Khowaja et al. Hum. Cent. Comput. Inf. Sci. (2020) 10:35

https://doi.org/10.1186/513673-020-00240-y © Human-centric Com pUtmg

and Information Sciences

RESEARCH Open Access

: ®
CAPHAR: context-aware personalized human

activity recognition using associative learning
in smart environments

Sunder Ali Khowaja, Bernardo Nugroho Yahya and Seok-Lyong Lee”

*Correspondence:

sllee@hufs.ackr Abstract

Department of Industrial The existing action recognition systems mainly focus on generalized methods to

and Management tegorize h tions. H th lized syst t attain th
Engineering, Hankuk categorize human actions. However, the generalized systems cannot attain the same
University of Foreign Studies, level of recognition performance for new users mainly due to the high variance in
Global Campus, Yongin-Si, terms of human behavior and the way of performing actions, i.e. activity handling. The

South Korea . T ; .
use of personalized models based on similarity was introduced to overcome the activ-

ity handling problem, but the improvement was found to be limited as the similarity
was based on physiognomies rather than the behavior. Moreover, human interaction
with contextual information has not been studied extensively in the domain of action
recognition. Such interactions can provide an edge for both recognizing high-level
activities and improving the personalization effect. In this paper, we propose the
context-aware personalized human activity recognition (CAPHAR) framework which
computes the class association rules between low-level actions/sensor activations and
the contextual information to recognize high-level activities. The personalization in
CAPHAR leverages the individual behavior process using a similarity metric to reduce
the effect of the activity handling problem. The experimental results on the “daily
lifelog” dataset show that CAPHAR can achieve at most 23.73% better accuracy for new
users in comparison to the existing classification methods.

Keywords: Personalized activity recognition, Associative learning, Human behavior
process, Machine learning, Pervasive sensors, Wearable sensors

Introduction

The effectiveness of modern context-aware computing systems is heavily based on its
ability to recognize human behavior and physical activities. These computing systems
cover a wide range of application areas such as smart healthcare, smart homes, elder
care, and e-health [1]. With the aid of wearable and pervasive sensors, the human activ-
ity recognition area is getting more and more popular and has led to the development of
numerous IoT and context-aware based systems. For instance, MyBehavior [2] provides
personalized health feedback by taking into account human behavior (diet) and physical
activities. There are generally two ways to acquire the sensor readings for behavior mod-
eling and activity recognition. One way is to use the wearable and virtual sensors which
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provide the inertial measurements such as accelerometer, gyroscope sensors, and social
interaction data through smartphones and mobility patterns, respectively. Another way
is to use the sensor activations which require a specific infrastructure for the humans to
directly interact with the sensors such as smart switches, infrared sensors, and pressure
sensors. Existing studies also use the interaction between the environment and the peo-
ple, i.e. contextual information, to model the human behavior and recognize complex
physical activities [3, 4]. In the broad sense, contextual information can be viewed in
two perspectives; location, identity, activity, time and user & role, process & task [5]. In
this study, the contextual information is referred to as the data obtained by the second-
ary sensors associated with the performed action such as the time of action, the location
where the action is performed, or the interrelationship of action and the object.

Existing studies use the context information as one of the features for training the
action classifier to improve the accuracy of the recognition system, but they are limited
to low-level actions. In our study, a low-level action refers to the basic human action
performed in daily routine such as standing, sitting, walking, running, lying, and ascend-
ing/descending stairs. However, these are the fundamental ones and therefore can be
recognized with quite a reasonable accuracy by using only inertial sensors [6]. Contex-
tual information has also been used to derive high-level activities as well as to model
human behavior with an assumption that prior knowledge is available for the interac-
tion between human action and the specified context [7]. High-level activity refers to the
higher level of abstraction for the performed action such as eating, personal grooming,
desk work, and more. The high-level activities can be inferred by combining low-level
actions and contextual information. Single or multiple contexts can be used depending
on the available infrastructure and the sensor characteristics. For instance, time/dura-
tion of the activity can be obtained using the sensor characteristics such as an acceler-
ometer, whereas the indoor location and object sensors need a fixed infrastructure. The
high-level activity recognition can be performed either using direct inferencing by infer-
ence rules [8], and ontological reasoning [9], or integrating the contextual information
in the machine learning framework, i.e. adding the context as one of the feature vectors
[10]. The human behavior in this study refers to the way or routine in which the actions
are performed while interacting with the available contexts. Existing studies have used
human behavior modeling extensively for determining individual behavior, health anom-
alies, and human identification [2, 11]. Human behavior modeling can be categorized
into two schools of thought, i.e. social and applied sciences. The social sciences more
deviate towards the impact caused by a certain behavior on society while the applied
science field leverages the behavior to attain automation or derive recommendations.
Previous studies have also combined the use of physical activity recognition and human
behavior models to provide recommendations for healthy lifestyles, social interactions,
and human identification [2, 11].

The physical activity recognition systems heavily rely on the use of machine learning
techniques or statistical inferences such as class association rules (CARs). The integra-
tion of inference rules (CARs) in a machine learning framework is referred to as associa-
tive learning. The reason for using CARs is that they provide a model that is simple and
is proven to be effective in terms of accuracy and interpretability [12]. The CARs fall
in the category of association rules which consider the rule consequent as a fixed class
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attribute [4]. The left side of the CARs could be multiple itemsets which are based on
the conjunction of attribute-value pairs whereas the right side of the CARs corresponds
to the target concept which refers to the activity class label in this study. These rules
allow us to extract interesting patterns based on the attribute-value pairs concerning
the target concept. The CARs in existing studies have been used with the sensor activa-
tions, i.e. an attribute-value pair, and without considering the contextual information [4,
12-15]. Furthermore, the CARs have not been exploited for personalized recognition
services. The goal of human activity recognition (HAR) systems is to learn from annota-
tions and acquired sensor readings to infer the performed activity. Most of the machine
learning algorithms take into consideration the feature vectors which are either provided
by the physical or contextual sensors. The problem is that the learning algorithm does
not distinguish between the base and the contextual information; it explicitly trains the
model. Therefore, if contextual information appears out of order, it will simply look up
the weights assigned to a feature vector instead of considering the relationship between
the sensor and the secondary information. Moreover, the shallow learning algorithms
are either too complex such as random forests, and support vector machines, or con-
sidered to be “black boxes” like neural networks. Considering that the CARs are highly
interpretable, they have competitive strength in the field of personalized activity recog-
nition by providing inferential insights regarding human behavior. Hence, it is necessary
to integrate the contextual information with the attribute-value pair of low-level actions
to model the CARs for recognizing personalized activities.

There are two issues that we need to address on developing personalized models;
activity handling problem and human behavior process. First, the activity handling prob-
lem, as aforementioned, is a phenomenon in which the subjects may perform actions
differently with respect to multiple contexts (e.g., location, time, user, and identity infor-
mation). The existing studies mainly focus on developing subject-independent mod-
els for activity recognition and are regarded as a one-fits-all activity model. However,
the subject-independent models do not exhibit the same performance when applied to
data from a new test subject due to high variation in terms of human behavior and the
mannerisms for performing a specific action. The study [16] implies that the subjects
are idiosyncratic; they interact differently with the context as per their style, behavior,
and ability to perform different actions. It has also been proved that the subjects may
perform actions differently with respect to the location and time of the day [2, 11, 17].
For instance, the “meal preparation” activity at home can be executed differently when
performed at the office, or “housework” activity may vary in execution when performed
in the morning time or at night. In this regard, researchers often move towards building
personalized or subject-dependent activity models. Very few studies apply the person-
alization aspect due to the challenge of collecting and annotating large amounts of user-
specific data [1].

Human behavior processes have been modeled in existing studies using Kalman Fil-
ters, crowd simulation, and soft computing techniques [18, 19]. The researchers in the
field of process mining have also tried to model human behavior as a process for analyz-
ing the interesting behavior patterns [20]. Process mining techniques represent the sen-
sor measurements or samples from an indoor location system in process workflows for

modeling human behavior [21]. Most of the works in process mining regarding human
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behavior focus on improving the process workflows. Assuming that the users may have
similarities in their behavior patterns, this study uses it for computing the similarity
between the existing pool of models to select and test it against the data of a new user.
However, assuming that some of the data from new users are available, a semi-popu-
lation calibration approach can be used to test one of the trained models against the
new user data. It maps a new individual to a pool of existing users to solve the “cold-
start” problem. The cold-start problem concerns the personalized activity recognition
for new users having less or no amount of annotated data. The mapping of the personal-
ized models onto the new users in existing studies was performed using the gender and
demographic details such as age, color, and region. However, gender and demographic
details have limited knowledge to be leveraged, and they do not provide sufficient infor-
mation to solve the activity handling problem. We assume that the behavioral character-
istics of human activities can be modeled best using their respective behavior processes.
Although many studies use physical activities to derive or identify the behavior process
models, the reverse approach has not been explored for solving the cold-start problem in
physical activity recognition studies. Intuitively, it makes sense as the similarity in behav-
ior is more likely to map the action characteristics of one individual to another in com-
parison to age and gender. An implication of such a study is evident by the recent report
from Reuters Graphics [22] which provided an insight into the trajectory of patient 31
as shown in Fig. 1. Provided with the limited information of the physical activity, time,
and location, the system could have chosen a similar individual based on the behavioral
patterns and predicted the location of the next activity, or as a precautionary measure,
if an individual seems probably affected, the system could generate a notification to the
locations where the subject tends to socialize or have a meeting. This shows the impor-
tance of using behavior patterns for recognizing human activities and the relevancy of
this study with current situation.

In this study, we address two issues for personalized activity recognition sys-
tems. The first is the integration of the contextual information from multiple sen-
sor modalities to improve high-level activity recognition. The second is the use of
human behavior processes to solve the cold-start problem by mapping the new user
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onto the existing pool of subjects. In this regard, we propose the context-aware per-
sonalized human activity recognition (CAPHAR) framework using associative learn-
ing and human behavior process models. The CARs in associative learning take into
account the contextual information from different sensors such as location, object,
and time along with the low-level action from IMUs or sensor activations to find
the frequent patterns. These frequent patterns are then used to classify the high-
level activities. The method also provides a generalized way of recognizing high-
level activities from either low-level actions or sensor activations which has not been
directly addressed in the existing studies. We demonstrate the effectiveness of asso-
ciative learning using two real-world human activity datasets, i.e., “daily life-logging”
[17] and “Activity Recognition in the Home” [23]. The former consists of low-level
actions from IMUs, location, and time information, whereas the latter consists of
sensor activations and the time information. We assume that the evaluation of these
two datasets will prove the real-world applicability of our proposed method.

Furthermore, we generate the individual behavior process models of each user
using process mining techniques from the recognized high-level activities. We pro-
pose a way to measure the similarity between the behavior model of a new user and
the existing pool of behavior process models to perform personalized high-level
activity recognition. The proposed framework is shown to work in an environment
where we have a limited amount of annotated data from a new user. The contribu-
tions of our study are summarized as follows:

+ We propose the CAPHAR framework for personalized HAR based on human
behavior and contextual information.

+ The CAPHAR framework can handle various sensing inputs such as low-level
actions or sensor activations in a single framework.

+ We propose the use of a semi-population calibration approach by computing the
similarity between the human behavior process models for solving the cold-start
problem.

+ The classification accuracy is improved by leveraging human behavior using

associative learning.

The remainder of the paper is structured as follows: Sect. “Related works” presents
a summary of the related works. Section “Proposed method” explains the proposed
methodology to recognize low-level actions using traditional machine learning
methods, to recognize high-level activities using associative learning, to generate
process models from the recognized high-level activities, and to compute the simi-
larity for mapping the personalized models on to new users. Section “Experiments
and results” briefly describes the daily life-logging dataset and activity recognition in
the home database. The results are also presented in Sect. “Experiments and results”
which first presents activity recognition results and then depicts the usefulness of
the proposed work for personalized activity recognition. We conclude our study in
Sect. “Conclusion” along with discussion and some future directions.
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Related works

Association rule mining and Class association rules for activity recognition

The association rule is formally defined as X = Y, where X and Y are disjoint sets and
are referred to as consequent and antecedent, respectively. One of the most used asso-
ciation rule mining algorithms is Apriori [24] which finds the frequent itemsets based
on the user-specified minimum support and confidence. Another one is the FP-growth
algorithm [25] which uses a tree-like structure to mine the frequent patterns. Associa-
tion rule mining has been widely used on historical transaction data for predictive analy-
sis [8].

Association rule mining has also been used as a feature extraction mechanism for
many classification models. Chien and Chen [24] used the association rules as features
to train the classification model for stock trading. Pach et al. [25] introduced the concept
of using association rules with fuzzy logic to classify numerical data. Qodmanan et al.
[26] and Yan et al. [27] used association rules in conjunction with genetic algorithms to
optimize the value for minimum support and confidence.

Very few studies have applied the association rules for mining and matching frequent
patterns to recognize activities. Gu et al. [28] and Palmes et al. [15] extracted the repet-
itive patterns from sensor activations which were frequent for one activity and infre-
quent for the others. They transformed the sensor activation data into different window
sequences and computed the score for all individual activities. These scores were used
as weights for categorizing activities from sensor activations. Rashidi et al. [29] pro-
posed an activity recognition and tracking algorithm based on unsupervised learning.
They mined the frequent patterns and clustered these patterns for all the available activi-
ties. However, they ignored the fact that the same sensors can be activated by differ-
ent activities. Luhr et al. [30] used frequent pattern mining for activity recognition using
sensor activation sequences, which at many times change in realistic environments.
Yassine et al. [31] used association rule mining for analyzing the energy consumption
patterns from electronic appliances which are directly related to human actions. Sfar
et al. [32] proposed a causal association rule mining to detect and recognize anomalous
activities in smart home environments. Atzmueller et al. [12] proposed a class associa-
tion rule-based mining algorithm (CARMA) for analyzing different rule sets to select
the final classification model. Their work used the inertial measurement units from
mobile phones for recognizing human activities. Liu et al. [13, 14] used the association
rules to mine the frequent patterns and used these patterns as discriminative features.
Multi-task learning was employed to improve recognition performance. Liu et al. [33]
focused on extracting mid-level features by mining frequent patterns using association
rules. They suggested that the extracted temporal patterns can help improve activity rec-
ognition performance. Marimuthu et al. [34] proposed the activity recognition method
using an adaptive neuro-fuzzy inference system with frequent pattern mining. The fre-
quent pattern mining in this study was used to reduce the number of membership func-
tions and the rules. Our method is inspired by the works of [4, 14, 33], i.e. proposing a
modified Apriori algorithm to mine the frequent patterns. The main focus of the works
mentioned above was to recognize overlapping activities efficiently. Most of the existing
studies use the Opportunity dataset in which the activities were performed in a con-
trolled environment and have uniform labels. The existing methods mine the frequent
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patterns between the activity (ground truth) and the sensors involved while performing
the activity (sensor activations). The proposed work is unique in a sense that it integrates
both the sensor activations and low-level actions from IMUs to mine the patterns rather
than limiting the method to a single modality. With the advances in IoT and micro-elec-
tromechanical systems (MEMs), the use of contextual sensors has also increased dras-
tically. Therefore, the need of a framework which can undertake the information from
more than one context is needed which is ignored by many existing studies. Moreover,
none of the above-mentioned studies leverages human behavior for personalized human
activity recognition. We extended their work for accommodating contextual information
along with the generalization on the data acquired from sensor activations or inertial
measurement units to mine the frequent patterns for activity recognition.

High-level activity recognition using contextual information

A very few studies focus on recognizing high-level activities as most of the exist-
ing works focused on classifying low-level actions. Recently a survey [35] highlighted
how the characteristics such as time, location, and objects, are used as contexts for
recognizing such high-level activities. Khowaja et al. [9] exploited ontological reason-
ing combined with data-driven methods to derive high-level activities. Gong et al. [36]
introduced an idea of using pattern mining with the location as a context for high-level
activity recognition. They used a single context, i.e. location, for recognizing high-level
activities. Villalonga et al. [7] proposed a knowledge-driven approach for recognizing
high-level activities using multiple contexts such as location and emotion. Cao et al. [37]
proposed a group-based context-aware human action recognition (GCHAR) where they
use the transitional logic and the previous state of the human to predict the action. The
transitional logic was referred to as the context-aware component in their study. They
also focused on improving the action recognition accuracy by leveraging the contextual
information in the form of transitional logic, however, they only recognized four low-
level actions, i.e. (grouping the similar actions in one) using IMUs. Other studies try to
leverage the contextual information for constructing a better classifier model by embed-
ding the contextual information in the feature space. Filippoupolitis et al. [10] presented
a location enhanced activity recognition where the location is considered as one of the
features for training the classification model. Zhang et al. [38] used the subtasks as con-
textual information to recognize high-level activities. A sequence chunking strategy was
proposed by segmenting and labeling different chunks of high-level activities. Lee et al.
[39] conducted an exploratory study on the context affecting human activity recognition
and in their study the context referred to as the housing environments. Aminikhanghahi
and Cook [40] proposed the use of time context to segment a high-level activity into its
corresponding subtasks to improve the recognition performance. Zhang et al. [41] pro-
posed an ontological knowledge-based system for human activity recognition in smart
homes. The main focus of the work was to deal with heterogeneous data sources and
interoperability, therefore, multiple contexts have been used in collaboration with the
sensor activations deployed at smart homes. Civitarese et al. [42] also proposed an onto-
logical framework for human activity recognition for classifying interleave and concur-
rent activities. The method was tested on the CASAS dataset which has homogeneous
activity labels. Moreover, the personalized characteristics has somewhat been reduced
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by removing the occurrences of noisy motion sensors as they may refer to a habit or a
behavioral trait.

The above-mentioned studies focus on integrating the contextual information within
the learning framework without considering the interrelationship of multiple contexts.
The studies are also restricted to a single context and a single source of physical sensor
readings (either sensor activations or inertial measurements) for recognizing high-level
activities. Additionally, such studies do not consider personalization and activity han-
dling problem due to the varying behavior which can hinder in generalizing the recog-
nition performance. For instance, one subject performs “personal grooming” activity at
the location “home” while the other subject performs it at the location “office” Similarly,
the activity “desk work” can be performed at both locations “home” and “office” Using
locations merely for constructing inference rules by assuming that certain activities
are always performed at specific locations is another way of avoiding activity handling
problems.

Personalized activity recognition

In realistic scenarios, the activities performed by one subject can be different from oth-
ers in terms of activity label and behavior. For instance, while walking on the street, one
subject may label the instance as socializing activity whereas the other subject may label
it as a transportation activity. The activity handling problem arises due to diverse inter-
actions with the contexts, which can be solved to an extent by introducing the aspect of
personalization suggesting that the classification model should be separately trained for
each subject. Many researchers agree upon having a personalized rather than the one-
fits-all model [1].

Zhang et al. [43] proposed a probabilistic learning method for training activity models
from both incomplete and complete data. Stikic et al. [44] tried to reduce the number
of annotations using graph-based and multi-instance learning-based label propagation.
Maekawa et al. [45] proposed a method where the model is trained on new users as
well as other user’s data and termed it as supportive users. Bianchi et al. [46] proposed
a personalized activity recognition method by collecting the data from individuals and
training a light-weight model for each individual from a few days of data. The person-
alization effect was added irrespective of any physiognomies or behavior as the model
is trained separately for each individual. Siirtola et al. [47] performed personalization
with incremental learning approaches. The undertaken dataset had 9 subjects having the
same action labels. As the data was collected in a controlled environment, i.e. activity
handling problem was avoided, there was no improvement when applied the personal-
ization effect. Burns and Whyne [48] proposed the use of personalized deep features,
personalized engineered features, and personalized triplet networks to embed the per-
sonalization effect in their system. However, the study neither used any contextual rep-
resentation nor accounted for human behavior. Other researchers focused on mapping
the training data from the pool of existing users onto the new ones. The mapping is gen-
erally based on gender and demographic details such as age, height, weight, and gender
[1]. The activity labels are the same for new and old users which is again an unrealistic
scenario. For instance, one user can perform an activity labeled as taking medication

or playing soccer whereas another user may not perform such activities at all. Thus the
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activity labels may not be the same for all the users. In this case, the performance of
personalized models also decreases as they are grouped based on their physicality rather
than the similarity in their routines and the way they handle their activities.

Vaizman et al. [49], surveyed the contextual information which can be used for user
behavior modeling to develop a specific healthcare application. They also suggested that
for large-scale applications, the context-recognition component should be made unas-
sertive without making the users alter their behavior. Shen et al. [50] used the behavioral
characteristics of smartphone sensors to recognize human activities. They experimented
on both the general and the personalized models using the smartphone usage behavior
for recognizing low-level actions and suggested that the personalized models perform
better than its counterpart. Mafrur et al. [11], modeled human behavior using life-log-
ging data from smartphones to identify the human instead of activity recognition. This
study supports our assumption that a general activity recognition would fail in real-
world applications as human behavior is unique and different from other users. Jalali
et al. [51], proposed the use of human behavior for recognizing multiple events. Further-
more, the sequential and parallel relations of these events were recognized using fre-
quent co-occurrence patterns. Soleimani and Nazerfard [52] proposed the use of subject
adaptor generative adversarial networks (SA-GAN) for cross-subject transfer learning.
The method was tested on the Opportunity dataset which has homogeneous labels and
the behavior of the subjects is the same as all the activities are performed in a controlled
environment. It is apparent that human behavior analysis has not been used previously
for personalized high-level activity recognition. To the best of our knowledge, this study
is the first to use the behavior process models for computing the similarity between a
new user and the existing pool of subjects.

The benefit of using associative learning is that it automatically maps the relationship
of actions or sensor activations with the contextual information for each user, hence,
reducing the problem of activity handling to some extent. Unlike the existing methods
which use demographics or physiognomies of the users, we employ a process modeling
approach to measure the similarity between different users to solve the activity handling
problem. Furthermore, the studies only consider the datasets which exhibit a uniform set
of labels for all the subjects which is not the case with real-world scenarios. For instance,
“Taking medication” activity is not common with all the subjects, therefore, a limited
number of users might perform this activity. In such cases, the system fails to recognize
the activity due to the variations in activity labels. In this study, we propose the similarity
metric based on the behavior process models to map the subject in such a way that the
variation in activity labels can be reduced and the activity recognition performance can
be enhanced.

Some of the existing works are consolidated and summarized in Table 1 with respect
to the personalization, activity handling, data source, classification approach, low-level
actions, high-level activities, and use of contextual information. As it can be noticed
that none of the existing works focuses on the activity handling which represents a real-
world problem as each individual performs an action in their own way. Similarly, there
are very few works proposing a generalized framework that can be applied to both the
IMUs and sensor activations. With respect to the consolidated review of existing works,
we are focusing on the maximum number of activities, i.e. combined low-level actions
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Table 1 Summary and comparison of related works

Study Pers AH Data CA LLA HLA Cl

[4] x x SA CAR x 8 x

[53] X x SA CAR X 4 x

[28] x x SA CAR x 4 x

[29] X X SA Clustering, ARM X 8 Time
[30] X x SA ARM X 13 Time
[43] v x IMU EM, PL x 9 Time
[54] x X IMU, SA MLR, SI 4 6 Location
[16] v X IMU, SA OSVM, PCA 5 x x

[45] v X IMU HMM 2 12 x

[1] v X IMU HBN, SVM 7 X x

[50] v X IMU RF 5 X x

[10] x X IMU KNN, LR, RF, SVM X 8 Location
(36] x X IMU XGBoost 8 X Location
9] X x IMU HCA, ELM 6 10 Location
(38] x X IMU CNN x 18 Time
[40] x X SA RF X 10 Time
Proposed v v IMU, SA CAR, AL, ECOC, RNN 7 8-13 Multiple contexts

Pers, Personalization; AH, Activity Handling; CA, Classification Approach; LLA, Low-Level Actions; HLA, High-Level Activities;
Cl, Context Information; SA, Sensor activations; IMU, Inertial measurement unit; CAR; Class Association Rules; ARM,
Association rule mining; SVM, Support Vector Machines; PCA, Principal Component Analysis; EM, Expectation Minimization;
PL, Probabilistic Learning; MLR, Multiple Logistic Regression; SI, Statistical Inferencing; OSVM, Online SVM; HMM, Hidden
Markov Models; CNN, Convolutional Neural Networks; HBN, Hybrid Bayesian Networks, KNN, K-Nearest Neighbor; LR,
Logistic Regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; HCA, Hierarchical Classification Approach;
ELM, Extreme Learning Machines; CAR, Class association rules; AL, Associative Learning; ECOC, Error-Correcting Output
Codes; RNN, Recurrent Neural Networks

and high-level activities, to evaluate the performance of the CAPHAR framework. Class
association rules have been used previously for 4-8 activities using only sensor activa-
tions without the consideration of contextual information. This work not only extends
the number of activities to recognize but also adds multiple contexts along with the
generalization of both sensor modalities, i.e. IMUs and sensor activities. Moreover, the
existing studies use demographics and physiognomies for personalization whereas in
this study we use the human behavior process to model the personalization effect which
helps to reduce the activity handling problem.

Proposed method

Figure 2 illustrates the CAPHAR framework, specifying the inter-dependencies among
the building blocks. The method for high-level activity recognition is based on two mod-
ules: low-level action recognition (in the case of data from IMUs) and high-level activity
recognition. We consider the data from IMU, i.e., accelerometer (Acc) and Gyroscope
(Gyr) sensors for low-level action recognition (LLAR) module. The method extracts the
features from raw sensor data and applies machine learning methods to build a classifi-
cation model. The output of this module (classified action) will be the input to the high-
level activity recognition (HLAR) module. The pipeline of the LLAR module is quite
similar to conventional learning, therefore, we adopt the feature extraction and classifi-
cation method proposed in existing works. As suggested in Sect. “Association rule min-
ing and Class association rules for activity recognition’, the associative learning method
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Table 2 Nomenclature of the variables used in this study
Variable Description Variable Description
N Number of samples for training AS Set of available activations
pri Probability vector of i-th instance / [temset
qi Correct label for i-th instance T Set of Time encoded values
14 Number of classes L Set of locations
A Set of low-level actions HA Set of high-level activities
S Set of sensor activations try k-th activity trace
C Set of available contexts Supp Support
Conf Confidence car Class association rule
z Unlabeled itemset E Set of events
PTT Event trace L Event Log
Pe Set of places T Set of transitions
F Set of directed arcs TF Trace fitness
Mod Process model ’ Arbitrary event log
Ge Generalization Sim Similarity

in HLAR is inspired by the works proposed in [4, 14, 33], however, we have modified the
algorithm and method to work with multiple contexts as well as to integrate the use of
IMUs and sensor activations. Furthermore, the use of behavior models for computing
the similarity among the pool of subjects for the semi-population calibration approach
is the main highlight of the CAPHAR framework. Table 2 presents the nomenclature of
the variables used in this study. Each of the variables is briefly explained in the text at the
point of their usage.

The HLAR module takes into account either the classified action or sensor activations,
along with the available contextual information to perform activity recognition using
the associative learning method. To perform the personalization, we first generate the
behavior process models from the predicted activities using associative learning. These
models are evaluated against the reference activity models generated from the annotated
data. For a new test user, the behavior process model is mapped on to the existing pool
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of models based on the similarity metric. The most similar model will be elected to rec-
ognize personalized high-level activities from the new test user’s data. In the below sub-
sections, we explain the particulars of each building block for LLAR and HLAR modules

with the details for process mining and similarity approaches.

Low-level action recognition module

The LLAR module follows a typical machine learning pipeline to recognize low-level
actions. We present the details of the employed dataset in a later section. The data from
inertial sensors are usually acquired with a sampling rate of 50 Hz. The data is first pre-
processed to reduce the noise in the data stream. We employ the low-pass butter-worth
and median filter with a 10 Hz cutoff frequency to filter the raw data. The signals are
then sampled with sliding windows of 1.5 s and overlapping of 30% between the sliding
windows. Once the data is pre-processed, we extract features from each sliding window.

Feature extraction

We extract 34 statistical features from Acc and Gyr sensor readings from each sliding
window, i.e. 17 features from each of the sensors. The fast Fourier transform (FFT) coef-
ficients are based on the frequency components from 1 to 50 Hz, which are extracted
from each of the sensors and are added to the feature space, accordingly. Thus, the statis-
tical features (34) and the FFT features (100) results in a total of 134 features. We present
the list of extracted features in Table 3. These features are commonly used for low-level

action recognition studies [55].

Classification model

The classification in our approach is to recognize the discrete category of new sensor
readings by learning from the training samples. Many generic classification methods
have been proposed and used for LLAR such as SVM, neural networks (NN), decision
trees, and gradient boosting. Recently, deep learning algorithms have left a positive
impact in the field of action recognition, especially the convolutional neural network
(CNN) [3] and recurrent neural network (RNN) [56]. These methods have shown prom-
ising results, but they require a large dataset for training which sometimes may not be
available in real-life scenarios. As the LLAR module is of vital importance to the pipeline
of HLAR, we will evaluate different kinds of classification methods for attaining high
accuracy. In this regard, we mainly adopt two methods for classification which have
shown promising results in the literature, i.e. error-correcting output codes (ECOC) [6]
and long short-term memory networks (LSTM) [56]. We use ECOC with only a single
base classifier without any mini-batch to perform the training. The base classifier is cho-

sen empirically as shown in Sect. “Low-level action recognition results”.

Table 3 List of extracted features

Statistical features Mean, Standard Deviation, Energy, Mean-Crossing Rate, Maximum Value, Mini-
mum value, First Quartile, Second Quartile, Third Quartile, Amplitude of the
power spectral density (PSD) 4 features, shape of PSD 4 features

Frequency domain features Fast Fourier Transform (FFT) coefficients.
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We also evaluate the LLAR module using LSTM networks, a variant of RNN. The
difference with existing studies is that we use the loss-function based on the F1-score
instead of the cross-entropy. The reason for employing F1-score loss is that most of the
publicly available datasets are highly imbalanced in terms of samples for a particular
action label. Thus, using cross-entropy, L1 or L2 loss may result in overfitting for specific
action classes with a large number of observations. The F1-loss for the set of N samples
is defined in Eq. 1.

N oo
2) i1 P14 } )

Flloss = IEle[l,(] {1 -
S i+ Y i

where pr; refers to the probability vector for each instance, the symbol ° denotes ele-
ment-wise multiplication, £ represents the number of action classes, and g; is the binary
vector signifying the correct action class /, i.e. gy = 1\ (qix = 0)4|qi € R¢. For exam-
ple, let us consider we get the probability vector for an instance for action classes: sitting,
standing, walking, and running as [0.3 0.3 0.25 0.15], respectively. If the true label for
the given instance is standing, the binary vector g; will be represented as [0 1 0 0] for the
respective action classes.

High-level activity recognition module

Our HLAR module considers either the low-level action or sensor activations along
with the contextual information. HLAR faces one dependency which is the availability of
information from either of the modality for carrying out the further process. As shown
in Fig. 2, if the data from IMUs is available, we use the classified action; otherwise, the
sensor activations will be considered to recognize high-level activities. In this section,
we define the concept of building an activity classifier using CARs.

To move further, we first define the activity trace which is the set of low-level actions
or sensor activations and the contextual information during an activity. For instance, the
high-level activity “socializing” may comprise multiple low-level actions such as walk-
ing, climbing (down), and standing, at location “office” on a specific time which can be
regarded as the activity trace of “socializing” An example of an activity trace is shown
in Fig. 3. The first example shows the transformation of the raw data from IMUs to the
activity trace format in compliance to Fig. 2 (HLAR Module). The second example con-
siders the sensor activations as an input. The datasets which we chose for evaluation of
associative learning provide time and location as their contexts. Therefore, in Fig. 3, con-
textl and context2 refer to time code and location, respectively. The goal of associative
learning in our study is to construct a classifier based on CARs from the traces of each

activity.

Definition 1 (Activation) Let AS be a set of available activations. Then, AS is defined

in Eq. (2).
AS=[AVS|A®S=1] (2)
where A is a set of low-level actions defined as A = {al,ag, R }, and S refers to a

set of sensor activations defined as S = {s1,52,...,5;}. The indexes g and / represent
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the number of low-level actions and the number of sensors available for activations,
respectively. An operator @ refers to an exclusive-OR (XOR) operation suggesting that
the activation will simply return either the set of low-level actions or sensor activa-
tions, based on the availability of the data. We define the set of available contexts as
C ={cyulm=1,..., M}, where m is the number of available contexts. We constitute the
following definition for the itemset which combines the available activations with differ-

ent contexts.

Definition 2 (Itemset) Let I be a set of itemsets. Then, an itemset i; € I is defined in
Eq. (3)

i = {ASg, Cy} (3)

where AS; C AS and Cy are the k-th action and context sets, respectively. For exam-
ple, AS may comprise of four low-level actions i.e., “standing, walking, sitting, and lying”,
whereas AS; may only include “sitting and standing” amongst four actions. As per the
example shown in Fig. 3, we use two contexts i.e., Time (T) and Location (L) which are
defined as L = {ll, by, ..., 1 }, and T = {Mo,Af, Ev, Ni} where L represents a set of loca-
tions and T is a set of time-coded values. In our study, we mapped the timestamps to
four encoded values as follows: Mo: 05.00 a.m.—12.00 p.m., Af: 12.01 p.m.—04.30 p.m.,
Ev: 04.31 p.m.—07.30 p.m., and Ni: 07.31 p.m.—12.00 a.m. In the case of activities per-
formed in overlapping time codes or different locations, we consider the one with a
maximum number of instances. For example, if the user has performed an activity from
5.30 to 7.45, we compute the number of instances for Ev and Ni and choose the one hav-
ing maximum instances i.e., Ev. In this regard, we can replace Cy by Ty and Ly in defini-
tion 2. We define the set of high-level activities (HLA) in Eq. (4)

HA = {ha,Ir =1,...,R} (4)

where R refers to the number of HLAs. The activity trace in the form of a transaction is
defined in the following definition.

Definition 3 (Activity trace) Let Tr be a set of activity traces. Then, an activity trace ry
€Tr is defined in Eq. (5)

try = {hak, ik} (5)

where is the k-th trace, hay and iy are activity and an itemset assigned to the k-th trace try,
respectively. An example tr; = {PersonalGrooming, [{sitting,smnding},Home,Mo]}
represents that ha; = PersonalGrooming and ilz{[sitting, standing), Home, Mo}.
Then, we can define the support and confidence of Tr given antecedent /* in Eq. 6, 7
wherel* C [
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> i1 ha, (1) > i1 ha, ET)
Supp(I* = ha,) = =—="—"2 Conf (I" = ha,) = ="~
2 2 |77 4 )= e o (©)
where
_ 1, I* C treN\hay € try 1, I*Ciry
S (8110 = { 0, otherwise and fi- (tr) = 0, otherwise @

In the above equation, |T7| is the total number of activity traces in the training set,
> & fr=(try) refer to the number of activity traces having I* and ;. fi+ 4, (¢7%) is the num-
ber of activity traces containing /* and ha,. We provide the examples of activity traces
in Table 4 using low-level actions with the contextual information. From Table 4 we
can compute Supp and Conf for ( [{sitting},Af, Oﬁ‘ice] = PersonalGrooming ). There is
only one instance with itemsets ([{sitting}, Af, Office] and {Personal Grooming}, result-
ing in > ¢ fix na, (try)=1. In Table 4 the itemset [{sitting}, Af, Office] appears twice, thus
>k fre(trr)=2. We can get easily: Supp and Conf for ([{sitting},Af, Office] = Personal
Grooming) which are 1/4 and 1/2, respectively.

The activity trace may include the itemsets from I which are unique for differ-
ent HLAs, but the real-life scenarios are much complicated which gives rise to activ-
ity handling problems as different people perform the activities differently [57, 58]. For
example, in the case of sensor activations, activity ha triggers the sensors {sg, s4, 4,54}
and activity has triggers the sensors {sg, 52, 2, 54} with the same location and time code.
Both the HLAs trigger the same set of sensors {s3,ss}, therefore they are quite chal-
lenging to differentiate. However, both the activities have different frequencies of sen-
sor activations, and this information can be used to improve the recognition process.
In this regard, we use the frequencies of actions or sensors triggered during a certain
activity. This will allow us to find the temporary patterns for the sensor activations or
actions which might improve the performance of associative learning, intuitively.
By doing so, we are incorporating the frequency of actions or sensors into the confi-
dence calculation for an association rule. We modify the set of actions and sensors as,
A = {(a1, |a1]), (az,|a2)), . . ., (ag, |ag|)} and S ={(s1,Is1]), (52, [s2])s - - -, (sms IS )}
respectively. The notation |{ }| refers to the frequency of corresponding actions or sensor

activations. The same earlier example will result in {(s2, 3), (s4, 1)} and {(s2, 1), (s, 3)} for
activities sa; and has, respectively. The embedded frequency information provides better

discriminative capability compared to the previous scenario where we only considered

Table 4 Example of activity traces

Activity trace  Itemset Activity
No.

Low-level actions (AS) Context1 (T) Context2 (L)
tr, Sitting, standing Mo Home Personal grooming
try Sitting Af Office Personal grooming
tr Sitting Af Office Desk work

try Standing, walking Ni Streets Socializing
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the sensor activations. For further analysis and computation, we use the modified set of
actions and sensor activations which embeds the frequency information.

Another advantage of using the frequency information is that it helps to overcome
the intra-activity variations in the activity traces. Assuming the two activities, i.e.
“grooming” and “toileting” as shown in Fig. 4. The “toileting” activity triggers the sen-
sor placed at location “bathroom,” while “grooming” activity is performed at different
locations including “bathroom” The “toileting” activity triggers the sensor at the loca-
tion “bathroom” more often than the activity “grooming” This suggests that ignoring
frequency information may misclassify these activities due to the intra-activity varia-
tion. We extend the method of mining CARs from [4].

Classification of activities using CARs

As shown in the previous section, each HLA has its own activity traces. In this regard,
we create CARs in which the activity trace itself is the antecedent and the HLA is the
consequent as suggested in [4, 59]. The classifier using associative learning can be built
by using all class association rules which meet user-specified minimum Supp and Conf .
There are mainly two steps for building such a classifier [4]: (1) eliminating the rules
which are subordinated to other rules, and (2) removing the rules from the first step
that do not contribute to the improvement of classification accuracy. For instance, given
two rules, if rule 2 is subordinate to rule 1 and both the rules have the same consequent,
then rule 2 will be considered redundant with rule 1. Consequently, the frequent pattern
(antecedent) of rule 2 is considered as the subset to that of the rule 1. Some of the rules
proposed in [4] are also applied for the elimination which is as follows:

+ Rulel has higher Confidence than rule2

+ The Confidence of both rules is the same, but rule 1 has higher Support.

+ The Confidence and Support for both rules are the same, but rule 1 was generated
before rule 2.

In such cases, the rule 2 will be eliminated. While classifying a new instance, the rule
whose activity trace satisfies the instance will be considered for the classification. We
create a group of CARs and represent it as car(ha,). For the classification, we apply the
group of CARs to aggregate the gain against the HLA for classifying a test instance.
Using multiple association rules has proven to achieve better classification performance
as compared to the single association rule [24]. In order to create the list of CARs, we
define car(ha,) that stores activity traces associated with different activities in Eq. (8)

Grooming Toileting

Fig. 4 Example of intra-activity variation
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car(ha,) = {z|z € Z,Conf (z = ha,) > Confyn, Supp(z = ha,) > Suppmm} (8)

Algorithm 1. Classification of test instance using associative learning

Input: unlabeled itemset z and car for each HLA

Output: class label of z

1: For each ha, € HA do

2 var = ¢, gain(z,ha,) =0

3 For each z which is available in car(ha,) do

4 If z € Z and ! set(z). issubset(set(var)) then
. conf(z=>ha,

5 gain(z, ha,)+= m

6: var. append( z )

7 End If

8 End For

9: End For

10: Return ha, with maximum gain(z, ha,)

where z is the unlabeled itemset. The notations Conf,,;, and Supp,,;, refer to the user-
specified minimum confidence and support, respectively. We arrange the itemsets
according to their length in descending order. For example, if rulel is the superset of
rule 2, then rule 2 would not be considered for the computation of gain(z, ha,) which is
the exact purpose of line 4 in Algorithm 1. The gain(z, ha,) is aggregated based on the
CARs (line 5, Algorithm 1), and the HLA having the maximum gain will be returned as
the classification result (line 10, Algorithm 1). Algorithm 1 only focuses on the associa-
tion rules for a certain high-level activity, therefore, the complexity of the proposed algo-
rithm is O(n). Furthermore, the association rules that do not meet the requirement of
minimum threshold in terms of confidence are pruned which results in a smaller search
space.

Human behavior process modeling

In past years, human behavior process modeling from activities of daily life (ADL) has
been a hot research topic. Various studies try to mine the patterns based on the anno-
tated activity logs. Some of them focus on anomalous behavior detection whereas oth-
ers emphasize predicting activities [60]. There are various methods and techniques to
perform behavior process modeling. We provide notations and a brief description of
the elements considered for constructing a behavior process model. Generally, a pro-
cess model consists of events, traces, and logs. It is to be noted that the trace consid-
ered in the process model is quite different from the activity trace. Let E, PTr, and
L represent the set of events, traces of events, and logs, respectively. The set E com-
prises of a finite set of events, and the trace PTr is the sequence of events in E such
that PTr = (ej, ey,...,en) where N is the size of the trace |[PTr|. The £ comprises of
traces such that £ = {PTr;, PTry,...,PTrm}. In our study, an event is an activity (HLA)
and the PTr is the sequence of the HLAs performed. An example of £ can be given as
{ <Housework, Eating\Drinking, PersonalGrooming2>, <PersonalGrooming, DeskWork,
Socializing, Tmnspormtion>}. In this example each HLA is an event and each
sequence of events enclosed by (.) is a trace of events. The given example consists of
three traces: two instances of (Housework,Eating\Drinking, PersonalGrooming)
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whose frequency is denoted by the number in the superscript, and one instance of
<PersomzlGrooming, DeskWork, Socializing, Transportation).. Using the events, traces of
events and logs, the process model can be created using Petri net. For more details of
process mining building blocks and creation of process model using Petri net, refer to
[61]

The reasons for using such process modeling methods are twofold: the first is to use
the activity process models in conjunction with associative learning to improve rec-
ognition, efficiency, and reliability, and the second is to use the activity process mod-
els as a means for computing the similarity between two users. The similarity-based
on behavior process models will not only help to map the new user on to the pool of
existing models but also to reduce the effect of activity handling issues. We used the
inductive visual miner (IVM) [62] to construct the process model from the activities
classified using the proposed associative learning. The reason for choosing IVM is
the guarantee of soundness in comparison to other methods. The soundness refers
to the absence of deadlock in the process model [62]. We evaluated the effectiveness
of this implication by generating the process model from classified activities using a
part of individual data and compared it with the model generated from the annotated
data. The process model is first discovered with Petri nets which represent the flow of
a process using modeling formalisms. A triplet can represent a Petri net (Pt, 7t, F),
where Prand Tt refer to the set of places and transitions, respectively, such that their
interaction results in ¢J. The term F is regarded as a set of directed arcs and can be
defined as F = (Pt x 7t) U (7t x Pt). Once the Petri net model is created, we then
apply the IVM to generate the final process model which is represented as a process
tree. For the Petri net, we assume the standard semantics as proposed in [61].

The evaluation was based on two parameters, i.e., trace fitness and generalization
[63]. Trace fitness measures the extent of the model for reproducing the traces from
the event log. It tries to align as many events as possible from the traces (also called
the alignment measure). If the alignment is not perfect, the events may be skipped or
inserted without their presence in the log, but this adds a penalty to the fitness score.
The computation of trace fitness score is presented in Eq. (9)

cost(Mod, L)

THMod, £ =1 - min ( cost (Mod, L ©)
(cost (¥od, £))

where Mod refers to the process model created using Petri net followed by IVM. The
variable £ is an arbitrary event log such that L € L. Trace fitness heavily depends on the
ratio for the cost of aligning £ with the Mod to the minimal cost of aligning the model
on the £. The minimal cost is also responsible for normalizing the value between 0 and
1. The generalization refers to the frequency of each event in the model visited to repro-
duce the event log. It indicates incorrect behavior if an event is visited more often than it
is anticipated. The generalization is considered to be bad if some events of the model are
visited very infrequently. The computation of the generalization is given in Eq. (10)

_ 2l (HVILHA’D_I (10)

Ge(HA) = 1
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We represent the number of executed activities in the event log by HA'. The value of Ge
is in the range of 0 to 1, where 0 indicates very bad generalization and 1 indicates the

optimal generalization.

User similarity based on behavior process models for personalization

The studies carried out for personalized activity recognition have always thrived for
solving the cold start problem. It is common in all activity recognition systems that the
performance on the data acquired from a new user is not generalized to the same extent
due to the small amount of labeled data. To cope with this problem, researchers use the
calibration approach which is to map the characteristics of the new user data on to the
pool of existing subjects. By doing so, the increase in recognition performance has been
achieved. Existing studies map the characteristics of a new user based on gender, age,
and physiognomies such as height, weight, and age. These physiognomies fail to cap-
ture the variations introduced by the difference in activity handling. In this regard, we
measured the similarity of a new subject’s annotated activity log with that of the existing
behavior process models to find the most relevant mapping for personalized activity rec-
ognition. The similarity is computed based on the formulation shown in Eq. (11)

Sim(Uy, Uy) = axTF(Modi, L12)+B*Ge(HA)+y xnormalized number of activities(Uy, Us)

(11)

where o, 8, and y are the user-defined weights for trace fitness, generalization, and num-
ber of normalized activities, such that « + 8 + y = 1, respectively. For computing simi-
larity between two subjects i.e. U; and U,, we compute the trace fitness for the model
generated by activities of U; and the log of U, We normalized the number of activities
for two subjects with respect to the maximum number of activities available either in the

log or the model. To compute the normalized number of activities, we used the compu-
avg (#ofacty #ofactyy)

tation as: max (#ofacti #ofactyr)

Once we find the process model having the maximum

similarity from the existing pool of subjects, we can apply the association rules to per-

form activity recognition.

Experiments and results

In this section, we present the details of the dataset employed in our study and the chal-
lenges associated with it. The experimental results obtained for LLAR and HLAR are
discussed in detail. Additionally, we also present the results for the effectiveness of the
behavior process model generation and personalization based on the proposed similarity
metric as discussed in the former section. For the experiments and analysis, we use two
datasets. The first is the daily lifelog dataset which we refer to as datasetl and the second
is activity recognition in the home dataset which we refer to as dataset2 in our study.
One of the most widely used activity recognition dataset is Opportunity [64], however,
we do not consider this dataset due to the following reasons:

« The recognition accuracy has already surpassed over 98% [13].
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« It deals with only 5 high-level activities.

+ The dataset is acquired in a controlled environment, therefore, including personali-
zation will adhere little to no effect.

« This study is focused on the activity handling problem which cannot be addressed
through this dataset due to the limited variations in performing activities.

The employed datasetl has been made publicly available by the University of Man-
nheim [17]. This dataset consists of data from 7 subjects (age 23.1+1.81). Each subject
data has been recorded for 12 h/day on average for 2 weeks. There are seven low-level
actions, i.e., climbing (up), climbing (down), sitting, standing, walking, lying, and run-
ning. Additionally, this dataset offers 13 high-level activities namely deskwork, eating/
drinking, housework, meal preparation, movement, personal grooming, relaxing, shop-
ping, socializing, sport, transportation, sleeping, and taking medication. The data was
self-recorded using their current location, low-level action, and high-level activity. The
subjects were only given an initial guideline and information on pre-defined labels, but
they were not administered when performing activities. Due to the lack of supervision,
subjects performed the activities differently as compared to the others which introduce
the activity handling problem. Existing studies that use physiognomies might fail to per-
form well on this dataset as all the subjects are male with a similar age range and physi-
cal appearances.

The dataset2 has been made publicly available by the Massachusetts Institute of Tech-
nology [23]. This dataset consists of data from 2 subjects (age 30 and 80). Each subject
data has been recorded for 16 days. This dataset comprises of sensor activations which
were fitted to different appliances, furniture, and containers used in everyday life activ-
ities. The first subject performs 13 activities, i.e., cleaning, doing laundry, preparing a
beverage, grooming, dressing, going out to work, bathing, preparing a snack, washing
dishes, preparing breakfast, toileting, preparing lunch, and preparing dinner. On the
other hand, the second subject performs 9 activities which include watching TV, prepar-
ing a snack, washing dishes, preparing breakfast, toileting, taking medication, listening
to music, preparing lunch, and preparing dinner. As this dataset is a lot in contrast with
the daily lifelog, it will prove the applicability of our proposed method to generalize on
both datasets having different characteristics.

Low-level action recognition results

We perform the analysis of LLAR on datasetl only as the dataset2 does not provide
the information for low-level actions. As explained in the former section, we adopted
an existing method [6] with a single base classifier for recognizing low-level actions
along with the LSTM network for carrying out a fair comparison. We used the fol-
lowing model parameters for LSTM. The network model comprises of 2 layers with
256 units in each layer. The drop-out value was set to 0.5 for both hidden layers. We
used an ADAM optimizer [65], with a learning rate of 0.001 decaying to 0.005. As
the number of instances for the low-level actions is highly imbalanced, we compute
not only the accuracy but also the F1l-scores which is commonly used for evaluat-
ing action recognition methods. We have performed a leave-one-subject-out (LOSO)
analysis since the low-level actions do not exhibit the activity handling problem in
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Table 5 Low-level action results using base classifiers and LSTM network

Action ECOC (Tree) ECOC (QDA) ECOC (AB) LSTM

Standing 91.06% 91.18% 93.60% 92.67%
Sitting 94.45% 93.56% 95.97% 93.84%
Walking 94.49% 95.02% 93.50% 89.45%
Climbing (up) 82.93% 83.74% 87.12% 86.97%
Climbing (down) 91.80% 90.99% 92.45% 92.07%
Lying 96.65% 94.38% 97.67% 97.34%
Running 84.57% 86.84% 88.61% 84.16%
Average 90.85% 90.81% 92.70% 90.93%

ECOC, Error Correcting Output Codes; QDA, Quadratic Discriminant Analysis; AB, Adaptive Boosting; LSTM, Long Short-Term
Memory

, F1-scores for low-level actions using base classifiers and LSTM network
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Fig. 5 F1-scores for each activity using different base classifiers and LSTM Network on dataset1

this dataset. Table 5 presents the accuracies for each action using different base clas-
sifiers and the LSTM network. Figure 5 shows the F1-scores for each action obtained
using the respective methods. It is quite apparent that our existing method using only
an adaptive boosting (AdaBoost) classifier performs better than LSTM networks. The
graph shows that the variations in accuracy are uniform, for instance, the actions
“lying” and “sitting” perform comparatively better in comparison to other actions
which is obvious due to their non-confusing characteristics. We observe that “stand-
ing” action is confused with “walking” action sometimes. Similarly, “running” action
is also confused with “walking” action. As the self-annotation was not administered,
we assume that the users stop moving or stand for the time being while not annotat-
ing it as “standing”. In action recognition, we call it transitional actions such as stand-
walk-stand, and stand-sit-stand. Another reason for the low-accuracy of “Climbing
(up)” and “running” action is that the number of observations for these actions is less
as compared to the other actions. It is obvious that in real life people do not run or
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Table 6 Comparative analysis for High-level activity recognition

Subjects RF HMM ECOC (AB) LSTM AL # of Act
Subject 1 50.00% 51.02% 56.25% 62.96% 64.91% 12
Subject 2 48.96% 56.14% 59.60% 64.87% 69.39% 13
Subject 3 51.25% 49.78% 55.27% 59.95% 67.71% 13
Subject 4 53.56% 51.87% 61.84% 67.14% 7391% 12
Subject 5 39.78% 34.25% 45.52% 46.20% 54.52% 8
Subject 6 52.37% 58.96% 67.30% 66.52% 72.00% 1
Subject 7 51.90% 59.00% 66.67% 65.36% 72.54% 10

RF, Random Forest; HMM, Hidden Markov Model; ECOC, Error Correcting Output Codes; AB, AdaBoost; LSTM, Long-Short
Term Memory Networks; AL, Associative Learning; # of Act, Number of Activities

climb stairs more often in their daily lives which makes this dataset more challenging
in terms of low-level action recognition as well.

Although the accuracy of all the methods is relatively closer, it is necessary to select
the classifier with the best recognition performance as our HLAR is dependent on the
accurate classification of low-level actions. It is also necessary for a good classifier to
recognize not a certain subset but all the actions accurately. In comparison to the ECOC
(AB), LSTM’s performance for the walking and running action is not so good, even the
performance for the running action is lower than the other two classifiers. We consider
the average accuracy of 92.70% is promising enough given the above observations drawn
from the results. Moreover, the testing time for ECOC using AdaBoost and LSTM net-
works is approximately 0.2 s and 0.48 s, respectively which shows that the ECOC with
AdaBoost is better in terms of execution time as well as performance for LLAR.

High-level activity recognition results

To evaluate the personalized HLAR results using our proposed method, we use a leave-
one day out (LODO) validation. We use a single day of each subject for testing while the
remaining days for the computation of CARs. We repeat this experiment the times same
as the number of days for each subject and report the average results. For computing
Car (S,), we set the value of Conf,

nin and to 60% and 20%, respectively. In order to make
a fair comparison with existing methods, we tested many discriminative classifiers such
as decision trees, support vector machines, and Naive Bayes. We also compared our
method with hidden Markov models (HMM) [66] as they take into account the temporal
relationships between the activities and have been used extensively in activity recogni-
tion. We combined the features extracted from Acc and Gyr sensor measurements along
with a low-level action label, location, and time code to train the discriminative and gen-
erative classifiers for datasetl. Similarly, we used the sensor activations along with the
time code to train the classifiers for dataset2.

Although the location information is available in dataset2 it is redundant to the sen-
sor activations as the location indicates the placement of sensors not the presence of the
user. We report the accuracies in Table 6 using HMM, random forest (RF), ECOC using
AdaBoost as a base classifier, and LSTM network with the same configuration used for
LLAR except that we added one more hidden layer with drop out ratio of 0.2. The rea-

son for reporting the accuracies from these methods is that they achieved comparatively
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Table 7 Average precision values for each activity performed by each subject on Dataset1

Activity S1 S2 S3 S4 S5 S6 S7

Desk work 77.78% 85.61% 90.43% 72.22% 50.00% 89.99% 75.00%
Eating/drinking 44.44% 63.89% 72.50% 33.33% N.P 84.62% 61.11%
House work 66.67% 37.50% 60.00% 76.67% 60.00% 68.00% 83.33%
Meal preparation N.P 62.50% 46.67% 43.33% 40.00% 48.00% 55.55%
Movement 8241% 65.39% 72.00% 96.38% 76.00% 60.00% 100.00%
Personal grooming 73.49% 58.33% 44.00% 64.58% 53.33% 60.67% 77.78%
Relaxing 83.33% 40.95% 60.00% 60.42% N.P 73.33% 79.17%
Shopping 66.67% 62.50% 70.00% 54.17% N.P 68.57% N.P

Sleeping 00.00% 75.00% 80.00% 83.33% N.P N.P 100.00%
Socializing 43.06% 75.00% 66.00% 85.00% 45.00% 77.80% 66.67%
Sports 50.00% 72.50% 80.00% 58.33% 20.00% 7333% N.P

Taking medication 66.67% 85.00% 80.00% N.P N.P N.P N.P

Transportation 80.00% 75.00% 60.00% 83.33% 60.00% 86.19% 70.08%

*S, Subject, N.P, Not performed

better accuracy than the other discriminative classification methods. We also present
the average precision of each activity for each subject using the proposed AL method in
Table 7.

The precision values highlight the false-positive rate (FPR) suggesting that the FPR
would be low if the precision is high and vice versa. Holistically, the datasetl have
many instances for the activity ‘DeskWork’ and ‘Movement’ It is reflected by the pre-
cision values for these two activities. However, ‘TakingMedication, ‘Sleeping, and
‘Shopping’ have fewer occurrences as compared to the other activities. The advan-
tage of using the proposed AL is that even the activities such as ‘TakingMedication,
‘Sports; and ‘Sleeping, occur only twice or thrice for data recording of 12 days, it can
generate the corresponding rules and classify the activities with considerable preci-
sion. The only instance where the proposed AL failed to recognize ‘Sleeping’ activity
was for subject 1 as the activity occurred at only two instances and was performed on
a train during transportation. The frequency of the posture for the ‘Sleeping’ activ-
ity was also the same as the ‘Transportation’ activity, therefore, the rule was elimi-
nated. Many times the ‘HouseWork’ activity was confused with ‘MealPreparation’ and
‘PersonalGrooming, the ‘Eating/Drinking’ activity was confused with ‘Relaxing’ and
‘DeskWork’ when performing the activities at location ‘Home, and the ‘Socializing’
activity was confused with ‘Movement, ‘Sports, and ‘Shopping’ when performing the
activities at location ‘Street/Road/Pasture, respectively. The precision values often
resulted in “0” for some of the less frequent activities when using other classifiers.

The precision is a good metric but not a complete one as it does not reflect the ratio
of correctly positive predicted values to the actual positive ones, i.e. “False Negatives”.
In this regard, we show the F1 scores for each subject in Fig. 6 which consider both
the false positive and false negative, accordingly.

We present the day-wise accuracies for both the subjects from dataset2 in Table 8.
Unlike the results from datasetl, ECOC (AB) achieves second-best results in com-
parison to LSTM networks. One disadvantage of using LSTM on dataset2 is less
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Comparison of different classifiers with associative learning on dataset1
T T

1 T T T T T

N [ [
0.9 [ H MM
[ ecoc (AB)
[Cistm
08 AL

F1-scores

Subject1 Subject2 Subject3 Subject4 Subject5 Subjectt Subject?

Fig. 6 Comparison of F1-scores for High-Level Activity Recognition for each subject on dataset1

number of observations as compared to datasetl. Although for some days the results
are better for ECOC (AB), the results from associative learning are the best amongst
all other classifiers for most of the days and overall average accuracy. Similar to the
datasetl, we provide the precision values for each activity performed by each subject
on dataset2 in Table 9. Most of the instances for both the subjects belong to the activ-
ity ‘Toileting’ which is reflected by its high precision. For subject 1, the activities ‘Pre-
paring Dinner;, ‘Washing Dishes, and ‘Cleaning’ have the least number of instances
which is apparent by their low precision, however, the proposed AL can still classify
these activities whereas other classifiers such as RF, HMM, and LSTM yield “0” preci-
sion for the said activities. The three activities ‘Preparing Breakfast, ‘Preparing Lunch;
and ‘Preparing Dinner’ is mostly confused due to the similar sensor activities and
frequency. Subject 2 has more uniformly distributed instances for all the activities
except ‘Toileting’ which results in high precision values for most. In addition to the
precision values, we show the F1 scores for each subject in Fig. 7.

It is evident from the results that the proposed method not only achieves the best
results for the data from inertial measurement units but also achieves the best results
for the sensor activations which shows the generalizing ability of CARs on different data
modalities. The results show that the classifiers assuming the data to be independent
and identically distributed (IID) do not perform well as they do not take into account
the relationship of activities being performed with respect to a certain context. The
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Table 8 Day wise comparison of accuracies on Dataset2

(2020) 10:35

Days RF HMM ECOC (AB) LSTM AL # of Act
Subject 1
1 48.00% 39.00% 60.50% 54.25% 66.75% 13
2 51.33% 55.50% 64.67% 58.00% 71.33%
3 78.00% 75.00% 91.00% 82.00% 88.00%
4 55.14% 59.45% 69.43% 62.29% 76.57%
5 40.67% 29.00% 48.00% 48.00% 56.33%
6 62.29% 37.18% 75.57% 69.43% 73.71%
7 52.23% 57.09% 61.64% 57.09% 71.73%
8 43.44% 41.63% 64.67% 62.29% 70.22%
9 46.76% 39.36% 62.76% 59.11% 70.22%
10 48.00% 32.17% 69.43% 66.29% 76.57%
11 52.23% 38.71% 76.57% 63.29% 69.43%
12 51.33% 42.00% 58.00% 51.33% 64.67%
13 40.86% 38.71% 55.14% 49.00% 62.29%
14 59.11% 36.89% 69.22% 64.67% 75.78%
15 40.31% 36.62% 48.00% 55.69% 59.54%
16 32.00% 27.00% 53.00% 48.00% 58.00%
Avg 50.10% 42.83% 64.22% 59.42% 69.44%
Subject 2
1 46.15% 38.46% 53.85% 53.85% 53.85% 9
2 50.00% 37.50% 62.50% 50.00% 75.00%
3 38.46% 30.77% 61.54% 53.85% 61.54%
4 50.00% 41.67% 66.67% 5833% 75.00%
5 66.67% 5833% 83.33% 75.00% 91.67%
6 42.86% 35.71% 57.14% 50.00% 64.28%
7 50.00% 42.86% 64.28% 57.14% 64.28%
8 40.00% 40.00% 60.00% 50.00% 60.00%
9 50.00% 40.00% 70.00% 60.00% 80.00%
10 55.56% 33.33% 66.67% 55.56% 66.67%
1 66.67% 66.67% 100.0% 83.33% 100.0%
12 66.67% 55.56% 77.78% 66.67% 88.89%
13 68.75% 62.50% 81.25% 75.00% 87.50%
14 4545% 45.45% 63.64% 54.54% 72.73%
15 50.00% 37.50% 75.00% 62.50% 87.50%
16 50.00% 50.00% 66.67% 50.00% 66.67%
Avg 52.33% 44.77% 69.39% 66.43% 74.72%

RF, Random Forest; HMM, Hidden Markov Model; ECOC, Error Correcting Output Codes; AB, AdaBoost; LSTM, Long-Short
Term Memory Networks; AL, Associative Learning; # of Act, Number of Activities

proposed AL classifier models the activity-context relationship well which results in
better recognition performance. For datasetl, the accuracies are not so high and one of
the major reasons is the inhomogeneity in the activity labels. As we performed LODO
analysis, an activity label that is performed on the testing day may not be available in the
training days which results in misclassifications. However, the proposed AL is better at
recognizing activities with variations in terms of the interaction with the contexts, i.e.

time and location, which is supported by the better accuracy, precision, and F1-scores.

Page 26 of 35
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Table 9 Average precision values for each activity performed by each subject on Dataset2

Activity Activity code S1 S2
Going out to work 5 80.95% N.P
Toileting 15 84.72% 82.29%
Bathing 20 59.10% N.P
Grooming 25 81.77% N.P
Dressing 30 75.64% N.P
Taking Medication 40 N.P 68.75%
Preparing breakfast 60 50.00% 85.00%
Preparing lunch 65 46.67% 76.92%
Preparing dinner 70 37.50% 83.33%
Preparing snack 75 80.00% 54.54%
Preparing beverage 80 81.81% N.P
Washing dishes 85 57.14% 73.08%
Cleaning 100 22.22% N.P
Doing laundry 105 71.90% N.P
Watching TV 135 N.P 95.83%
Listening to music 140 N.P 91.67%

*S, Subject, N.P, Not performed

Comparison of associative learning with different classifiers on dataset2
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Fig. 7 Comparison of F1-scores for High-Level Activity Recognition for each subject on dataset2

Behavior process modeling of human activities

To evaluate the associative learning method for the behavior process modeling of
human activities, we divide the datasets for each subject into two. We generate a
reference model from the first ten days and 14 days of annotated activities for each

Page 27 of 35
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Table 10 Comparative results for process modeling of human activities on dataset1

Metric S1 S2 S3 S4 S5 S6 S7
RF

Trace fitness 0.78 0.79 0.59 0.60 0.59 0.64 0.69

Generalization 0.65 0.65 048 0.57 034 0.60 061
HMM

Trace Fitness 0.80 0.80 0.64 0.67 045 0.64 0.68

Generalization 0.68 0.69 0.62 0.60 0.29 0.58 0.65
ECOC (AB)

Trace fitness 0.85 0.88 0.81 0.80 0.82 0.83 0.86

Generalization 0.77 0.75 0.69 0.70 0.59 0.71 0.70

LSTM

Trace fitness 0.87 0.90 0.82 0.79 0.82 0.82 0.84

Generalization 0.78 0.79 0.68 0.71 0.55 0.69 0.65
AL

Trace fitness 0.92 0.97 0.89 0.87 0.87 0.88 0.90

Generalization 0.84 0.87 0.81 0.80 0.71 0.80 0.83

Table 11 Comparative results for process modeling of human activities on dataset2

Metric S1 S2
RF

Trace fitness 0.73 0.69

Generalization 0.69 0.67
HMM

Trace Fitness 0.64 0.61

Generalization 0.62 0.59
ECOC (AB)

Trace fitness 0.87 0.86

Generalization 0.87 0.82
LSTM

Trace fitness 0.79 0.76

Generalization 0.80 0.75
AL

Trace fitness 091 1.00

Generalization 0.90 0.94

subject from datasetl and dataset2, respectively. We use the last 2 days’ data from
both the datasets to predict the activities using RF, HMM, ECOC with AdaBoost,
LSTM, and AL. We then compute the trace fitness and generalization parameters
for each subject. For the computation of the said parameters and generating process
model from activity logs, we used Rapid Miner with RapidPRoM extension [67]. An
example of the process is provided in the Additional file 1 generated using 80% activi-
ties and 80% path. We present the results in Tables 10 and 11, accordingly. The results
indicate that our proposed associative learning generates the best alignment of event
logs which is reflected by the values of trace fitness. It was also observed that the
predicted activity log generalizes quite well to the reference model specified by the

generalization parameter.
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Table 12 Similarity matrix for all subjects

S1 S2 S3 S4 S5 S6 S7

S1 - 0.6574 0.3676 0.7073 0.3008 0.5740 0.5960
S2 0.6932 - 0.3760 0.5949 0.3851 0.5339 0.6350
S3 0.5471 0.6369 - 04225 0.3396 0.5469 04235
S4 0.6768 0.5392 0.3822 - 0.4365 0.5600 04542
S5 0.5042 06109 04571 0.6308 - 04250 0.4497
S6 0.6950 0.6966 0.3807 0.7275 0.5409 - 0.6274
S7 0.6864 0.6997 0.4846 06129 0.6540 0.7307 -

Table 13 Comparative accuracy analysis for activity recognition using semi-population
calibration approach

Subjects RF HMM ECOC (AB) LSTM AL

Subject 1 34.37% 39.05% 38.30% 42.37% 56.95%
Subject 2 32.09% 37.53% 39.47% 39.36% 54.52%
Subject 3 27.52% 29.87% 35.72% 39.59% 52.17%
Subject 4 30.65% 32.78% 39.48% 3841% 53.19%
Subject 5 19.87% 14.52% 25.25% 26.02% 44.25%
Subject 6 30.73% 30.96% 39.30% 36.25% 55.00%
Subject 7 36.18% 39.76% 42.67% 42.63% 61.45%

Personalized human activity recognition using CAPHAR

The experimental results for personalization have been performed on datasetl only
due to the number of subjects. For cross-subject analysis, we use a semi-population
calibration approach as suggested in [1]. We leave one subject out as the test user and
take 2 days of the test user’s data to compute the similarity metric from the pool of the
remaining subjects. We then conduct activity recognition using RF, HMM, ECOC with
AdaBoost, LSTM, and AL to compute the accuracies and F1-scores for performance
evaluation on the remaining days of test user’s data. We develop the similarity matrix as
shown in Table 12 to select the model closest to the test user. For the similarity computa-
tion, we set the value of «, B, and y to be 0.4, 0.4, and 0.2 respectively. We highlight the
best similarity of the test user with others in the bold face. It should be noted that the
similarity matrix does not follow symmetry property i.e., Sim(Uy, Us) # Sim(Ua, Uy).
The reason behind non-symmetrical results is the variation in the number of activities
mostly. For instance, subject 1 might perform only 6 annotated activities in his first two
days, while the subject 2 has a total of 13 activities. Similarly, subject 2 may perform 6
activities in his first 2 days while subject 1 has a total of 12 activities. The results also
affect the TF and Ge values which result in the asymmetric similarity matrix. We observe
that subject 3 has a different way of handling the activities as compared to other users
which leads to low similarity values. We assume that the reason for subject 5 having low
similarity value is less amount (days) of data and less number of activities as compared
to other subjects. Based on the similarity values, we perform the activity recognition on
the remaining days of data for each test user to evaluate the HLAR performance. The

accuracies and F1-scores for each subject are shown in Table 13 and Fig. 8, respectively.
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Comparison of different classifiers with associative learning using semi-population calibration approach on dataset1
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Fig. 8 Comparison of F1-scores for HLAR using semi-population calibration approach on dataset1

The results show the weakness of conventional discriminative and generative learning
algorithms. Although the performance degrades when the model is fitted to a new sub-
ject which is obvious in activity recognition field, still the associative learning achieves
better results with a good margin, relatively. The highest accuracy was achieved for sub-
ject seven whereas the lowest accuracy was recorded for subject 5 which we assume is
the same reason for getting low similarity with all subjects in the similarity matrix. The
graph in Fig. 8 demonstrates the effectiveness of associative learning in comparison to
the other classification algorithms. Due to the capability of AL to model the relationship
between the actions/activations and the interaction with contexts, it can cope with the
activity handling problem. The strength of AL can be justified by comparing its perfor-
mance with HMM and LSTM as both the techniques use sequential modeling of the
activities. However, the sequence of actions is not enough to enhance the performance,
the frequency of actions being performed or interacted with the corresponding context
should also be taken into account as considered in AL, accordingly.

Comparison with State-of-the-Art methods

As stated, most of the works have used the opportunity dataset for proving the effective-
ness of their work, however, the opportunity dataset has less number of subjects, high-
level activities, does not exhibit activity handling problem, and is homogeneous in terms
of activity labels. The proposed work deals with all the above-mentioned problems. To
prove its effectiveness, we implement some state-of-the-art works proposed in existing
studies and apply it on datasetl to perform a fair comparison. We used the implementa-
tion of DeepSense [68], Deep Residual Bidirectional LSTM (DRBLSTM) [69], DeepCon-
vLSTM [3], and Associative Learning [4], respectively. We evaluated the methods with
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Table 14 Comparison with state-of-the-art methods on dataset1 with respect to accuracy

Subjects DeepSense DRBLSTM DeepConvLSTM Wenetal.(Loc) Wenetal.(Time) AL

Subject 1 58.73% 59.45% 62.04% 59.27% 56.36% 64.91%
Subject2  59.26% 63.69% 67.24% 61.43% 60.37% 69.39%
Subject3  58.94% 62.37% 66.15% 62.23% 60.97% 67.71%
Subject4  63.87% 67.65% 69.43% 65.52% 61.26% 73.91%
Subject5  45.44% 48.59% 54.36% 46.20% 44.76% 54.52%
Subject6  64.91% 68.84% 72.45% 68.26% 63.72% 72.00%
Subject7  65.54% 69.42% 72.67% 65.36% 63.68% 72.54%
Avg 59.53% 62.86% 66.33% 61.18% 58.73% 67.85%
AvgETT 2045 1455 1735 0245 0.27s 0325

The best accuracy is represented by boldface
*E.T.T, Execution Time for Testing

Leave-one-day-out (LODO) protocol as performed in the earlier experiments. We used
the raw sensor readings of accelerometer and gyroscope along with the location and
time-encoded feature vectors as suggested in DeepSense, DRBLSTM, and DeepConvL-
STM, instead of directly providing the low-level action label. The associative learning
proposed in [4] used only a single context so we apply the method using the location
context first and then the time-encoded values. The comparative results for each sub-
ject are shown in Table 14. The results show that the associative learning method in [4]
works better with the location context in comparison to the time-encoded values. It
is shown that the proposed method outperforms the existing ones on all the subjects
except 6 and 7, however, the difference is quite low, i.e. 0.45 and 0.13, respectively. The
proposed method also achieves better accuracy on average for all subjects in comparison
to the existing works. An advantage of the proposed method over the existing ones is
also the reduced number of parameters required in optimizing the training process con-
cerning deep learning architectures. The reason for better performance is assumed to be
the constrained search space and the pruning policy which our proposed method under-
goes for generating association rules. It helps to avoid overfitting for a certain activity
label which is important as the labels are not homogeneous and the activities are not
always performed in similar way. It is also worth noticing that the execution time of the
proposed method is 0.32 s which is quite faster than DeepSense, DRBLSTM, and Deep-
ConvLSTM having 2.04, 1.45, and 1.73 s, respectively.

Conclusion

Recognizing low-level actions has been addressed by many existing studies and
detecting only the basic actions such as standing, sitting, walking, running, and lying
down are not of many benefits as the daily life activities are much more complex than
the basic actions. In this paper, we proposed CAPHAR using the associative learning
method based on class association rules with contextual information for personalized
human activity recognition. The effectiveness of associative learning when dealing
with the activity handling problem is evident with the results shown in Table 14. The
proposed method not only achieves the best results but also shows the best trade-off

in terms of accuracy and execution time. The personalization effect in CAPHAR has
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been achieved by computing the similarity between existing and new users based on
their behavior process models. We proved that leveraging association rules for clas-
sifying activities performs better than the conventional discriminative and generative
classification methods. The results show that associative learning can achieve 18.16%,
16.28%, 8.93%, and 6.00% better accuracy using RE, HMM, ECOC with AdaBoost, and
LSTM on datasetl, respectively. This shows that not only the CAPHAR can achieve
better personalization results but also can cope with the activity handling problem as
users do not perform the activity in the same manner. We also proved that associative
learning could perform better on both datasets having different characteristics and
modalities, i.e., low-level actions and sensor activations.

We also provided the results for the behavior process modeling of individual user
activities and provided a solution to the cold start problem using the proposed sim-
ilarity metric for personalization. The results for the behavior process modeling of
individual users show that associative learning can predict the activities quite well,
resulting in better trace fitness and generalization values in comparison to the other
classification approaches. This leads to the realization of CAPHAR in the field of
human behavior modeling which is more complex.

Furthermore, we trained activity models from different subjects and used these
models to predict activities for a new user having a small amount of annotated activ-
ity data. The mapping of a new user was performed using the similarity metric based
on trace fitness, generalization, and an average number of activities. Experimental
results show that the associative learning method can achieve 23.73%, 21.86%, 16.76%,
and 16.13% better accuracy in comparison to RF, HMM, ECOC with AdaBoost, and
LSTM on datasetl, respectively. The results show the effectiveness of our personal-
ized human activity recognition when provided with a new user having small amount
of annotated activity data. We have also shown the qualitative results for F1-scores
for LLAR, HLAR, and HLAR using a semi-population calibration approach.

In this paper, we show a different way of recognizing activities by leveraging the
association rules using LLA/SA with contextual information. Although the reported
results are better in comparison and show promising aspects to cope with the activ-
ity handling problem, there is still room for improving the performance of activity
recognition. The limitation of this study is that it uses at least 2 days of the test users’
data to generate a process model for mapping. In real-life situations, an online learn-
ing approach may be required to deal with this issue so that the model is updated
regularly by asking the user for the activity labels. Currently, we only used the asso-
ciative learning method on two datasets that provide low-level actions/sensor acti-
vations data along with location and time information. We also intend to record a
large database with more fine-grained activities to leap forward in terms of realiza-
tion. The extension of the dataset will also allow us to integrate our similarity measure
with demographic features to understand the various aspects of human activity and
useful insights for variations in activity handling. Furthermore, the associative learn-
ing method can be used for large-scale activity recognition from videos by consider-
ing the associations of the contexts such as objects and scene (background) rather
than the co-occurrences of Spatio-temporal features. It will be interesting to see the
association of the action with respect to a certain context and to compare it with the
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attention mechanism while dealing with the activity handling issue. The analysis will
certainly highlight the benefits of the interactions with the context.
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