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Introduction
Increasing demands for location-based services require accurate wireless indoor loca-
tion information. Location-based services include indoor navigation for people or 
robots, personnel, asset tracking, guiding blind people, factory automation, workplace 
safety, locating patients in a hospital, and location-based advertising [1]. Additionally, 
such services are becoming essential in various other fields such as mobile commerce, 
parcel or vehicle tracking, discovering the nearest shops or restaurants, and social 
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networking [2]. Moreover, analyses of personnel and asset tracking and collecting move-
ment data have been limited.

With the increasing prevalence of global positioning system (GPS) applications, sat-
ellite signals have had a significant impact on outdoor positioning systems owing to 
their high accuracy. However, in indoor environments, indoor location and naviga-
tion remain unsolved problems. Because of such factors as multipath effects and Wi-Fi 
signal interference, satellite signals become unreliable for positioning indoors. Conse-
quently, GPS-based indoor positioning techniques still face major obstacles, including 
the unavailability or degradation of GPS signals, real-world indoor environments, and 
low-grade devices [3, 4]. Given such circumstances, various positioning techniques have 
been proposed. According to [5], positioning techniques are classified into two catego-
ries, infrastructure-based and infrastructure-free technologies. An infrastructure-based 
technology requires pre-installation and configuration of specialized hardware in the 
environment. For instance, these include radio-frequency identification (RFID) [6], 
ultrasound [7], Bluetooth [8], ultra-wideband beacons (UWB) [9], ZigBee [10], infra-
red [11], and pseudolites [12]. Infrastructure-free technologies are typically based on 
Wi-Fi [13–16], magnetic fields, motion sensors [(inertial measurement units (IMUs)], 
and vision techniques [17]. Recently, there are many other technologies like audio signal 
based localization [18], magnetic field-based localization [19]. Compare to RF methods, 
audio signal based localization or acoustic localization is more accurate and cheaper 
[20]. However, acoustic localization requires microphones and speakers which are avail-
able in every smart mobile device to combine with Bluetooth low energy (BLE) and Wi-
Fi-based approaches. In this system, BLE or Wi-Fi can be utilized for rough location 
estimation and acoustic signals are used for computing the precise location [20].

Wi-Fi based indoor localization systems have become a prominent tool for indoor 
positioning for various reasons. First, nearly all smartphones have a built-in Wi-Fi mod-
ule. Second, Wi-Fi access points are installed ubiquitously, and a Wi-Fi based indoor 
localization system has suitable cost and accessibility [2, 21]. Third, Wi-Fi does not 
require additional special-purpose hardware. Location estimation can be easily esti-
mated by measuring the received signal strength (RSS) values from a Wi-Fi access point. 
Finally, the bandwidth of Wi-Fi systems has increased significantly to meet the require-
ments of high data rates [1].

Alternatively, Wi-Fi indoor positioning techniques are classified into two categories, 
signal propagation models [17, 32] and location fingerprinting [29]. A comparison of sig-
nal propagation models and the location fingerprinting method is presented in Table 1. 
In a signal propagation model, an indoor positioning system using the time-of arrival 
(ToA) and time difference of arrival (TDoA) suffers from multipath fading on several 
paths [5] while measuring the distance to the station from mobile devices. Alternatively, 
the location can be estimated using the angles of the signals received from the mobile 
user and the Wi-Fi access point; this includes the angle of arrival (AoA) and angle of 
departure (AoD) techniques. Most systems based on AoA measure the relative angles 
between signals coming from multiple anchor nodes to estimate the position requir-
ing the antenna directions of both the mobile user and Wi-Fi access point to be known. 
By measuring the time-of-flight of the signal traveling from the sender to the user and 
back, the round-trip time-of-flight (RToF) of the signal is used to measure a location. 
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However, this requires the exact delay and processing time. In location fingerprinting, a 
database containing measurements of the wireless signals at various reference points in 
a wireless LAN coverage area is established first. Indoor positioning systems using loca-
tion fingerprinting compare the wireless signal measurements with the reference data 
[29]. However, this method requires database generation and maintenance. Compared 
with location fingerprinting, implementing signal propagation is simple. However, signal 
propagation (as a result of such factors as penetration losses through walls and floors) 
and multipath propagation are still very complicated [29]. For this reason, a novel Wi-Fi-
based indoor positioning system was proposed to achieve a better performance.

In addition, in the era of computing paradigms, cloudlet is known as the technology at 
the edge of the Internet for deploying mobile cloud services. The aim of using cloudlets, 
typically accessed through Wi-Fi connections, is to bring cloud technologies closer to 
the end-user and provide resource- and latency-sensitive applications [33]. Moreover, 
cloudlets are small-scale data center that are designed to provide cloud computing appli-
cations quickly to mobile devices such as smartphones, tablets, and wearable devices 
within close geographical proximity. This places cloudlets in the following three-tier 
hierarchy: mobile device, cloudlet, and remote cloud, as shown in Fig. 1. Based on the 
mobile user’s request, one or more custom virtual machines can be instantiated immedi-
ately on the cloudlet for remote execution of applications [34]. The advantages of cloud-
lets include the following: 

1.	 Through Wi-Fi located on a one-hop wireless network [35], a cloudlet system effi-
ciently provides a powerful computing resource and speeds up mobile application 
executions.

2.	 The real-time interactive response can access the cloudlet through a one-hop high-
bandwidth wireless to reduce the transmission delay [35, 36].

Table 1  Comparisons of signal propagation model and location fingerprinting method

Signal propagation mode Location fingerprinting method

Technique RSS [2, 21], ToA [22–24], TDoA [25], AoA [26, 27], AoD [28] Fingerprinting [29]

Measurements Signal strength, angles Fingerprint database

Accuracy Medium High

Time cost Low High

Distance Low Medium

Algorithm Deterministic Deterministic and probabilistic

Specification Time based Range based

Advantages Additional special-purpose hardware is not required
Acceptable cost and accessibility

Addresses some of the problems 
related to non-line-of-sight and 
multipath propagation [29]

Does not require exact locations of 
access points [30]

Disadvantages More difficult regarding synchronization of receiver/
transmitter-side times and accuracy of short-range 
flight time measurements

For angle calculation, complex hardware is required to 
determine the angle of arrival

Poor positioning accuracy in real-world indoor environ‑
ments because of a complex accurate propagation 
model [30, 31]

Multipath is an issue with signal propagation

Time-consuming and laborious
Accurate fingerprint data depends 

on the autonomic construction 
of a fingerprint database

When real-world indoor environ‑
ments change significantly, the 
fingerprint database has to be 
rebuilt [29]
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3.	 Utilizing mobile device connectivity to nearby cloud servers enables a cloudlet to 
overcome the distant wide-area network latency and cellular energy consumption 
problems [37].

4.	 Using cloudlets is more optimized and efficient, enhancing the user experience when 
computation-intensive tasks offload to nearby cloud servers in a cloudlet-based cloud 
computing system [38].

5.	 Cloudlets leverage the computational capacity of connected mobile devices [39].

Cloudlets deployed one wireless hop away from mobile devices can process the com-
putationally intensive tasks offloaded from devices efficiently [33]. Therefore, cloudlets 
are typically set up at a public place, such as a shopping center, theater, office building, 
or assembly room, to enable convenient access for mobile devices [35]. Compared to the 
baseline Wi-Fi indoor positioning system, a combination of a cloudlet-based cloud com-
puting system, indoor positioning, and navigation, considered as a single system, is prac-
tical. To achieve that, we designed a model of a cloudlet-based mobile cloud computing 
system enabling Wi-Fi indoor positioning and navigation, as shown in Fig. 2. The system 
consists of a self-driving cart, a small-box data center (cloudlet) available in a wireless 
access point, and a core cloud.

Finally, implementing a cloudlet-based cloud computing system enabling Wi-Fi indoor 
positioning and navigation is possible for the following reasons. First, because a cloudlet 
supports resource- and latency-sensitive applications [34], it can provide location-based 
services such as indoor navigation for people or robots, personnel, asset tracking, guid-
ing blind people, factory automation, workplace safety, locating patients in a hospital, 
and location-based advertising [1]. Second, a cloudlet provides not only the reference 
access point locations but also all location information of devices in the network to find 
the route path for an indoor cart. Moreover, the moving edge cloud in an indoor cart 
can determine the distances between it and the reference access points using a received 

Fig. 1  Cloudlet-based mobile cloud computing system
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signal strength indication (RSSI)-based method. Similarly, [40], our system can estimate 
the location of the indoor cart as the location of the reference access point that is located 
closest to the indoor cart.

The contributions of this paper are as follows: 

1.	 We propose a novel cloudlet-based cloud computing system enabling Wi-Fi indoor 
positioning and navigation. Moreover, with the rapid growth of Internet of Things 
(IoT) applications and their deployments on cloud computing, our proposed system 
brings the cloud closer to IoT devices for providing resource- and latency-sensitive 
applications.

2.	 We define a core cloud, cloudlet, and moving edge cloud. The core cloud is used 
to store all of the object information, such as global position and status, while the 
cloudlet stores all specific information for the objects. The moving edge cloud is 
embedded to a task-driven indoor mobile robot, referred here to as a self-driving 
indoor cart. The moving edge cloud determines the route path and makes movement 
decisions.

3.	 We propose a movement decision algorithm for a self-driving cart. A movement 
decision is made based on measurements of the RSS at a moving edge cloud, which 
is embedded in the self-driving cart. Consequently, the navigation of the self-driving 
indoor cart is adjusted in accordance with its current position and the position coor-
dinates of the access points.

4.	 In real-world indoor environments, such as a one-floor scenario, although our sys-
tem uses only one access point to estimate the location of an indoor cart, as con-

Fig. 2  Model of a cloudlet-based mobile cloud computing system enabling Wi-Fi indoor positioning and 
navigation
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trasted with standard methods using at least three access points, the experimental 
results for our system are superior to those of the standard methods in terms of the 
accuracy of navigation.

5.	 Our proposals were tested using a self-driving indoor cart and real-world indoor 
environment on the third floor of the Computer Science and Engineering building at 
Kyung Hee University, Korea.

Related works
Wi-Fi survey-based indoor positioning techniques are generally divided into two 
types, trilateration and triangulation algorithms [17, 43, 44], as shown in Figs. 3 and 4. 
A trilateration algorithm incorporates ToA, TDoA, RSS, and RToF techniques, while 

Fig. 3  Positioning based on trilateration algorithms

Fig. 4  Positioning based on triangulation algorithms
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a triangulation algorithm incorporates AoA and AoD techniques. Trilateration algo-
rithms measure the distance from multiple known access points, while triangulation 
algorithms compute the angles relative to multiple known access points. A compar-
ison of trilateration and triangulation algorithms is provided in Table  2. The trilat-
eration algorithm calculates the exact location of a user, given the exact location of 
access points and distances from each access point to the user.

As shown in Table  2, the issues of Wi-Fi-based indoor positioning techniques for 
use in a real-world indoor environment are as follows. 

1.	 It is difficult to determine a line-of-sight channel between the transmitter and the 
receiver.

2.	 A complex radio propagation model must be considered with the multipath effect in 
indoor environments.

3.	 Triangulation algorithms show poor accuracy of the estimated location because the 
multipath affects both the time and the angle of an arrival signal.

A typical indoor self-driving cart consists of four modules: perception, localization, 
navigation, and motion [45]. One important module known as localization is a key 
prerequisite for success in navigating the robot, which requires exact identification 
of current localization [46]. Moreover, the indoor self-driving cart must know which 
movements to make until it reaches the goal position when the localization is tested. 
This has led to extensive study of the localization and navigation of mobile robots. We 
summarize a comparison between our solution and other indoor positioning systems 
in Table 3.

Cordeiro et  al. [47] estimates and records graphically the absolute position of the 
robot based on odometry. A robot can autonomously move following the desired 
trajectory while avoiding detected obstacles based on depth images. In addition to 
odometry, Bessa et  al. [48] use computational vision in omnidirectional images to 
estimate the localization of a robot.

Zhang et al. [49] use QR codes as landmarks to provide global pose references. The 
QR codes must be placed on the ceiling. A robot uses a camera at the top to read 
these QR codes more quickly. Thus, the localization of the robot is estimated based 
on the positional relationship between the camera and the QR codes when QR codes 
can be recognized. Moreover, a robot uses a laser ranger finder to avoid collisions. 
The authors also use the Dijkstra algorithm to plan a global path and the dynamic 
window approach to plan local paths.

Mota et al. [50] estimate the position of a robot in a map represented by the incidence 
matrix of a Petri net (PN), and the use of PN dynamics as the cognition system by evalu-
ating the use of RFID technology. First, cards with RFID technology were placed at each 
intersection of the pathways of a structured environment (labyrinth). Second, a robot 
was equipped with an RFID reader on its bottom. A robot moves until it passes over 
cards with RFID. At each intersection, the robot performs actions, such as turning right 
or left according to the map defined in its algorithm. Next, it goes straight to the next 
card. Moreover, the authors use a black line to connect each card to its neighbor cards. 
The robot is equipped with three infrared sensors to detect and follow these lines.
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In the mobile edge computing environment, a multi-modal framework for indoor 
localization tasks was proposed in [51]. In this system, machine learning models are 
used for processing RSS based indoor localization tasks. Nevertheless, the presence of 
unstable factors that affect RSS is a major drawback. It will be failed to repeat the same 
performance in practical situations.

On the other hand, smartphone-based indoor localization and navigation systems rely 
on RSSI from BLE beacons and inbuilt sensors of smartphones for localizing the user 
in indoor area, such as Bluetooth receivers, accelerometers, and barometers [52]. Lee 
et al. [53] use the RSSI of the signal received from Bluetooth beacons to estimate loca-
tion with the help of the trilateration algorithm. Satan et al. [54] use Bluetooth beacon-
based method to trace back the wayfinding. To remove the noise signal, the positioning 
algorithm [55] estimates the distance between client and beacon, based on Bluetooth 
RSSI values and log-distance path loss model. In [55], Dijkstra’s shortest path algorithm 
is used to find the shortest route for navigation. Yu et al. [56] propose a dead reckon-
ing algorithm that combines Bluetooth and multiple sensors to improve localization 

Table 3  Comparisons of localization and navigation system of indoor mobile robots

Author Localization Cognition Operation

Corderio et al. [47] Odometry Line following A robot can autonomously move 
following the desired trajectory 
while avoiding detected obsta‑
cles based on depth images

Bessa et al. [48] Pattern recognition 
techniques in omni‑
directional images

Artificial neural networks in 
omnidirectional images

A robot uses pattern recognition 
techniques in omnidirectional 
images to estimate the localiza‑
tion of the robot

Zhang et al. [49] QR code Path planning is performed 
using the Dijkstra algorithm 
and dynamic window 
approach

QR codes are used as landmarks 
to provide global pose refer‑
ences for mobile robot localiza‑
tion and navigation

Uses a Laser Ranger Finder (LRF) 
to avoid collisions

Mota et al. [50] Cards and RFID reader Line following and dynamics of 
the Petri nets

A robot is equipped with three 
infrared sensors to detect and 
follows a black line connecting 
each card

 A robot moves until it passes 
over cards with RFID

At each intersection, a robot per‑
forms actions, such as turning 
right or left according to the 
map defined in its algorithm. 
Next, it goes straight to the 
next card

Our work A cloudlet-based 
cloud computing 
approach

Path planning is made by Dijk‑
stra algorithm and consists of 
Internet Protocols (IPs) address 
of APs

A robot is equipped with Rasp‑
berry Pi as a wireless access 
point to connect to APs

Cloudlets are deployed at APs A 
robot moves until it reaches 
stable segment of AP defined 
in its path planning

 At each stable segment of AP, a 
robot performs actions, such 
as turning right or left or going 
straight according to move‑
ment decision algorithm
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accuracy. This algorithm includes multisensor-based position estimation, Bluetooth 
model-based position estimation, and Kalman filter fusion. However, Bluetooth bea-
con-based indoor localization and navigation systems require for client-based solutions 
and have a relatively small range (up to 30m). Especially, Sadowski et al. [57] compare 
between Wi-Fi, BLE, ZigBee, and the long-range wide area network (LoRaWAN) for use 
in an indoor localization system in terms of localization accuracy and power consump-
tion when IoT devices are used. They proved Wi-Fi to be the most accurate [57].

To reduce the negative effects arising from the propagation model, we propose a new 
system structure that combines a cloudlet-based cloud computing system and indoor 
positioning and navigation techniques using an RSS-based method. Our system can esti-
mate the position accurately and navigate the task-driven, self-driving indoor cart, as 
discussed in the next section.

System structure
For integration of the Wi-Fi access point with the cloud network, we propose a three-
tier architecture for a self-driving indoor cart, as shown in Fig. 5. In the first tier, a core 
cloud connects with cloudlets that are placed on the corridors. The core cloud stores 
all information collected from cloudlets. In the second tier, the cloudlets manage local 
information such as the specific position and status. Finally, the third tier is the moving 
edge cloud, which is placed in the self-driving indoor cart. Based on the information 
requested from the cloudlet or core cloud, the moving edge cloud calculates the route 
path for reaching a destination point. The route path includes the names of the access 
points (APs) that the cart will be moved past. Note that the route path provides the opti-
mized shortest distance from the starting point to the destination point.

In the moving edge cloud, a movement decision is made when the self-driving indoor 
cart moves within the AP’s coverage. There are three alternatives depending on the route 
path: go straight (Fig.  6a), turn left (Fig.  6c), or turn right (Fig.  6b). Note that the AP 
must be placed in corridor intersections to make the movement decision. In real-world 
indoor environments, such as a one-floor scenario, APs are deployed at corridor ceilings, 
especially at intersections. The movement decision is based on the previous position, 
current AP position, and next position, as shown in Fig. 6. Additionally, positioning esti-
mates are used for correcting the movement of the self-driving indoor cart due to avoid 
the obstacle. For example, the cart moves from position A (3, 4) to position B (10, 4) in 
the deployed grid map, and it estimates that the movement time is 10 s. However, the 
cart avoided something in the corridors; hence, 10 s later, it is not at point B (10, 4), and 
we assume it is at point C. These A, B, and C points are shown in Fig. 7b. The cart has to 
estimate its current position and move to point B (10, 4) using positioning estimation.

In this paper, we propose a new movement decision algorithm based on comparing 
the current position ( xt,cart , yt,cart ) and target position ( xtarget , ytarget ). As described in 
Fig. 6, the difference between two values xt,cart and xtarget are used to make go-ahead 
decision by comparing it with the threshold, δ . Additionally, the turn left and right 
decisions are based on the difference between the y axis values, ( yt,cart , ytarget ) com-
paring with the threshold, δ . The self-driving cart can reach the target position by 
updating the current position ( xt,cart , yt,cart ), as shown in Fig. 8. In the indoor environ-
ment, we divide the distance from the beginning point to the destination point into 
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segments according to the respective AP locations. The self-driving cart will move 
among APs in accordance with movement decisions based on its current position and 
AP positions (known as target positions). Note that the threshold, δ , is determined 
based on the stable segment of Wi-Fi coverage, as described in the next section.

Path planning using Dijkstra’s algorithm
According to [58], Dijkstra’s algorithm is typically used in the indoor environment 
because it is easy to implement for various environments. Dijkstra’s algorithm is a 
special form of dynamic programming and a breadth-first-search algorithm for 
finding the shortest paths from a single source vertex to all other vertices [59]. The 

Fig. 6  The movement decision strategies for a self-driving indoor cart

Fig. 7  Movement from AP1 to AP2 strategies
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shortest path between two vertices is defined as a path with the shortest length, called 
link-distance. In Dijkstra’s algorithm, the distance from u to v, denoted by w(u, v), is 
the length of a path if there is a path from u to v. Otherwise, it is ∞.

In this paper, the core cloud stores all information of each AP in the network includ-
ing its position and neighboring AP positions. Note that the core cloud only stores 
AP’s information if it has a cloudlet. When the indoor cart requests network infor-
mation to the core cloud, the core cloud will forward all information to it. Based on 
collected information, the indoor cart will use Dijkstra’s algorithm to find the shortest 
path between its current position and target position through AP positions. A gener-
alization of Dijkstra’s algorithm can be found in [58]. Dijkstra’s algorithm operation is 
summarized as follows. 

1.	 Initially, we assign Node(A) = 0 as the weight of the initial node and w(x) = ∞ to all 
other nodes, where x represents the other nodes.

2.	 Search x node for which it has the smallest temporary value of w(x). If w(x) = ∞ or 
there are no temporary nodes, the operation will stop the algorithm. The node x is 

Fig. 8  Movement decision strategies for a self-driving indoor cart
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now labeled as permanent and as the current node, meaning parent of x and w(x) will 
stay fixed.

3.	 For each node adjacent to x labeled y which are also temporary, the operation 
compares and updates as follows. If w(x)+Wxy < w(y) , then w(y) is updated to 
w(x)+Wxy , where W is the cost of the adjacent node. Then, the operation assigns y 
to have parent x.

4.	 The operation repeats the process from 2 until the shortest path is found.

Figure 9 illustrates the example from the Dijkstra-based scenario. There are APs that 
include the cloudlet system and their information is stored in a core cloud. The indoor 
cart requests prof. Huh’s room information to the core cloud through the closest AP. 

Fig. 9  A snap-shot of the Dijkstra’s algorithm example

Fig. 10  A graph of the Dijkstra’s algorithm example
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Once the core cloud receives the requested packet for an indoor cart, it will send 
network information to the cart. Be collecting AP information and prof. Huh’s room 
position, the indoor cart will draw the graph from its current position to prof. Huh’s 
room position, as shown in Fig. 10. Using a generalization of Dijkstra’s algorithm, we 
can find the shortest path label from robot to room according to Table 4 following the 
above-mentioned Dijkstra’s algorithm operation.

Measuring principles and cloud‑based algorithms
Measuring principles

To calculate the distance from the transmitter to the receiver based on the IEEE 802.11 
standard, the RSSI is used to measure the relative signal strength, typically measured in 
decibel milliwatts (dBm) or milliWatts (mW). However, there are no specific formulas 
to compute accurate distances owing to the impacts of real-world indoor environments 
and manufacturer implementations [60]. According to [57, 61–65] and using a simple 
path-loss propagation model [66], the RSSI distance measurement is given as

where γ is the path loss exponent depending on the environment, d is the distance 
between the mobile device and a reference access point, and � is a variable accounting 
for the variation of the mean, often referred to as shadow fading [64, 65, 67]. Moreover, 
d0 usually is given as 1 m.

(1)RSSI = −10γ log10(d/d0)+�

Table 4  Finding shortest path label from robot to room

Iterations Robot AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 Room

Robot 0 10
1 ∞ ∞ ∞ ∞ 3 ∞ ∞ ∞ ∞

{Robot, AP6} 0 10
1 ∞ ∞ ∞ 9

6
3
6

11
6 ∞ ∞ ∞

{Robot, AP6, AP5} 0 10
1 ∞ ∞ 16

6
9
6  36 11

6 ∞ ∞ ∞

{Robot, AP1} 0 10
1

16
1 ∞ 16

6
9
6

3
6

11
6 ∞ ∞ ∞

{Robot, AP6, AP7} 0 10
1

16
1 ∞ 16

6
9
6

3
6

11
6

17
6 ∞ ∞

{Robot, AP1, AP2} 0 10
1

16
1

23
1

16
6

9
6

3
6

11
6

17
6 ∞ ∞

{Robot, AP6, AP5, AP4} 0 10
1

16
1

23
1

16
6

9
6

3
6

11
6

17
6 ∞ 23

6

{Robot, AP1, AP2, AP3} 0 10
1

16
1

23
1

16
6

9
6

3
6

11
6

17
6 ∞ 23

6 < 28
1

{Robot, AP6, AP5, AP4, Room} 0 10
1

16
1

23
1

16
6

9
6

3
6

11
6

17
6 ∞ 23

6

Fig. 11  Simple scenario including a self-driving indoor cart and single access point
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We now consider a single access point and a cart in a simple scenario to measure 
the RSSI, as shown in Fig. 11. It is clear that environment dependent path loss affects 
distance measurements in a real environment. One such major issue is that the sig-
nal propagation methods in the RSSI-based indoor positioning system are not stable 
because of the effect of path loss when there are many obstacles, such as the wall, 
building, weather, or interference. Therefore, many approaches have been proposed to 
eliminate interference and the effect of path loss, as well as to reduce the positioning 
error; these techniques include Kalman Filters [68, 69], Extended Kalman Filter-Based 
Integration [2, 70], weighted K-nearest neighbor [71], and back propagation neural 
networks optimized by particle swarm optimization [65] algorithms. Herein, we con-
sider a Wi-Fi-based indoor positioning algorithm using the Kalman Filter method, 
because the location error is controlled within 1.2 m after the Kalman Filter improves 
the location accuracy of indoor robots effectively [72]. Different RSSI measurements 
at specific distances are shown in Fig.  12 over 1 m (Fig.  12a), 3 m (Fig.  12b), 6 m 
(Fig. 12), and 9 m (Fig. 12d) in one closed room.

Based on Fig. 12, we obtain the following conclusions: 

1.	 Without the filter, the RSSI measurements change over time, increasing the position-
ing error. When the distance increases, the performance of the RSSI measurements 
is not stable.

2.	 With the Kalman Filter, the RSSI measurements are stable over a small distance, from 
1 to 3 m. At longer distances of 6 and 9 m, the variance is approximately −0.5 dbm.

(a) (b)

(c) (d)
Fig. 12  RSSI measurements with and without Kalman Filter
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3.	 Alternatively, when we calculate the mean of the RSSI measurements, we find that 
the average RSSI measurements with and without the Kalman Filter have the same 
value. Therefore, if a self-driving indoor cart has time to calculate the average RSSI 
measurement, the positioning error can be reduced. However, in a real environment, 
this is a challenge since indoor self-driving requires rapid calculation and continuous 
movement. In the next section, we introduce a new method for position estimation.

Cloud‑based algorithm

Based on Fig. 12, we divide the Wi-Fi coverage into three segments according to the quality 
of the RSSI measurement: stable, unstable, and indeterminate measurements. Although the 
RSSI measurement is affected by interference and path loss, the nearer the mobile device 
moves to the reference access point, the more stable the RSSI measurement. As shown 
in Fig. 13, we can examine the circle for a stable segment with Rst , unstable segment with 
Rust , and indeterminate segment with Rind . Note that R is the radius. The stable segment is 
defined as in this segment, attaining an RSSI measurement variance of less than 0.5 dBm, 
while in the unstable segment, the RSSI measurement variance is less than 1.5 dBm. Other-
wise, it is called an indeterminate segment.

In the cloud network-based algorithm, APs embedded in the cloud server have known 
positions. We assume that the speed of the cart is constant, vc , and the positions of access 
points 1 (AP1) and 2 (AP2) are (x1, y1) and (x2, y2) , respectively. The Euclidean distance 
between AP1 and AP2 is

The time t12 , which moves from AP1 to AP2, is

(2)d12 =

√

(x1 − x2)2 + (y1 − y2)2

(3)t12 = d12/vc

Fig. 13  Segments are divided in Wi-Fi coverage
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Under a hypothetical set-up, as shown in Fig. 7a, the self-driving cart will be in a stable 
segment of AP2 after t12 . However, in a real indoor environment, the cart has a time 
delay owing to the need to avoid an obstacle in the corridors. After t12 , we assume that 
the cart is in the unstable segment of AP2. To move to a stable segment of AP2, the 
cart must continue moving until the time tcorrect . If there are too many obstacles and the 
cart does not reach even the unstable segment within t12 , the cart will move 1 m until it 
reaches the stable segment. Note that when the cart arrives at the stable segment, it will 
run the movement decision algorithm (Fig. 8) with ( xt,cart , yt,cart ) as the current AP posi-
tion and ( xtarget , ytarget ) as the next AP position or target position.

The total time ttotal to move from AP1 to AP2 is

where t12 is calculated according to Eq. (3), n is number of 1 m increases until the cart 
reaches the stable segment. The correct time is

where d is determined by Eq. (1) and shown in Fig. 7b.
Finally, as seen in Fig. 5, we implement two processes, a local positioning process, 

and a global positioning/AP map information process, as shown in Fig 14. Figure 14a 
shows that the self-driving cart requests the destination’s positioning information 
from the cloudlet. If there is destination positioning information, the cloudlet for-
wards this packet to the cart. Note that this destination positioning information is the 
local position. Otherwise, the cloudlet requests destination positioning information 
from the core cloud. The core cloud stores all information in the corridors; hence, it 
forwards the destination positioning packet, including the global positioning/AP map 
information process, as shown in Fig. 14b. Based on this information, the self-driving 
cart determines the route path by minimizing the distance between the starting posi-
tion and the destination point.

(4)ttotal = t12 + tcorrect + n.1//vc

(5)tcorrect = d/vc

(a) (b)

Fig. 14  The positioning information process schematic diagram
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Experimental results
Our indoor localization and navigation system was tested using a Raspberry Pi 3 
Model B V1.2, 2015 [73], shown in Fig. 15a, and a self-driving cart, shown in Fig. 15b. 
We used five Raspberry Pi 3 setups: setups: three for the cloudlets, one for the core 
cloud, and one for the moving edge cloud. The operation of our implementation is 
summarized as follows. 

1	 First, we assume that the cart has no information regarding the network, with the 
target position stored either in the cloudlet (fixed cloud) or the core cloud. At the 
beginning operation stage, the user chooses a target item for the self-driving cart to 
reach.

2	 Second, the moving edge cloud sends the target point to the corresponding cloudlet 
located closest to that cart. If the cloudlet stores the target item, it feeds back on the 

Fig. 15  Equipments for deploying our proposal

Fig. 16  A real-world indoor environment for testing
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target location to the self-driving cart. Otherwise, it requests to the core cloud to 
achieve the target location; then, it sends this target location to the self-driving cart.

3	 Third, based on the global position and AP map, the cart calculates the route path to 
minimize the movement time if there is a loop or multiple paths to the same object. 
The path planning is determined using the Dijkstra algorithm.

4	 Four, the cart moves in accordance with the route path. Note that, in the self-driving 
cart, there are sensors, such as HC-SR04 ultrasonic sensors, used to avoid obstacles.

5	 Finally, our proposal is applied to the self-driving cart and it reaches the target item.

The system was deployed on corridors on the third floor of the Computer Science and 
Engineering building, Kyung Hee University, Korea. The starting point and destination 
point are shown in Fig. 16a. We measured and drew the grid map for a real-world indoor 
environment for testing. Here, both the x and y grid lines are separated by units of 1 m, 
as shown in Fig. 16b.

To implement our system, we set up a web server, which consists of the database and 
HTTP server. A Raspberry Pi is used as the web server for the following reason. First, a 
Raspberry Pi uses an ARM 11 processor running at 700 MHz with 512 MB RAM, and 
hence is known as a small computer. To learn about web design and server administra-
tion for a Raspberry Pi as a web server refer to [74]. It must connect the HC-SR04 ultra-
sonic sensors and motor controller of the cart with the Raspberry Pi to avoid obstacles 
and adjust the speed. In addition, we set up a database using MySQL [75]. The inter-
actions between the web servers of our self-driving cart, cloudlet, and core cloud are 
shown in Fig. 17. In addition, we also set up a Raspberry Pi 3 as an access point [76]. 
Once the cart moves to that access point coverage, the cart connects with that access 
point and access webserver if it chooses. Finally, all Raspberry Pi 3 devices are set up as 
shown in Fig. 18.

A core cloud stores all information from each cloudlet, referred to here as cloudlets #1, 
#2, and #3. Each cloudlet contains stored local information for each object. Cloudlet #3 
contains the local information of Prof. Huh’s room, #301 , which is located at (−5, 0)Cl3 , 
whereas cloudlet #3 is located at (0, 0)Cl3 in its x − y axis, as shown in Fig. 19.

Positioning estimation

We determined Rst , Rust , and Rind in the real-world indoor environment in accordance 
to Fig. 13. We considered the distance measurements for fifty iterations under a moving 

Fig. 17  Interactions between user, self-driving cart, cloudlet, and core cloud
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Fig. 18  3-tier architecture setup

Fig. 19  Global x–y axis and local x–y axis of cloudlet #3
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Table 5  Average of  distance measurements using Eq.  (1) according to  the  number 
of iterations

Iterations 5 m 4 m 3 m 2 m 1 m

10 2.94 1.91 0.93 2.12 1.78

20 2.37 2.21 1.15 2.05 1.91

30 3.26 2.21 1.24 2.0 1.77

40 3.16 1.91 1.15 2.17 1.71

50 2.37 1.91 1.15 2.07 1.68

Fig. 20  Processing and results in a real-world indoor environment for the self-driving cart
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edge cloud and one cloudlet by varying the distance from the cart and cloudlet. Obser-
vational errors, the differences between measured quantities and their respective true 
values, are observed. For each iteration, we took the average distance over ten meas-
urements, with the results shown in Table  5. Clearly, 0 < Rst < 2 , 2 < Rust < 3 , and 
Rind > 4.

Cloud‑based algorithm run

We then applied the cloud-based algorithm to the self-driving cart. The processing 
and results in the real-world indoor environment for the self-driving cart are shown in 
Fig. 20. Using the cloud network and RSSI-based distance measurements, the cart can 
move successfully to the destination point during the experiments within the length of 
the stable segment. We also provide the open-source code at the following links: https​://
githu​b.com/icns-distr​ibute​d-cloud​/WebSe​rvers​ and https​://githu​b.com/icns-distr​ibute​
d-cloud​/stm-cartc​ontro​ller. The demo of our proposal also is shown as the following 
link: https​://youtu​.be/h3wYM​76PDG​s.

Conclusion
We proposed a Wi-Fi indoor positioning and navigation method using a cloudlet-based 
cloud computing system. Our proposal was tested using Raspberry Pi 3 equipment 
designed with cloudlets, a core cloud, and a self-driving cart, which was equipped with 
a moving edge cloud. The cloud network not only provides the destination position and 
wireless access point map but also navigates the cart’s movement to reach the destina-
tion point. The moving edge cloud calculates the route path, movement decisions, and 
positioning estimations. The implementation results demonstrated the effectiveness of 
our proposal. The proposed method can also be used to guide blind people or locate 
patients in a hospital. In future work, we will enhance our system by decreasing the 
movement time and total processing time of the indoor cart.
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