Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31

https://doi.org/10.1186/s13673-020-00238-6 0 H uman-centric Com pUtmg

and Information Sciences

RESEARCH Open Access

Hybrid decentralized PBFT Blockchain oo

Framework for OpenStack message queue

Youngjong Kim ® and Jinho Park’

*Correspondence:

opensys@gmail.com; Abstract

ggatfii:éicf'tkvrvare Soongsil Cloud computing based on OpenStack is widely used as a distributed computing
University, 369 Sanédo.ro? platform. OpenStack has progressed at a rapid pace, incorporating a variety of service
Dongjak-gu, Seoul, Republic modules; it is supported by many companies, has a community of active developers,
of Korea

and a diverse user base. OpenStack uses message queue to coordinate and exchange
operation and status information between services. OpenStack supports various mes-
sage queue services including RabbitMQ, Qpid, and ZeroMQ, whereas its distribution
architecture uses RabbitMQ. As an OpenStack’s message queue service, RabbitMQ
runs on a controller node as a centralized service. In case of the centralized service,
increased usage may cause slowed response times and security vulnerability. This
paper proposes a Hybrid decentralized Practical byzantine fault tolerance Blockchain
Framework with two-step verification for OpenStack message queue service. When
compared to existing OpenStack message queue service, OpenStack with the pro-
posed framework demonstrates identical reliability a faster response time by approxi-
mately 46.75% with a two-step verification process and decentralization approach.
Additionally, a reduction in the security vulnerability in the OpenStack message queue
information with saving the message queue information into each node by block-
chain-based decentralized data duplication approach.

Keywords: Cloud, OpenStack, Message queue, Hybrid, Decentralization, PBFT
Blockchain

Introduction

OpenStack, which is the open-source Infrastructure-as-a-Service (laaS) Platform Pro-
ject, is widely used in various fields. The OpenStack project is developing at a rapid pace
as a result of the participation and support of a number of major companies and a com-
munity of active developers.

OpenStack comprises nodes such as controller, compute etc. Based on its role [1], each
node contains Nova, Cinder, Glance etc., which are components of the OpenStack ser-
vices and form the laa$ platform [2].

Each component of OpenStack uses the message queue service to check, exchange and
coordinate the information related to the operation and status of the components [3],
and the message queue service of OpenStack is the centralized approach service that is
executed at the controller node [4].

. © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
@ Sprlnger O pen adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
— the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeco

mmons.org/licenses/by/4.0/.

http://orcid.org/0000-0003-0811-0215
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00238-6&domain=pdf

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 2 of 12

OpenStack supports tools and libraries including RabbitMQ [5], Apache Qpid [6] and
ZeroMQ [7] as message queue service, and OpenStack distributions use RabbitMQ by
default [8].

The OpenStack message queue service based on RabbitMQ, which is a centralized
approach service, has to cope with performance degradation problem as all the informa-
tion is saved in the message queue of the controller node; additionally, the requests for
checking, exchanging, and coordinating information related to the operation and status
of the components are present in the message queue server of the controller node.

Blockchain [9], a decentralization approach, can be used to improve the performance
speed by distributing requests for checking, exchanging and coordination that comprise
the OpenStack message queue service, while reducing the security risk with the data
duplication approach [10]. However, this approach has difficulty processing the infor-
mation that is updated in real time; this is because of the transactions problem [11] that
occurs due to the overhead of the consensus algorithm of the blockchain technology.

The OpenStack message queue service based on a Hybrid decentralized Practical
byzantine fault tolerance Blockchain Framework (HdPBF) with a two-step verification
approach is proposed in order to improve the processing speed of the OpenStack mes-
sage queue service, by distributing requests using blockchain and reducing the security
risks with the data duplication approach. The practical byzantine fault tolerance (PBFT)
Blockchain Framework is based on the PBFT algorithm [12], which is an asynchronous
[13] algorithm among the consensus algorithms of the blockchain approach, to effi-
ciently process transactions and ensure reliability by double-checking the information
with the message queue server. Despite the quick processing speed of the PBFT algo-
rithm, delay in results may occur due to large volumes of requests and delay in real-time
syncing of the blockchain peer.

The proposed scheme can ensure reliability of the message queue service, which is a
basic component of OpenStack, through a two-step verification approach, which is a
combination of the centralization and blockchain- based decentralization approach. The
first step is performing the decentralization approach query; this query checks the infor-
mation with the HAPBF peer, and in case there is no information, centralization query is
performed to check the information with the message queue server as the second step.
This method improves the performance by distributing requests for the message queue
information to each node through the blockchain based decentralization approach and
reduces the security risk associated with the message queue information by saving the

message queue information into each node.

OpenStack message queue service
The concept of the message queue operation, which is a centralization approach service,
is shown in Fig. 1 [14].

The publisher creates exchanges of Direct, Topic or Fanout, and the consumer creates
individual queues for use, which are binding to the exchange.

The structure of the OpenStack message queue service and the OpenStack services
based on the RabbitMQ, which is the default message queue service of OpenStack distri-

butions, is shown in Fig. 2 [15].

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31

Exchange Queues

Binding

Direct E-{ Queuel }-
“ Topic " = r{ Queue2 }»

‘ Fanout ‘ Queue2 ‘

Message Queue
(RabbitMQ)

Fig. 1 Concept of message queue

OpenStack Services

Nova Cinder Glance
(X 1) -
e Listener & Listener —-[Listener
Exchange Exchange Exchange

| 1

(Nova Queue) <Cinder Queue>

Message Queue

Fig. 2 OpenStack service with message queue

Message Queue

Node

Stack
Client ——— |

|
|
I
|
Open APl ‘

Contect_info

Compute
API Stubs —_—

Fig. 3 OpenStack architecture with RabbitMQ based message queue

Services such as Nova, Cinder, Glance etc., which are OpenStack services, check,
exchange and coordinate the information related to operation and status of services
through the message queue associated with each service.

The entire composition and flow of the OpenStack services and message queue ser-
vice based on the RabbitMQ is shown in Fig. 3 [16].

If a request from a client using the OpenStack was generated, after the process of
authorization of the OpenStack is completed, the resource of nodes through the API
of each service is used, and each service and node checks, exchanges, and coordinates
information related to the operation and status through the message queue [17].

Page 3 of 12

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 4 of 12

One of primary operating procedures of Nova, which is a core component of the
OpenStack service, is the message queue service based on the RabbitMQ of the Open-
Stack, with an example that an OpenStack user requests the vnc-console of the instance
that is already created, is shown in Fig. 4.

The operating procedure of the message queue service based on the RabbitMQ of the
OpenStack in Fig. 4 is described below in steps 1 to 7.

1. A client requests the vnc-console of the instance.

2. The nova-api makes the RPC call through the nova-rpcapi.

3. The nova-rpcapi sends the RPC call to execute the get-vnc-console at the nova-
compute that has the requested instance and becomes a block status until the return
value of the connect_info is received.

4. The RPC call message of the nova-rpcapi is delivered to the nova-compute through
the RabbitMQ.

5. The nova-compute returns the result of execution through the RabbitMQ.

6. The nova-rpcapi returns the connect_info to the nova-api.

7. The nova-api returns the connect_info to the client.

When a user issues a request to the vnc-console of the instance, the nova-api makes
a request to the nova-rpcapi for the RPC call, and the nova-rpcapi issues the get-vnc-
console call message into the message queue, and waits for the result. The nova-compute
returns the connect_info of the message queue, which is the result of executing the get-
vnc-console to the nova-rpcapi, and the nova-api returns the connect_info to the client.

Based on the operating procedure shown in Fig. 4, requests for checking, exchang-
ing and coordinating the operating related information and the status information of
services through the message queue are present on the message queue server, which is
a centralized approach service. A performance degradation problem is experienced in
case a large volume of requests are generated.

HdPBF for OpenStack message queue

PBFT Blockchain Framework

The Blockchain Framework in this paper divided version 0.6 of the Hyperledger Fabric
based on PBFT and upgraded the RocksDB [18], which is the backend to the version
5.17.2, and realized the PBFT Blockchain Framework that upgraded Go [19], which is

client nova-api nova-compute.rpcapi RabbitMQ nova-compute

1. request vnc-console
>

2. call rpcapi to compute
>

3. call get-vnc-console
(waiting result)

4. execute get-vnc-console
>

5. return connect_info

6. return connect_info
7.return connect_info
<

Fig. 4 Operating procedure of RabbitMQ based message queue service

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 5 of 12

request pre-prepare prepare commit reply
Client

0 (Primary) %
1 (Backup) \ j j j ?
2 (Backup) \j ;;f i j ig%i i

3 (Backup)

Fig. 5 PBFT Algorithm based Block Create Procedure

Message Queue

Node

Client ——

L

4
H socrtnror

PBFT
Blockchain
Network

Compute
API Stubs

Fig. 6 OpenStack architecture with HdPBF based message queue

the chaincode programming language, to the version 1.11.1. The realized PBFT algo-
rithm-based Block Create procedure is as shown in Fig. 5.

The peer of the PBFT Blockchain Framework is divided into one leader that is elected
from the validating peers and non-validating peers, and the validating network follows a
procedure similar to the block creation based on the existing PBFT Algorithm compris-
ing validating peers and a leader that participate in the agreement process of Fig. 5, while
the non-validating peer is excluded from the agreement process [20].

HdPBF for OpenStack message queue

The entire structure and flow of the OpenStack service and the message queue service
containing the HdPBF realized on the basis of the PBFT Blockchain Framework is shown
in Fig. 6.

Crucial Information for operation within the message queue is saved into the HdPBF
peer, and each node that is the individual HAdPBF peer synchronizes the saved informa-
tion with the HAdPBF peers. The detailed structure and flow is shown in Fig. 7.

In case of a large volume of requests for information, synchronization between HdPBF
peers may be delayed due to overhead based on the consensus algorithm of the block-
chain approach. In such cases, the information is checked by local query to the HdPBF
peer as the first step, and in case there is no result, the information is checked by query
to the centralized message queue server as the second step. The same reliability as the
one from the existing message queue service can be ensured through this two-step veri-
fication approach.

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 6 of 12

Node

Message Queue
l | Compute

Ao 40 ¥ oy

Blockchain Peer

|

Open
Stack

Compute

Client ——— APl Stubs Node

Blockchain Peer — PBFT

c¢nnect_info

Network
Node M

:

otifications 1 Node

Compute
l I [Plockchaln Peer -

Fig. 7 OpenStack architecture with HdPBF based message queue details

client nova-api HdPBF nova-compute.rpcapi RabbitmMQ nova-compute

1. request vnc-console
2a. check instance

2b. no result

2¢. call rpcapi to compute

3. call get-vnc-console
(waiting result)

4. execute get-vnc-console
[

5a. sync connet_info

5b. return connect_info.

6. return connect_info

7. return connect_info
——

Fig. 8 Operating procedure of the two-step verification of HAPBF based message queue service for
synchronizing each HAPBF peer

In case an OpenStack client sends a request initially, the information that is not
synchronized with HdPBF peer comprising HdPBF is created in the message queue
of the OpenStack. For the information created only in the OpenStack message queue
and not synchronized, the HdPBF ensures reliability by performing the two-step
verification. The HdPBF peers are synchronized for the corresponding information.
The operating procedure of the OpenStack message queue service, which comprises
HdPBF is shown in Fig. 8. As one of principal operating procedures of Nova, the two-
step verification is executed, with an example of the case that a user of the OpenStack
requests the vnc-console from the instance of the information that is already created
initially and synchronization between HdPBF peers is completed.

The operating procedure of the OpenStack message queue service comprising
HdPBF that executes the two-step verification shown in Fig. 8 is described below
from steps 1 to 7.

1. A client requests the vnc-console of the instance.

2a.The nova-api checks if there is connect_info of the instance at HdPBFE.

2b. In case of no returned information, 2c is executed.

2¢.The information on connect_info is requested to the nova-compute through the
nova-rpcapi, which is the RPC APIL.

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 7 of 12

3. The nova-rpcapi sends the RPC call to execute the get-vnc-console to the nova-com-
pute that has the requested instance and assumes a block status until the connect_
info is returned.

4. The RPC call message of the nova-rpcapi is delivered to the nova-compute through
the RabbitMQ.

5a.The nova-compute synchronizes the result of execution through HdPBE.

5b. The nova-compute returns the result of execution through the RabbitMQ.

6. The nova-rpcapi returns the connect_info to APL

7. The nova-api returns the connect_info to the client.

In the case of a first time request sent by an OpenStack client, the operating procedure
of the OpenStack message queue service comprising HdPBF is shown in Fig. 9, with an
example of the case in which connect_info is created based on the initial call made by
a user of the OpenStack, on the condition that the information between HdPBF peers
is synchronized after completing the procedure in Fig. 8 and the vnc-console of the
instance that is already created is requested again.

The operating procedure of the OpenStack message queue service comprising HdPBF
shown in Fig. 9, in which the nova-api checks the information with itself as the HdPBF
peer based on the request of a client is described below in steps 1 to 4.

1. A client submits a request to the vnc-console of the instance.

2. The nova-api checks if the connect_info of the instance at HAPBF exists.
3. If the information on the connect_info exists, it reads the connect_info.
4. The nova-api returns the connect_info to the client.

In cases of the connect_info, which is the core information for operation of Nova, if
the information is created upon initial execution, it performs the two-step verification
as shown in Fig. 8; synchronization between HdPBF peers is made, and only the 1 step
Query in Fig. 9 is executed after synchronization.

The two-step verification is executed only when an initial request for the information
is created at the message queue of the OpenStack service. Subsequently, only the first
step query is executed, and as further repetitive requests for the identical instance are
made, there are fewer cases for the two-step verification to be carried out.

The performance is maximized by minimizing the execution of query to the central-
ized message queue server through the network by a local query to the HdPBF peer. To
this end, synchronization of the core information of the OpenStack message queue is
performed as the first step. To ensure the authenticity of the information comparable

client nova-api HdPBF

1. request vnc-console

2. check instance

3. return connect_info
-

4. return connect_info
—_—

Fig. 9 Operating procedure of HdPBF for synchronized information

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 8 of 12

Compute Node 1

>
> «>
Hub
get-vnc-console

Client OpenStack Compute Node 2
Controller Node

Storage Node

Fig. 10 Diagram of the experimental setup

Table 1 Hardware and software characteristics

Criteria Hardware os EA
CPU RAM (GB)

Controller node Intel Xenon 6130, 2.10 GHz 32 Ubuntu 18.04 (Open- 1

Compute Node Intel Xenon 6130, 2.10 GHz 64 Stack Rocky) 2

Storage Intel Xenon E5-2609, 1.7 GHz 32 1

Client Intel Core i5 2.3 GHz 16 MacOS Mojave 1

to the message queue service of the basic composition of the OpenStack, a query is per-
formed on the centralized message queue server as the second step only for the informa-
tion that may be generated due to overhead of the consensus algorithm, and it is updated
in real time but not yet synched with HdPBF peer. The security risk associated with the
message queue information can be reduced as the core information for operation of
Nova at the message queue is synched with each node that is the HdPBF peer and identi-
cally saved in each Node with the data duplication approach.

Approach and performance evaluation

Environment of experiment

As shown in Fig. 10, the set up comprising controller node and compute node, which are
basic components of the OpenStack, similar to the actual environment and the storage
node, was set up to create the instance to be used for the experiment.

The hardware and software composition of the experiment in Fig. 10 are shown in
Table 1.

If a client requests the vnc-console from the instance, the controller node requests the
get-vnc-console from the corresponding compute node, and the connect_info is cre-
ated at the message queue, if the get-vnc-console is called initially on the instance that
is already created. After that, every occurrence of calling the get-vnc-console, the con-
nect_info from the message queue is brought and used.

After creating 6 instances in advance in a method similar to the actual environment,
the initial vnc-console request is made in sequence for each instance, and the get-vnc-
console is called 6 times for one instance, then the call is made 5 times for the first
instance and a new instance followed by another 5-time call for the existing 2 instances

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 9 of 12

and a new instance, then another 5-time call for the existing 3 instances and a new
instance, followed by another 5-time call for the existing 4 instances and a new instance
and then lastly, the get-vnc-console is called 4 times on all the 6 instances, which creates
a total of 100 call requests such that synchronization between HdPBF peers due to the
creation of the connect_info can be made in sequence in the process of the experiment.
The shell script created for the experiment is shown in Fig. 11.

In the configuration of the OpenStack message queue based on RabbitMQ of the
existing OpenStack, the results of verifying the response time by executing the script of
Fig. 11 defining the environment of an experiment is shown in Fig. 12.

The average response time for the experiment performed 100 times is 11.0026 ms.

In the configuration of the HdPBF integrated OpenStack message queue based on the
two-step verification approach, the results of verifying the response time by executing
the script in Fig. 11 defining the environment of an experiment is shown in Fig. 13.

The average response time for experiment performed 100 times is 5.8539 ms.

The comparison of response times from the configuration of the OpenStack message
queue based on the RabbitMQ of the existing OpenStack with the configuration of the

Script for test
#
for iin $(seq 0 5)
do
nova get-vnc-console 3cecae76-0bae-4831-9ebc-db73700fffde novne
done

foriin $(seq 0 4)
do
nova get-vnc-console 3cecae76-0Obae-483 1-9ebc-db73700fffde novne
nova get-vnc-console 3¢281189-c5e7-4f67-ba6d-f505¢0256b69 novne
done

foriin $(seq 04)

do
nova get-vnc-console 3cecae76-Obae-483 1-9ebc-db73700fffde novne
nova get-vnc-console 3e281189-c5e7-4167-ba6d-505¢0256b69 novne
nova get-vnc-console 2801c027-6bd2-4982-a29-5981078a53ac novne

done

for iin $(seq 0 4)

do
nova get-vnc-console 3cecae76-0Obae-483 1-9ebc-db73700fffde novne
nova get-vnc-console 3e281189-c5e7-4f67-ba6d-f505¢0256b69 novne
nova get-vnc-console 2801¢027-6bd2-4982-a29-5981078a53ac novne
nova get-vnc-console b8f5dd13-c71c-4¢34-b0db-c0fd88283757 novne

done

for iin $(seq 0 4)

do
nova get-vnc-console 3cecae76-0Obae-483 1-9ebc-db73700fffde novne
nova get-vnc-console 3e281189-c5e7-4f67-ba6d-f505¢0256b69 novne
nova get-vnc-console 2801¢027-6bd2-4982-a29-5981078a53ac novne
nova get-vnc-console b8f5dd13-c71¢c-4¢34-b0db-c0fd88283757 novne
nova get-vnc-console 9419e089-b072-4c4a-a7b8-9814£d462750 novnc

done

foriin $(seq 03)

do
nova get-vnc-console 3cecae76-0Obae-483 1-9ebc-db73700fffde novne
nova get-vnc-console 3¢281189-c5¢7-4f67-ba6d-f505¢0256b69 novne
nova get-vnc-console 2801¢027-6bd2-4982-a219-5981078a53ac novnc
nova get-vnc-console b8f5dd13-c71c-4¢34-b0db-c0fd88283757 novne
nova get-vnc-console 9419¢089-b072-4c4a-a7b8-9814£d462750 novnc
nova get-vnc-console 9419¢089-b072-4c4a-a7b8-9814£d462750 novne

done

Fig. 11 Shell script for the experiment

Kim and Park Hum. Cent. Comput. Inf. Sci.

(2020) 10:31

_025
£
Py 02 Py
E
Fois
2
2 -
2 o1 - . = -
& % o N RN M . ‘e * 4o
0.05 *A_W’_'W“MJ’L"—.Q—'T"’WTWWAW_‘”;M‘W—“A_‘_M
0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Total number of Counts (#)

Fig. 12 Response time of RabbitMQ based OpenStack message queue service

o

[

aw
>

o
N

o

a
Ad
& a

Ay A 4
A Aha, b A
1 A0 0 sttt A s 42

a
'S

Response Time (ms)
°
2
5

o
o
&

A
RTINS
'ad sk’

0 10 20 30

)

40 50 60 70 80 90 100

Total number of Counts (#)

Fig. 13 Response time of HdPBF based OpenStack message queue service

o
w
>

o
o
&

o
©
.

* RabbitMQ

.
-
. . o, ®

o
o
o|

Ao
ORI o
N

0 " - O o

u aMa, aMaa . st s
At 10 T A et Al s st
0 10 20 30 40 50 60 70 80 % 100

Total number of Counts (#)

Fig. 14 Comparison of response times between RabbitMQ and HdPBF

Response Time (ms)
o
2
B

Ky
e A HdPBF

=4
°
@

o

Table 2 Comparison of response times between RabbitMQ and HdPBF

Average (ms) Total (s)
RabbitMQ 110.026 11.00264
HdPBF 58.539 5.85394

HdPBF integrated OpenStack message queue based on the two-step verification approach
is shown in Fig. 14.

The results of the comparison in Fig. 14 are outlined in Table 2.

Based on the results of the experiment, it was confirmed that the average response time
of the HAPBF integrated OpenStack message queue service based on the two-step verifi-
cation approach has reduced by approximately 46.75% when compared to the OpenStack
message queue service based on the existing RabbitMQ.

Page 10 of 12

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 11 of 12

Conclusions

The OpenStack message queue service based on the RabbitMQ, which is a basic com-
ponent of the OpenStack, is a centralized approach where all requests are concen-
trated in the centralized message queue server.

It was validated through the experiment that the OpenStack Message queue ser-
vice integrated with the proposed HdPBF ensures the same reliability as the message
queue service with the basic configuration of the OpenStack through the two-step
verification approach of performing the decentralization approach query, followed
by checking the information at the HdPBF peer, as the first step and performing the
centralization query, followed by checking the information with the message queue
server, as the second step, results in performance improvement of approximately
46.75% through the blockchain-based decentralization approach distributing the
requests. It also reduces the security risk for the message queue information, as the
message queue information is synched with all the nodes that are each HdPBF peer
and the information is saved in all the nodes identically with the data duplication
approach.

Acknowledgements

This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology
Research Center (ITRC) support program (IITP-2018-2018-0-01419) supervised by the Institute for Information & com-
munications Technology Promotion (IITP).

Authors’ contributions
YJ was a major contributor in writing the manuscript as a 1st Author and Corresponding Author. JH was a Co-Corre-
sponding Author. Both authors read and approved the final manuscript.

Funding
The Ministry of Science and ICT (MSIT), Korea, under the Information Technology Research Center (ITRC) support pro-
gram (IITP-2018-2018-0-01419).

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on
reasonable request.

Competing interests
The authors declare that they have no competing interests.

Received: 16 December 2019 Accepted: 26 June 2020
Published online: 15 July 2020

References

1. Nasim R, Kassler AJ (2014) Deploying openstack: Virtual infrastructure or dedicated hardware. In: 2014 |EEE 38th
international computer software and applications conference workshops (COMPSACW), July 2014, pp 84-89

2. RosadoT, Bernardino J (2014) An overview of OpenStack architecture. In: Proceedings of the 18th international
database engineering & applications symposium, Porto, Portugal, July 2014

3. Message queuing. https://docs.openstack.org/security-guide/messaging.html. Accessed 17 Nov 2019

4. Beloglazov A, Piraghaj SF, Alrokayan M, Buyya R (2012) Deploying OpenStack on CentOS using the KVM hypervi-
sor and GlusterFS distributed file system. Technical Report CLOUDS-TR-2012-3, Cloud Computing and Distrib-
uted Systems Laboratory, The University of Melbourne, Aug 2012

5. Videla A, Williams JJW (2012) RabbitMQ in action: distributed messaging for everyone. Manning, Shelter Island

6. Apache Qpid. http://gpid.apache.org. Accessed 17 Nov 2019

7. Hintjens P (2013) ZeroMQ. Messaging for many applications. Sebastopol, O'Reilly Media

8. Documentation: Table of Contents. https://www.rabbitmg.com/documentation.html. Accessed 17 Nov 2019

9. De Filippi P (2016) The interplay between decentralization and privacy: the case of blockchain technologies. J
Peer Prod 71:19

10. Gupta AK, Ostner K (2008) Database backup system using data and user-defined routines replicators for main-
taining a copy of database on a secondary server. U.S. Patent 7,383.293 B2, Jun. 2008

11. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017). An overview of blockchain technology: architecture, consensus, and
future trends. In 2017 IEEE international congress on big data (BigData Congress). IEEE, New York, pp 557-564

12. Castro M, Liskov B (1999) Practical Byzantine fault tolerance. OSDI 99(1999):173-186

https://docs.openstack.org/security-guide/messaging.html
http://qpid.apache.org
https://www.rabbitmq.com/documentation.html

Kim and Park Hum. Cent. Comput. Inf. Sci. (2020) 10:31 Page 12 of 12

13. Duan S, Reiter MK, Zhang H (2018) BEAT: asynchronous BFT made practical. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. ACM, New York, pp. 2028-2041

14. AMQP 0-9-1 Model explained https://www.rabbitmg.com/tutorials/amgp-concepts.html. Accessed 17 Nov 2019

15. OpenStack Compute (Nova) https://docs.openstack.org/nova/latest/. Accessed 17 Nov 2019

16. AMQP and Nova https://docs.openstack.org/nova/queens/reference/rpchtml. Accessed 17 Nov 2019

17. Sze WK, Srivastava A, Sekar R (2016) Hardening OpenStack cloud platforms against compute node compromises. In:
Proceedings of the 11th ACM on Asia conference on computer and communications security, ASIA CCS'16. ACM,
New York, pp. 341-352

18. Yang F, Dou K, Chen S, Hou M, Kang JU, Cho S (2015) Optimizing NoSQL DB on flash: a case study of RocksDB. In:
2015 IEEE 12th international conference on ubiquitous intelligence and computing and 2015 IEEE 12th interna-
tional conference on autonomic and trusted computing and 2015 IEEE 15th international conference on scalable
computing and communications and its associated workshops (UIC-ATC-ScalCom). IEEE, New York, pp. 1062-1069

19. Cachin C (2016) Architecture of the hyperledger blockchain fabric. In: Proceedings the workshop on distributed
cryptocurrencies and consensus ledgers. July. 2016

20. Sukhwani H, Martinez JM, Chang X, Trivedi KS, Rindos A (2017) Performance modeling of pbft consensus process
for permissioned blockchain network (hyperledger fabric). In: 2017 IEEE 36th symposium on reliable distributed
systems (SRDS). IEEE, New York, pp. 253-255

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/nova/queens/reference/rpc.html

	Hybrid decentralized PBFT Blockchain Framework for OpenStack message queue
	Abstract
	Introduction
	OpenStack message queue service
	HdPBF for OpenStack message queue
	PBFT Blockchain Framework
	HdPBF for OpenStack message queue

	Approach and performance evaluation
	Environment of experiment

	Conclusions
	Acknowledgements
	References

