development of scenarios by 
dispatching actions related to events that occur near the autonomous vehicle. This is 
achieved by either recognizing actions in videos related to traffic using existing reports 
[38, 39] or intuitive authoring.

The process of generating the corresponding actions for surrounding agents according 
to the event is intuitive. The scenario module iteratively analyzes the existing events and 
collects the surrounding agents in the place where an event is generated. Random reac-
tions are assigned to these agents, and the used agents and the execution times for the 
reactions are recorded to prevent the repeated assignment of new reactions.

Experiments and analysis
Because there are no autonomous driving simulators in virtual environments featuring 
scenario generation, we could not compare the performance of our pipeline with those 
of others. In this section, the experimental methods and results are given first, and, sub-
sequently, the experimental analysis is presented.

Experimental methods

The simulation experiments were carried out on a desktop computer with an i7-6700 
3.40 GHz CPU and a NVIDIA GeForce GTX 1060 graphics card. The virtual environ-
ment was developed in Unity, and the control system was implemented in Python. The 
communication between virtual environment and the control system was achieved by 
transmission control protocol (TCP).
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To verify the proposed scenario generation pipeline, we show the results of the sce-
nario map generator, the CNN-based scenario agent selector, and the event-centric 
action dispatcher. Because the collision event detector serves the event-centric action 
dispatcher, the performance can be evaluated with the event-centric action dispatcher. 
The CNN-based scenario agent selector and event-centric action dispatcher are 
addressed in the experimental section.

CNN‑based scenario agent selector

Although there are many free surveillance videos containing traffic scenes on the Inter-
net, we found it difficult to obtain training data from these videos. Specifically, because 
of the different camera shooting angles, the quality of these videos is uneven, and it is 
not possible to provide reliable training data for the CNN model. Therefore, the training 
data were collected from the simulator and labeled by an expert. Because CNN requires 
image input, sending images between Unity 3D and Python slows the simulation; thus, 
we used the method described in “Scenario generation pipeline” and “Experiments 
and analysis” to synthesize input images in Python. The range of the collected data was 
64 m by 64 m, correspondingly, the size of the generated input image was 128 by 128. 
The collected data stores information about agents and roads surrounding the autono-
mous vehicle, and the information about the agent includes the location and direction, 
whereas the road information includes the road start-point, end-point, and direction. 
We grouped the actions that can cause events into three categories based on the agent 
type, as shown in Table 1. The movements of pedestrians and animals are similar and 
consider their orientations, but their movements are different from those of vehicles.

By letting the same event happen repeatedly in the virtual environment, we collected 
data for the three events. We randomly selected agents from the agents in the vicinity of 
the autonomous driving vehicle according to the types of agents needed for the event; 
this allowed us to include a range of cases. The data were artificially labeled as positive or 
negative to determine whether the selected agents participating in the event were appro-
priate. Most of the data were labeled as negative and randomly discarded to equalize the 
data set. After labeling, we obtained the training data set and the test data set, as shown 
in Tables 2 and 3, respectively.

Definition of event‑centric actions

We grouped the partial actions of agents into three groups based on the designed 
consequences. The response actions are defined by analyzing related videos, for 

Table 1  Grouping of actions by agent type

Category Name Subject type Target object types

Action type 1 Take vehicle
Be hit
Run to vehicle

Human
Human
Human

Vehicle
Vehicle
Vehicle

Action type 2 Fight
Quarrel
Be attacked
Talk

Human
Human
Human
Human

Human
Human
Human, animal
Human

Action type 3 Hit Vehicle Human, vehicle, animal



Page 10 of 15Wen et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:24 

example, we analyzed accident videos to summarize typical responses. The results 
are shown in Table  4. For example, the run to vehicle and vehicle hit actions may 
result in accident events, the quarrel and fight actions cause conflict events, and the 
sing and dance actions may result in a show event because they would attract other 
agents.

To allow the agent to react realistically to an event that has occurred, we defined 
the response actions of events, as shown in Table 5. For example, when an accident 
occurs, the driver may get out of the vehicle to check the injured pedestrian, check 
the car, stop, or continue driving.

Experimental results

In this section, we show the results of the scenario map generator, CNN-based sce-
nario agent selector, and event-centric action dispatcher. Because collision event 
detection serves the event-centric action dispatcher, it is not evaluated here.

Table 2  Training data set

Category Positive data Negative data Total

Action type 1 482 620 1102

Action type 2 718 906 1624

Action type 3 482 618 1100

Table 3  Testing data set

Category Positive data Negative data Total

Action type 1 40 60 100

Action type 2 46 54 100

Action type 3 39 61 100

Table 4  Source actions of events

Event type Human Vehicle

Accidents Be hit, cross the road, take vehi-
cle, run to vehicle

Hit, turn, drive forward, drive backward, change lane, 
rush to accelerate, rush to decelerate, rush to brake, 
lose control, stop

Conflict Fight, quarrel

Show Sing, dance

Table 5  Response actions to events

Event type Human Vehicle Animal

Accidents Get out of vehicle, run, walk, cross the road, take a picture, wait, 
check car, fight, phone call, check injured, talk

Drive forward, stop Run

Conflict Run, walk, take a picture, wait, phone call, cheer, check injured, talk, 
get out of vehicle

Drive forward, stop Run

Show Wait, walk, cross the road, get out of vehicle, take a picture, cheer Drive forward Run
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Results from the scenario map generator

The output of the scenario generator is shown in Fig. 5. Each blue point in the sce-
nario map represents one scenario node. To reduce computational cost, the scenario 
is only simulated in the region surrounding the scenario node when the autonomous 
vehicle enters the scenario area. The right part of the image shows the list of scenario 
nodes. The user can choose a scenario node to change the type of scenario node to a 
custom scenario.

Evaluation of CNN‑based scenario agent selector

To verify the performance of the CNN-based scenario agent selector, we compared 
the predicted accuracy with three kinds of support vector machines (SVMs) based 
on different kernel functions using the testing data. The input of the SVMs is differ-
ent from that of the CNN, i.e., a vector including information about agents and roads 
around the autonomous vehicle, as mentioned in “Results from the scenario map gen-
erator” section. The results of this comparison are shown in Table 6. The results show 
that the radial basis function (RBF)-based SVM performed better than the linear 
function(L)-based SVM and polynomial function(P)-based SVM. The performance of 
the CNN on the test data sets was significantly better than those of the SVM-based 
methods.

Fig. 5  Generated scenario map

Table 6  Accuracy compared with SVMs having different kernels

Methods Action type 1 (%) Action type 2 (%) Action type 3 (%) Average (%)

SVM(L) 71 64 68 67.67

SVM(P) 78 73 79 76.67

SVM(RBF) 86 74 78 79.33

CNN 90 96 94 92.67
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The trained model was applied in the virtual environment to select agents in the 
generated scenario. In Fig. 6a, the agents selected by CNN are labeled with red boxes. 
Figure 6b shows the accident event after execution.

Evaluation of event‑centric action dispatcher

Figure  7 shows examples of accidents simulated in the virtual environment using the 
proposed event-centric action dispatcher. In the left column of Fig.  7, two vehicles 
were selected as the scenario agents (shown in the red box). After execution, an acci-
dent occurred, and the scenario generation module received the collision message and 

Fig. 6  Execution of an initial action in one scenario node. a Agents selected by CNN, b Accident after 
execution

Fig. 7  Execution of the event-centric action dispatcher. a Selection of scenario agents, b Actions of 
surrounding agents
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triggered the actions related to the accident involving the surrounding agents (shown in 
the yellow box in the right column of Fig. 7).

Experimental analysis

The scenario map generated by the scenario map generator distributes scenario nodes 
over the whole map. The positions of the scenario nodes in the scenario map vary 
because of the randomizing algorithm used at the beginning of scenario generation, 
which guarantees that different terrains are covered over repeated simulations. The 
proposed CNN-based scenario agent selector accurately determined whether the agent 
selection generated a realistic scenario. Furthermore, the trained CNN model is more 
accurate than the output of the three SVMs, having an average accuracy of 92.67%. From 
the right column of Fig. 7, we know that the proposed event-centric action dispatcher 
module allows natural responses from agents close to the corresponding event locations.

Conclusion
In this paper, we have proposed a pipeline that generates various scenarios for autono-
mous vehicle simulations. The key contributions of the proposed pipeline are the train-
ing of a CNN for the selection of appropriate agents and the generation of realistic 
scenarios involving pedestrians, animals, and vehicles and the application of an event-
centric action dispatcher module to generate related actions for agents surrounding the 
event location in real time. We simulated various scenarios in a virtual environment by 
not only generating the scenarios but also generating the related actions of the surround-
ing agents to ensure that the simulation conforms to reality. For real time performance, 
the scenario simulated only the environment surrounding the autonomous vehicle, 
and this was achieved by generating a scenario map. The experiments showed that the 
CNN-based scenario agent selector can achieve a high accuracy of 92.67%. With the 
assistance of the event-centric action dispatcher module, the scenario generation pipe-
line successfully generated convincing scenarios in the virtual environment designed for 
autonomous driving. The experimental results show that this pipeline can be utilized 
to generate scenarios in a virtual environment for autonomous driving. Ultimately, the 
actions dispatched by the event-centric action dispatcher are classified based on human 
experience. However, manual summarization is time-consuming when additional events 
are needed. In the future, approaches applying an action recognition model via deep 
learning to video data classified based on event categories to recognize the action set 
related to corresponding event automatically will be our priority.
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