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Introduction
At present, with the development of various integrated sensors and crowdsensing 
systems, crowdsourced information from all aspects can be collected and analyzed 
among various data attributes to better produce rich knowledge about a group, thus 
benefiting everyone in the crowdsourcing system [1]. Particularly, with high-dimen-
sional heterogeneous data (data with unbalanced multivariate nominal attributes), 
there are many hidden rules and much hidden information behind the data that can 
be mined to provide better services for individuals or groups. For example, in the 
process of providing cloud services, user gender, age, and habits when using oper-
ating systems and browsers should be deeply explored to provide different special 
services to different user groups. In hospital staff, people’s historical medical records 
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and genetic information [2] can be followed closely to better diagnose and monitor 
patient health status.

However, in practical crowdsourcing systems, high-dimensional heterogeneous 
data cannot be utilized effectively. There are two main reasons for this situation. (1) 
Non-local privacy guarantee. Differential privacy [3, 4], as one of the currently effec-
tive privacy protection mechanisms, randomizes the query output by adding noise 
to sensitive data to achieve the purpose of privacy protection. Many existing works 
[5–8] focus on centralized data sets under the assumption of trusted third-party data 
collectors. These concentrate raw data into a data center and then publish relevant 
statistical information that satisfies differential privacy. However, even if third-party 
data collectors claim that they will not steal and disclose confidential user informa-
tion, the privacy of users is still not guaranteed. It is difficult to find a truly trusted 
third-party data collection platform in practical applications, which significantly lim-
its the use of centralized differential privacy technologies. As users, they prefer to 
ensure data security on the user side, enabling themselves to process and protect their 
confidential information separately (i.e., local differential privacy [9, 10]). (2) High-
dimensional disaster. In crowdsourcing systems, high-dimensional heterogeneous 
data are ubiquitous. With the increases in data dimensions and the dimensional dif-
ference between different attributes, many existing local differential privacy mech-
anisms such as RAPPOR [11] and [12, 13], if straightforwardly applied to multiple 
attributes with unbalanced dimensions, will become extremely unavailable. Their fatal 
drawbacks are their non-optimized privacy budget allocation schemes and high com-
putational complexities, which lead to large data utility loss and high latency. Differ-
ent dimensions of attributes need to allocate different privacy budgets. How to find 
the best allocation scheme is the key to improving data utility.

In addition to privacy vulnerability and data utility, collecting a large amount of 
data from distributed user groups means that the efficiency of data processing is low, 
especially in the application of the Internet of Things (IoT). Thus, it is important to 
provide an efficient privacy-preserving method with high-dimensional heterogeneous 
data. Furthermore, considering that the privacy concern level required by users for 
different data is inconsistent, it is also important to find the optimal privacy mecha-
nism under high and low privacy regimes.

In addressing the above issues, many existing methods have proved their effec-
tiveness from different perspectives. One is to ensure that user privacy is not leaked 
when users are provided a local privacy guarantee, such as [11–13]. However, these 
methods become extremely complicated in communication, and the data availability 
drops sharply when processing high-dimensional heterogeneous data. The other is to 
privately release high-dimensional data [14–16]. These methods mainly use specific 
methods to reduce the dimensionality of the data and then release it privately. These 
methods not only have high computational complexity but also have low data utility 
due to their unreasonable privacy budget allocation schemes.

In this paper, we aim at designing an efficient and effective privacy budget alloca-
tion scheme for high-dimensional heterogeneous data under the local privacy guaran-
tee. Our main contributions are as follows:
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•	 We propose an optimal privacy budget allocation scheme with high-dimensional 
heterogeneous data. In this scheme, we use the Lagrange multiplier (LM) algorithm 
to transform the privacy budget allocation problem into a problem of calculating 
the minimum value from unconditionally constrained convex functions. Then, the 
Cardano formula (CF) and Newton-Raphson (NS) methods are employed to itera-
tively calculate the optimal solution.

•	 To meet the local privacy guarantee and the different needs of different data for 
the privacy concern levels, we use the optimal privacy budget allocation scheme 
obtained by the above procedure to improve the BRR and MRR and call it the OBRR 
and OMRR, respectively, which are optimal in the high and low privacy regimes with 
high-dimensional heterogeneous data, respectively.

•	 Finally, we conduct simulation experiments to show that the two improved algo-
rithms, OBRR and OMRR, can significantly reduce the estimation error under the 
premise of satisfying local differential privacy, with lower time and communication 
complexities.

Related work
This paper focuses on the frequency statistics problem of high-dimensional heteroge-
neous data with local differential privacy, which refers to the situation where each user 
sends multiple variable values voted from candidate attributes. The candidate attributes 
always have different dimensions. Without loss of generality, we assume that the can-
didate attributes A = {a1, a2, . . . , al} , where each attribute ai has a specific dimension 
ki , and we assume d = k1 + k2 + · · · + kl . Each user needs to translate a fixed value of 
l variables. Unlike single-valued frequency statistics, in multivariate scenarios, we need 
to consider not only the locality of users’ privacy but also the segmentation of privacy 
budgets. An unreasonable privacy budget allocation scheme will result in a sharp drop 
in sanitized data utility.

Local privacy guarantee

Despite the privacy protection reaction against difference and inference attacks from 
aggregate queries, individuals’ data may also suffer from privacy leakage before aggrega-
tion. Given the privacy flaws of differential privacy, the notion of local privacy has been 
proposed to provide the local privacy guarantee to distributed users [9, 10]. Recently, 
local privacy has aimed to learn particular aggregation features from distributed users 
with some public knowledge. Groat et  al. [12] proposed the technique of negative sur-
veys, which is based on randomized response techniques, to identify the true distributions 
from noisy participant data. Similarly, Bassily et al. [17] proposed the S-Hist algorithm. 
To reduce the transmission cost, they use random response technology to perturb the 
original data and then randomly select one of the bits and send it to the data collector. 
However, when the dimension is high, the sparsity of the data will lead to much utility 
loss. At the same time, their high computational complexities will lead to high latency.

Many single-valued frequency statistical mechanisms that satisfy local differential privacy 
have been proposed. Erlingsson et al. [11] proposed RAPPOR to estimate the frequencies of 
different strings in a candidate set. Their subsequent research RAPPOR-unknown [18] pro-
posed learning the correlations between dimensions via an EM-based learning algorithm. 
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Intuitively, single-valued frequency statistics can be used repeatedly on each variable in high-
dimensional cases. However, when the dimension is high, the data utility decreases dramati-
cally, and the computational complexities increase exponentially. For the RAPPOR method, 
the length of the Bloom filters over the multi-attributes domain becomes:

Their asymptotic error boundary rises from O( k
ǫ
√
n
) to O( dk

ǫ
√
n
) . Moreover, the EM algo-

rithm has an exponentially higher complexity. Therefore, if the single-valued frequency 
publishing method is used as the frequency publishing method in the high-dimensional 
case, the data utility and communication cost cannot be optimized. In addition, there are 
many improved local differential privacy algorithms suitable for single-valued frequency 
statistics, such as O-RAPPOR [19], PCE [20], k-RR [21], and k-Subset [22]. When 
addressing high-dimensional frequency statistics, they all have irreparable deficiencies 
in terms of data utility, communication costs or computational complexity.

High dimension

Currently, for the issue of high-dimensional data publishing, there are many methods 
that have had their effectiveness proved from different perspectives. For example, Cai 
et al. [23] studied the trade-off between statistical accuracy and privacy in average esti-
mation and linear regression with high-dimensional data, mainly by improving the set-
ting strategies of parameters such as the minimum-maximum lower bound and iterative 
threshold to ensure the statistical accuracy under the premise of satisfying differential 
privacy. However, this approach does not satisfy the locality of users’ privacy, and they 
did not discuss how to allocate the privacy budget effectively. Li et al. [24] put forward 
the dichotomy of the privacy budget by using the method of publishing differential pri-
vacy histograms in groups. When it comes to high-dimensional heterogeneous data, 
there is no theoretical basis for their division. Since the dimensions of attributes are dif-
ferent, allocating the same privacy budget inevitably leads to a decline in data utility. 
Similarity, the method in [25] improves the accuracy of published data by adding addi-
tional processing to the output to restore the consistency of the count specified in the 
structure. However, this method cannot solve the problem of data utility decline caused 
by the sparsity of high-dimensional data before aggregation. There are also some meth-
ods such as [26, 27] that use the matrix mechanism to publish the database to minimize 
the query noise. However, the optimization cost of this method is very high, and the 
assumption that the query distribution is known in advance is not reasonable.

Another solution to mitigate the high dimension issue is to group the correlated 
records into clusters and then allocate the privacy budget to each low-dimensional 
cluster. However, in the existing schemes [14, 28, 29], the original data set is explicitly 
accessed twice to understand the correlation between properties and to generate the dis-
tribution of the cluster. The biggest problem with these methods is that the two accesses 
are computed separately and that there is no consistent privacy guarantee. That is, two 
different privacy budgets are allocated separately, but it is not clear how to allocate 
the privacy budget to achieve a sufficient privacy guarantee and utility maximization. 

mRAPPOR ∝ |k1 × k2 × kl | =
l∏

i=1

ki.
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Moreover, although the unbalanced data with the multivariate nominal attribute can be 
reduced into several low-dimensional clusters, the sparsity caused by the combinations 
in each cluster still exists and may result in lower utility. In contrast to the totally cen-
tralized setting in [14], Su et al. [30] proposed a distributed multiparty setting to publish 
a new data set from multiple data curators. However, their multiparty computation can 
protect only the privacy between data servers. Instead, there is no guarantee of local 
personal privacy in a data server. In addition, Zhang et al. [31] proposed a self-adaptive 
regression-based multivariate data compression scheme. They used a correlation matrix 
to compress different data streams from the same node to reduce communication costs. 
However, this method does not solve how to effectively compress a high-dimensional 
data stream when there is only one.

To solve the shortcomings of the above methods, which cannot meet the privacy local-
ity nor handle high-dimensional data, some effective methods have been proposed. For 
example, Ren et  al. proposed LoPub [15, 16], which combines the RAPPOR and prob-
ability graph model. They first transform each attribute value into a random bit string 
using a Bloom filter [32] and then send it to the central server. Subsequently, similar to 
the high-dimensional data publishing method based on centralized differential privacy in 
[14], the data collector determines the frequency statistics of the collected data and then 
constructs a Markov network. The joint probability distribution of attributes is expressed 
as a maximal clique to reduce the dimensions of the data. Finally, a data set is resynthe-
sized by a joint probability distribution for data release. However, the biggest disadvan-
tage of this method is that it does not consider the allocation of the privacy budget before 
the high-dimensional heterogeneous data are aggregated to the server. Moreover, if each 
attribute is mutually independent, they propose using the EM to estimate the multivariate 
distribution, which will increase the computational complexities exponentially.

To overcome the shortcomings of low data utility, nonlocal privacy and high computa-
tional complexities within those schemes, we propose a novel privacy budget allocation 
scheme to publish unbalanced multivariate nominal attribute data while guaranteeing 
local privacy. At present, many similar optimization theories and methods have been 
proposed [33–35], but different objective functions lead to different solutions. In this 
paper, we turn the privacy budget allocation problem into a problem of solving the 
univariate cubic equation. The experimental results show that our method can greatly 
improve the low query accuracy caused by the defect of privacy budget allocation.

System model
The demonstrative aggregation model is depicted in Fig.  1, where several users and 
a central aggregator are interconnected, constituting a crowdsourcing system. At 
first, the aggregator releases or publishes unbalanced multivariate aggregation query 
A = {a1, a2, . . . , al} to each participant, along with the global parameters, including the 
optimal privacy budget allocation scheme ǫ = {ǫ1, . . . , ǫl} for each attribute ai , and other 
specific mechanism parameters, such as the sign of the high or low privacy regime. The 
different regimes require different privacy mechanisms i.e., OBRR or OMRR). In our 
mechanism, both secret data v and sanitized data v′ are expressed as bit maps; specifi-
cally, if a participant’s secret value equals the j-th element Vj in data domain V, then the 
secret data vi ∈ {0, 1}|V | is a bit map of length |V|, with the j-th bit set to 1 and other bits 
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set to 0. After receiving the sanitized data list {v′1, v′2, . . . , v′n} , the aggregator attempts 
to decode an estimation over the domain V . According to the estimated results from 
the sanitized data set, the aggregator tries to provide users with better network services. 
In the process of data releasing with local differential privacy, no one knows the secret 
information they release except for the participants themselves.

Problem statement

Given a collection of data records with l attributes from different users, the dimen-
sions of different attributes are different. Our goal is to help the aggregator design a 
reasonable privacy budget allocation scheme to improve the utility of releasing data 
under different privacy regimes. Formally, the unbalanced multivariate nominal attrib-
utes A = {a1, a2, . . . , al} , and each attribute ai has a specific number of categories 
ai = {ai1, ai2, . . . , aiki } , where ki is the number of categories for the i-th attribute, that 
is, |ai| = ki, i = 1, 2, . . . , l . We assume that if i  = j , we have ki  = kj . Specially, each user 
ui possesses l-length attributes vi = {vi1, vi2, . . . , vil} . Let n be the total number of users 
and d = k1 + k2 + · · · + kl be the length of the bit maps. vi is first translated into bit 
maps: hi = {h11, . . . , h1ki , h2k1 . . . , h2k2 , . . . , hlkl } , where hij ∈ ai, i = 1, 2, . . . , l . Then, 
the sanitized data h′i is sent to the aggregator. The frequency of the true histogram is 
denoted as H =

∑
{h1, . . . ,hn} . The estimated frequency of the sanitized histogram can 

be expressed as H′′ =
∑

{h′′1 , . . . ,h′′n}.
With the above notations, our problem can be formulated as follows: Given the fixed 

privacy budget (located in the high or low regime), our goal is to find the optimal privacy 
budget allocation scheme {ǫ1, . . . , ǫl} to minimize the error of estimated histogram H′′ of 
the true histogram H . This can be expressed as follows:

SE(H,H′′) = min
ǫ=ǫ1+···+ǫl

E





l�

i=1

ki�

j=1

(Hij
′′ −Hij)

2





Fig. 1  Aggregation model for differential private histogram estimation with multivariate unbalanced 
nominal attributes
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Moreover, different privacy regimes require different privacy mechanisms, which 
require a flexible privacy budget allocation scheme that can be easily applied to different 
local privacy mechanisms. Some notations employed in this paper are listed in Table 1.

Preliminaries
Local differential privacy

The protection model under local differential privacy (LDP) fully considers the possi-
bility of data collectors stealing or revealing user privacy during data collection. In this 
model, each user first randomizes the data and then sends the sanitized data to data 
collectors; data collectors collect statistics on the collected data to obtain valid analy-
sis results. Local differential privacy [5] is a rigorous privacy notion in the local setting, 
which provides a stronger privacy guarantee than does centralized differential privacy. 
The formal definition of local differential privacy is as follows:

Definition 1  Given n users, where each user corresponds to a record, a randomized 
algorithm F  satisfies ǫ-local differential privacy if for any two records t and t ′ ∈ D and 
for all M ⊆ Range(F):

where ǫ denotes the privacy budget and D represents the domain of the privacy data.

For local differential privacy technology, each user can independently randomize indi-
vidual data, that is, the privacy process is transferred from the data collector to a single 
client so that no trusted third-party intervention is required. This also eliminates privacy 
attacks that may be caused by untrusted third-party data collectors.

(1)Pr[F(t) ∈ M] ≤ exp(ǫ) · Pr[F(t ′) ∈ M]

Table 1  Notations

A Multiple unbalanced categorical data sets

l Number of attributes

n Number of participants

ki Number of items of the i-th attribute

d Total number of items, d =
∑

i ki

aj j-th attributes of A, the length |aj | of which is kj
vi Private values possessed by the i-th user, the length 

|vi | of which is l

vij j-th value of vi
hi Private bit vector of i-th users, the length of which is d

H True histogram, H =
∑

{h1, . . . ,hn}
H′ Sanitized histogram of H , H′ =

∑
{h′1, . . . ,h′n}

H′′ Estimated histogram of H′ , H′′ =
∑

{h′′1 , . . . ,h′′n}
ǫi Privacy budget of the i-th attribute

CF Cardano formula

NS Newton-Raphson method

SE Square error

NSE  Normalized square error, NSE = SE
n
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Binary randomized response

The binary randomized response (BRR) [11] is a technique that requires each user to 
send a sanitized bit to the aggregator, where the perturbation is based on a randomized 
response (RR). Each participant is asked to flip a biased coin with probability p in secret 
and tell the truth if it comes up heads but tell a lie otherwise (if the coin comes up tails). 
To solve the perturbation problem of multiple unbalanced categorical data, the binary 
random response first initializes a length-d binary vector h = (0, 0, . . . , 0

︸ ︷︷ ︸

d

) of zeros, next 

maps the input vi = {vi1, vi2, . . . , vil} of a user ui to a position in h and then sets the rest 
of the positions to 0, i.e., h = (0, . . . , 1, . . . , 0

︸ ︷︷ ︸

k1

, . . . , 0, . . . , 1, . . . , 0
︸ ︷︷ ︸

kl

) . For each bit in h , the 

output h′ is given by:

Yet, how to determine the value of p to make the sanitized data released by each user 
satisfy the need for differential privacy is the key problem. To do so, we analyze the sen-
sitivity of releasing a length-d bit vector to each user. Since each user possesses exactly l 
items, there are l ones in H . Therefore, two such bit vectors can differ by at most 2l bits, 
meaning that the sensitivity is 2l. To meet the requirements of differential privacy, the 
probability p follows the method applied by RAPPOR [11]:

The BRR allocates the same privacy budget ǫ2l for each attribute, regardless of whether 
the number of categories of attributes is the same. If the number of categories between 
attributes varies widely, for example, the user’s browsing site and the user’s gender, the 
same privacy budget will likely bring a large estimated deviation.

Multivariate randomized response

The multivariate randomized response (MRR) mechanism [36] is a locally differentiable 
private mechanism whose noisy output alphabet Y is the original input domain X  . Spe-
cially, each user possesses a set vi = {vi1, . . . , vil} of an item; after being perturbed by the 
MRR, the sanitized output turns into v′i = {v′i1, . . . , v′il} , where v′ij , vij ∈ aj , j = 1, 2, . . . , l . 
Then, the user ui publishes the sanitized set v′i of items to the aggregator. The conditional 
probabilities are given by:

To satisfy the requirements of the differential privacy, we analyze the sensitivity of releas-
ing a length-l vector to each user in a manner similar to that mentioned above. Two such 
vectors can differ by at most l positions, meaning that the sensitivity is l. Thus, when 
ǫm satisfies ǫm = ǫ

l
 , the MRR mechanism satisfies the differential privacy requirements. 

(2)BRR(h′i|hi) =
{
p, if h′i = hi
1− p, if h′i �= hi

(3)p =
exp

(
ǫ
2l

)

exp
(
ǫ
2l

)
+ 1

(4)MRR(v′ij|vij) =

{
exp(ǫm)

exp(ǫm)+kj−1
, if v′ij = vij

1
exp(ǫm)+kj−1 , if v′ij �= vij
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The MRR allocates the same privacy budget ǫ
l
 for each attribute. The same unreasonable 

budget allocation problem will also appear in the MRR mechanism.
The BRR mechanism incurs O(d) communication costs for each user, and the MRR incurs 

O(l) communication costs. The number of attributes l is usually far smaller than the total 
number of items d, that is, l ≪ d . As far as the communication cost is concerned, the MRR is 
superior to the BRR. In the work proposed by Kairouz et al. [36], the BRR and MRR are called 
staircase mechanisms. The BRR has been proved to be optimal in the high privacy regime, and 
the MRR has been proved to be optimal in the low privacy regime [19]. However, their unrea-
sonable privacy budget allocation schemes are fatal problems. In the next section, we present 
evidence showing how to obtain the optimal allocation schemes over multiple unbalanced 
categorical data. Then, we apply the optimal budget allocation scheme to the BRR and MRR, 
resulting in the optimal mechanisms in the high and low regimes, respectively.

Optimal privacy budget allocation
Optimal budget allocation for the BRR

The main goal of the aggregator is to estimate the frequency of the items without disclosing 
the privacy of the users. Therefore, we adopt the square error (SE) as the metric to evaluate 
the estimation. Without loss of generality, we assume there are l attributes a1, a2, . . . , al and 
that the number of items for each attribute ai is ki , that is, |ai| = ki . The total number of 
items d = k1 + k2 + · · · + kl . We allocate budgets {ǫ1, ǫ2, . . . , ǫl} to the set of attributes 
{a1, a2, . . . , al} , respectively, and ǫ1 + ǫ2 + · · · + ǫl = ǫ

2 . Each user ui publishes a length-d 
bit vector h′i obtained by perturbing the original bit vector hi . The true histogram 
H =

∑
{h1, . . . ,hn} . The sanitized histogram H′ =

∑
{h′1, . . . ,h′n} . Let H′′ = {H ′′

11
, . . . ,

H
′′
1k1

,H ′′
21
, . . . ,H ′′

2k2
, . . . ,H ′′

lkl
} denote the unbiased estimation of H ; for each attribute, we 

have H ′′
ij pi + (n−H ′′

ij )(1− pi) = H ′
ij , i = 1, . . . , l, j = 1, . . . , ki , where pi = exp(ǫi)

exp(ǫi)+1 . 
Thus, we have:

The SE is given as follows:

where H ′
ij is the Bernoulli probability distribution, with the variance of H ′

ij being equal to 
npi(1− pi) . Our goal is given as:

H ′′
ij =

H ′
ij(exp(ǫi)+ 1)− n

exp(ǫi)− 1

SE(ǫ, l, d) = E





l�

i=1

ki�

j=1

(H ′′
ij −Hij)

2



 =
l�

i=1

ki�

j=1

E[(H ′′
ij −Hij)

2]

=
l�

i=1

ki�

j=1

Var[H ′′
ij ] =

l�

i=1

ki�

j=1

�
exp(ǫi)+ 1

exp(ǫi)− 1

�2

Var[H ′
ij]

=
l�

i=1

nki · exp(ǫi)
(exp(ǫi)− 1)2

L(ǫ) = min
ǫ1+···+ǫl= ǫ

2

l∑

i=1

nki · exp(ǫi)
(exp(ǫi)− 1)2
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To solve the optimization problem under restricted conditions, we employ the LM 
method to translate the conditional restrictions into unconditional constraints:

where ǫi ≥ 0, i = 1, . . . , l . The task now is to obtain the minimum value of L(ǫ, �) . Since the 
second-order partial derivative ∂

2L(ǫ,�)
∂2ǫi

= nki exp(3ǫi)+4nki exp(2ǫi)+nki exp(ǫi)

(exp(ǫi)−1)4
> 0, i = 1, 2, . . . , l , 

L(ǫ, �) is strictly a convex function for the variable ǫi , there must exist a minimum solution for 
L(ǫ, �) . For simplicity, let xi = exp(ǫi) ; then, the equation L(ǫ, �) becomes:

where xi > 1, i = 1, 2, . . . , l . Its optimal solution is obtained by solving the following 
equations:

where i = 1, 2, . . . , l . We carry out a simple transformation of the equation to obtain:

where i = 1, 2, . . . , l . The above equation is related to the problem of solving the univari-
ate cubic equation. There are a variety of methods for solving the univariate cubic equa-
tion. Here, we employ the Cardano formula (CF) to solve this problem. The univariate 
cubic equation in Eq. (8) can be changed to:

we let

Then, Eq. (9) can be expressed as:

To find the root of the equation, we let xi = yi − b
3a . Eq. (10) can then be changed to:

We let p = c
a − b2

3a2
 and q = d

a + 2b3

27a3
− bc

3a2
 ; thus, Eq. (11) can be expressed as:

(5)L(ǫ, �) =
l∑

i=1

nki · exp(ǫi)
(exp(ǫi)− 1)2

+ �

(

ǫ1 + ǫ2 + · · · + ǫl −
ǫ

2

)

(6)L(x, �) =
l∑

i=1

nkixi

(xi − 1)2
+ �

(

x1x2 . . . xl − exp
(ǫ

2

))

(7)

{
∂L(x,�)
∂xi

= −nki(xi+1)

(xi−1)3
+ �

x1...xl
xi

= 0
∂L(x,�)

∂�
= x1, x2 . . . xl = exp

(
ε
2

)
= 0

(8)
{
� exp

(
ε
2

)
(xi − 1)3 − nki(xi + 1)xi = 0

x1, x2 . . . xl = exp
(
ε
2

)

(9)
� exp

(ǫ

2

)

x3i −
(

3� exp
(ǫ

2

)

+ nki

)

x2i +
(

3� exp
(ǫ

2

)

− nki

)

xi − � exp
(ǫ

2

)

= 0

a = � exp
(ǫ

2

)

, b = −(3a+ nki), c = 3a− nki, d = −a

(10)ax3i + bx2i + cxi + d = 0

(11)y3i +
(
c

a
−

b2

3a2

)

yi +
(
d

a
+

2b3

27a3
−

bc

3a2

)

= 0
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By using the CF method, we can obtain the root of Eq. (12) as follows:

where ω = −1+
√
3i

2  . Thus, the roots of Eq. (10) are obtained by solving 
xij = yij − b

3a , j = 1, 2, 3 . We take only xi1 as our final real root.
The finally obtained l solutions x1, x2, . . . , xl are applied to equation 

f (�) = x1x2 . . . xl − exp( ǫ2 ) = 0 . We can thus obtain a higher-order equation for � . We 
employ the existed Newton-Raphson (NS) method to solve the problem of high degree 
with one unknown. The NS method first chooses an initial approximate value �0 . At each 
iteration, let �k be the initial value of the next iteration, which is given as:

The NS method will produce an infinite sequence {�1, �2, . . .} , which will converge to 
the true root of the function f (�) . After obtaining the asymptotic answer �∗ , we can 
obtain the value of {x1, x2, . . . , xl} . The privacy budget ǫi can be obtained by ǫi = log xi , 
i = 1, . . . , l for each attribute. To analyze the optimal answer {ǫ1, ǫ2, . . . , ǫl} , we can draw 
the following conclusions:

Theorem  1  For multiple unbalanced categorical data, the optimal privacy budget 
value ǫi of the BRR is positively correlated with the number of items ki . Specially, if 
k1 = k2 = · · · = kl, the allocation scheme ǫ1 = ǫ2 = · · · = ǫl = ǫ

2l is optimal.

Theorem 2  For any given number of items {k1, k2, . . . , kl}, there exists only one optimal 
budget allocation scheme ǫ∗ = {ǫ1, ǫ2, . . . , ǫl} , s.t. ǫ1 + ǫ2 + · · · + ǫl = ǫ

2, and its upper 
bound is dn exp( ǫ

2l
)

(exp( ǫ
2l
)−1)2

.

When we apply the optimal privacy budget allocation scheme to the BRR, we obtain the 
OBRR mechanism in a high privacy regime, which greatly improves the original mecha-
nism. The encoder algorithm of the OBRR is shown in Algorithm 1. 

(12)y3i + pyi + q = 0
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+
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Optimal budget allocation for the MRR

In this section, we also employ the SE as a metric to evaluate the estimation. We assume 
that the parameters used in this section are the same as in the previous definition. The 
true histogram H =

∑
{h1, . . . ,hn} . The sanitized histogram H′ =

∑
{h′1, . . . ,h′n} , and 

domain(H) = domain(H′) . Let H′′ = {H ′′
11, . . . ,H

′′
1k1

,H ′′
21, . . . ,H

′′
2k2

, . . . ,H ′′
lkl
} denotes the 

unbiased estimation of H ; for each attribute, we have H ′′
ij
pi + (n−H

′′
ij
)(1− pi) = H

′
ij
,

j = 1, . . . , ki, i = 1, . . . , l , where pi = exp(ǫi)
exp(ǫi)+ki−1 . We obtain:

The SE is given as follows:

where Hij represents the j-th item of the i-th attribute. One can use prior knowledge 
on H as a substitution; here, we assume only that it is a uniform histogram such that 
Hij = n

ki
 . Thus, our goal is to minimize the following equation:

We also employ the LM to translate the conditional restrictions into unconditional con-
straints and let xi = exp(ǫi) ; thus, we obtain:

H ′′
ij =

H ′
ij(exp(ǫi)+ ki − 1)− n

exp(ǫi)− 1

SE(ǫ, l, d) = E





l�

i=1

ki�

j=1

(H ′′
ij −Hij)

2



 =
l�

i=1

ki�

j=1

E
�

(H ′′
ij −Hij)

2
�

=
l�

i=1

ki�

j=1

Var[H ′′
ij ] =

l�

i=1

ki�

j=1

�
exp(ǫi)+ ki − 1

exp(ǫi)− 1

�2

Var[H ′
ij]

=
l�

i=1

ki�

j=1

Hij exp(ǫi)(ki − 1)+ (n−Hij) exp(ǫi)+ ki − 2

(exp(ǫi)− 1)2

L(ǫ) = min
ǫ1+···+ǫl=ǫ

l∑

i=1

n(ki − 1) · (2 exp(ǫi)+ ki − 2)

(exp(ǫi)− 1)2
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where xi > 1, i = 1, 2, . . . , l . Since the second-order partial derivative ∂2L(x,�)

∂2xi
=

n(ki−1)(4xi+6ki−4)

(xi−1)4
> 0, i = 1, 2, . . . , l and L(x, �) is strictly a convex function for the varia-

ble xi , there must exist a minimum solution for L(x, �) . Its optimal solution is obtained 
by solving the following equations:

where i = 1, 2, . . . , l . We use the same CF and NS methods introduced in the last section 
to solve the roots of the above equation. Finally, we obtain the optimal allocation scheme 
{ǫ1, ǫ2, . . . , ǫl} , and ǫ1 + ǫ2 + · · · + ǫl = ǫ . To further analyze the properties of the opti-
mal budget, we can draw the following conclusion:

Theorem  3  For multiple unbalanced categorical data, the optimal privacy budget 
value ǫi of the MRR is positively correlated with the number of items ki. Specifically, if 
k1 = k2 = · · · = kl, the allocation scheme ǫ1 = ǫ2 = · · · = ǫl = ǫ

l
 is optimal.

Theorem 4  For any given number of items {k1, k2, . . . , kl}, there exists only one optimal 
budget allocation scheme ǫ∗ = {ǫ1, ǫ2, . . . , ǫl} s.t. ǫ1 + ǫ2 + · · · + ǫl = ǫ, and its upper 
bound is n(d−l)(2 exp( ǫ

l
)+ d

l
−2)

(exp( ǫ
l
)−1)2

.

When we apply the optimal privacy budget allocation scheme to the MRR, we can 
obtain the OMRR mechanism in a high privacy regime, which improves the original 
mechanism significantly. The encoder algorithm of the OMRR is shown in Algorithm 2. 

(15)L(x, �) =
l∑

i=1

n(ki − 1) · (2xi + ki − 2)

(xi − 1)2
+ �(x1x2 . . . xl − exp(ǫ))

(16)







∂L(x, �)

∂xi
= � exp(ǫ)(xi − 1)3 − 2n(ki − 1)(xi + ki − 1)xi = 0

∂L(x, �)

∂�
= x1x2 . . . xl − exp(ǫ) = 0
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Theoretical analysis
Convergence

When using the NS method to calculate the roots of the equation f (�) = x1x2 . . . xl

− exp( ǫ
2
) = 0 , the biggest problem lies in the selection of the initial iteration values. If 

the initial value is far from the true solution, it is difficult for the NS method to converge. 
To improve the shortcomings of the over-reliance of the NS on the initial value, we add 
the selection of the best initial value to the iteration process. The iteration is divided into 
two processes. We first calculate whether |f (�k)− f (�)| falls within a reasonable interval 
[a, b] on the basis of the given initial value �0 . If it does not match, then we add a fixed 
step size �k+1 = �k + δ and recalculate until a suitable initial value �′0 is found. Based on 
the best initial value �′0 , the NS method is used to improve the iteration accuracy. The 
global threshold is set to ξ = 0.01 . When the iteration error f (�∗)− f (�) ≤ ξ , the itera-
tion is terminated. To show the relationship between the overall number of iterations 
and the number of iteration errors, we perform experiments on two data sets. The data 
sets are detailed in  “Simulation” section. The comparison results are shown in Fig. 2. To 
facilitate the comparison, the error is normalized to [0, 1].

It can be seen from the experiment that the number of iterations has a great relation-
ship with the selection of the initial value �0 and with the selection of the step size δ . 
After the improvement, all optimization equations can stably converge to the real root � . 
Based on the obtained approximate solution, the optimal privacy allocation schemes can 
be obtained, which are illustrated in Table 2.

Analysis

To prove the effectiveness of the optimal methods, we carry out an experimental analysis 
of the theoretical error. Without loss of generality, we assume that there are 5 attributes 
and that each attribute has different categories; specifically, we let {k1, k2, . . . , k5} =
{5, 6, 150, 200, 250} . These numbers are randomly chosen, but it does exist in reality, for 
example, the number of sexes is 2, while the number of websites visited by users may be 
in the thousands. We assume that there are 1000 participants. We conduct experiments 
on the BRR, MRR, OBRR, and OMRR. The experimental results are shown in Table 3. 
Here, we use log10(NSE) as the reference point. In this experiment, the OBRR has the 
best performance, and the MRR has the worst performance. The reason for this result is 
the excessive number of items. The conditional probability of the BRR satisfies 
pb = exp(ǫb)

exp(ǫb)+1 , but the probability of the MRR meets pm = exp(ǫm)
exp(ǫm)+k−1 ; thus, we find 

that if k is large, the probability pm becomes small, which will incur a bad performance. 
Compared to the BRR and MRR, the OBRR method can reduce the estimated square 
error by 40% , and the OMRR method can reduce the estimated square error by approxi-
mately 73%.

Error bounds and computational complexities

The OBRR is optimal in the high privacy regime when addressing multivariate unbal-
anced nominal attributes. The OMRR is optimal in the low privacy regime when 
addressing multivariate unbalanced nominal attributes. Thus, the estimated histograms 
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in these mechanisms are no less favorable than the histogram estimated by the BRR [11, 
37] and MRR [38]. Thus, we have:

For each participant, both the OBRR mechanism proposed in Algorithm  1 and the 
OMRR proposed in Algorithm 2 have a computational complexity of O(d), where d is 
the length of the bit maps. For the aggregator, finding the optimal budget allocation 
scheme {ǫ1, ǫ2, . . . , ǫl} requires approximately O(log(l)F(l)) computational complexity, 
where F(l) is the cost of calculating f (x)

f ′(x) with l-digit precision, and estimating the histo-
gram from the observed sanitized data requires O(nd + n) time, where n is the number 
of participants. The OBRR and OMRR mechanisms have only linear time complexities 
concerning d or n, except when optimizing the budget allocation scheme. The optimal 
privacy allocation scheme can be calculated offline, that is, it can be calculated in 
advance before aggregating users’ sanitized information. In short, the OBRR and OMRR 
mechanisms have only linear complexities with respect to the domain size |D| or num-
ber of participants n for both participants and the aggregator. Hence, the OBRR and 

SE(OBRR) ≤
dn exp

(
ǫ
2l

)

(
exp

(
ǫ
2l

)
− 1

)2
, SE(OMRR) ≤

n(d − l)
(

2 exp
(
ǫ
l

)
+ d

l
− 2

)

(
exp

(
ǫ
l

)
− 1

)2

c d

a b

Fig. 2  The relationship between the number of iterations and convergence
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OMRR mechanisms are highly efficient for multiple unbalanced categorical data 
aggregation.

Simulation
Optimal binary randomized response mechanism

In this section, we conduct an experiment to compare the performances of the BRR and 
OBRR mechanisms. We assume that each participant’s secret data value is drawn from 
histogram H, which is uniformly and randomly generated during each aggregation. The 

Table 2  The optimal privacy budget allocation scheme

ǫ 2 4 6 7 100

(a) OBRR, n = 1000 , d = 119

1 0.0568 0.0716 0.0820 0.0863 0.2094

2 0.1127 0.1420 0.1626 0.1711 0.4152

3 0.1687 0.2126 0.2433 0.2562 0.6214

4 0.2248 0.2832 0.3242 0.3413 0.8277

5 0.2810 0.3541 0.4053 0.4267 1.0338

6 0.3374 0.4251 0.4866 0.5122 1.2393

(b) OBRR, n = 10,000 , d = 611

1 0.0412 0.0438 0.1281 0.1410 0.1519

2 0.0818 0.0869 0.2541 0.2797 0.3013

3 0.1224 0.1301 0.3803 0.4186 0.4509

4 0.1631 0.1733 0.5067 0.5576 0.6007

5 0.2038 0.2166 0.6331 0.6968 0.7505

6 0.2446 0.2599 0.7597 0.8360 0.9003

(c) OMRR, n = 1000 , d = 119

1 0.0436 0.0787 0.1063 0.1186 0.6564

2 0.0955 0.1711 0.2295 0.2553 1.2499

3 0.1573 0.2791 0.3715 0.4120 1.7805

4 0.2293 0.4023 0.5307 0.5862 2.2518

5 0.3109 0.5390 0.7040 0.7743 2.6719

6 0.4018 0.6872 0.8882 0.9725 3.0503

(d) OMRR, n = 1000 , d = 611

1 0.0266 0.0304 0.2644 0.3173 0.3649

2 0.0562 0.0643 0.5317 0.6309 0.7182

3 0.0899 0.1026 0.8037 0.9424 1.0618

4 0.1284 0.1464 1.0793 1.2507 1.3953

5 0.1726 0.1967 1.3571 1.5548 1.7188

6 0.2235 0.2543 1.6355 1.8541 2.0326

Table 3  The relationship between log10(NSE) and the privacy budget ǫ

ǫ Mechanism

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

BRR 4.7857 4.4330 4.1825 3.9879 3.8285 3.6935 3.5761 3.4723 3.3791 3.2944 3.2168

OBRR 4.5683 4.2144 3.9325 3.7488 3.5955 3.4639 3.3484 3.2454 3.1523 3.0672 2.9889

MRR 6.4056 6.0087 5.7135 5.4736 5.2686 5.0874 4.9235 4.7727 4.6320 4.4995 4.3737

OMRR 5.9710 5.5472 5.2254 4.9578 4.7310 4.5274 4.3408 4.1675 4.0048 3.8507 3.7041



Page 17 of 21Feng and Zhang ﻿Hum. Cent. Comput. Inf. Sci.           (2020) 10:25 	

dimension of the data set is [n, d]. The selection of the data set guarantees the follow-
ing criteria: each participant can vote for only l tickets, that is, the sum of each row of 
the data set matrix is l. The total number of tickets for all participants is l ∗ n . The data 
set generation algorithm is given in Algorithm 3. All of the experiments mentioned in 
this paper are run on a notebook with Windows 8.1, i7− 4710MQ, a 2.50 GHz CPU 
and 8.0 GB of RAM. The coding platform is MATLAB R2015b. Without loss of gen-
erality, we assume that there are 5 attributes, and each attribute has a different num-
ber of categories. We selected two data sets in total. The number of attribute categories 
is randomly selected to demonstrate the optimal effect of budget allocation for unbal-
anced data. Without loss of generality, we let {k11, k12, . . . , k15} = {5, 6, 150, 200, 250} and 
{k21, k22, . . . , k25} = {2, 4, 6, 7, 100} . We conduct two experiments, one with 1000 partici-
pants and the other with 10000 participants. The privacy budget ranges from 1.0 to 6.0, 
and we employ the normalized square error ( NSE = SE

n  ) as the metric to measure the 
performance of the mechanisms, where SE is the square error. The comparison results 
are shown in Fig. 3.

The black lines denote the log10(NSE) of the BRR mechanism. The BRR ignores 
the number of categories of attributes and treats all attributes as equal, encod-
ing each attribute with the same privacy budget ǫ

2l . Our OBRR method takes into 
account the nature of all attributes and finds a more reasonable privacy budget allo-
cation scheme, that is, it allocates more budget to attributes with more items, and 
then encodes each attribute using the method proposed in Algorithm  1. When 
(k1, k2, . . . , kl) = (5, 6, 150, 200, 250) , Fig. 3a, b represent the estimated errors for 1000 
and 10,000 users, respectively. When (k1, k2, . . . , kl) = (2, 4, 6, 7, 100) , Fig.  3c, d rep-
resent the estimated errors for 1000 and 10000 users, respectively. Due to the ran-
domness of perturbation, we perform three experiments for each case and take the 
average of the tests for the mapping. The error bars in the figures are calculated using 
the standard deviation.

As can be seen from the figure, the optimal privacy budget allocation scheme pro-
posed by us plays an important role. According to Fig. 3a, b, the OBRR mechanism can 
reduce the estimated square error by 41.6% and 40.2% compared with the BRR, respec-
tively. According to Fig. 3c, d, the OBRR mechanism can reduce the estimated square 
error by 33.2% and 36.4% compared with the BRR, respectively. It can be concluded 
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from the experimental results that the magnitude of the error reduction is independent 
of the number of participants n but is related to the number of values of the attributes 
(k1, k2, . . . , kl) . In fact, the larger the dimensional difference between attributes is, the 
better the privacy budget allocation scheme proposed in this paper will be.

Optimal multivariate randomized response mechanism

We first introduce the implementation principle of the MRR, which was introduced in 
“Preliminaries”  section. The MRR treats all the attributes as equal and allocates the same 
privacy budget ǫ

l
 to each attribute. If the dimensions between attributes differ greatly, 

assignment of the same privacy budget is bound to result in inaccurate estimates of the 
results. Taking into account the drawbacks of the MRR, we allocate the privacy budget 
more reasonably, assigning more budget to attributes with more items.

To demonstrate the effectiveness of the OMRR, we experiment on the same data set 
created above. The compared results are presented in Fig. 4. The black lines denote the 
MRR, and the red lines indicate the OMRR. The number of participants assumed in 
Fig. 4a, c is 1000, while in Fig. 4b, d, it is 10,000. When the budget increases, the esti-
mated error gradually declines. In Fig. 4a, b , the OMRR reduces the estimated square 
error by 72.8% and 72.0% compared with the MRR, respectively. In Fig. 4c, d, the OMRR 

a b

c d
Fig. 3  The relationship between the estimated histogram error measured by log10 (NSE) and the privacy 
budget ǫ
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reduces the estimated square error by 73.0% and 73.7% compared with the MRR, 
respectively.

In fact, there is currently no research on privacy budget allocation schemes for unbal-
anced multivariate nominal attributes. The purpose of our comparison with the BRR and 
MRR in “Simulation” section is to prove the effectiveness of our method. Our approach 
is highly scalable. In the process of local differential privacy processing, as long as it 
involves the allocation of privacy budgets for categorically unbalanced data, it can be 
solved by our privacy budget allocation scheme.

Conclusion
Traditional local differential privacy techniques typically assign the same privacy budget 
to unbalanced multivariate nominal attributes, leading to large data utility loss and high 
communication costs. To solve this problem, we propose an optimal privacy budget allo-
cation scheme with high-dimensional heterogeneous data based on the Lagrange multi-
plier algorithm, Cardano formula and Newton-Raphson methods. In addition, to meet 
the local privacy guarantee and the different needs of different data for the privacy con-
cern levels, we use the proposed optimal privacy budget allocation scheme to improve 
the BRR and MRR and call it the OBRR and OMRR, respectively. The OBRR and OMRR 

a b

c d
Fig. 4  The relationship between the estimated histogram error measured by log10(NSE) and the privacy 
budget ǫ
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are optimal in the high and low privacy regimes with high-dimensional heterogeneous 
data, respectively. To prove the effectiveness of our improved local differential privacy 
mechanisms, we carry out simulation experiments on two different data sets with unbal-
anced multivariate nominal attributes. The simulation results demonstrate that the pro-
posed mechanism can achieve a considerable improvement by reducing the estimated 
square error by 53.2% compared to the BRR and MRR on average.
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