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Introduction
The adoption of wireless communication in vehicles has received significant attention in 
academia and industry for its role in improving road safety and efficiency. Such commu-
nication provides a cooperative road environment, where vehicles can share their inten-
tions and sensor information [1]; this contributes to establishing a feasible decentralized 
framework for coordinating the sharing of resources such as road infrastructure and car 
parking. Accordingly, there are international organization efforts to standardize vehic-
ular wireless communication, for example, European Telecommunications Standards 
Institute (ETSI) and Society of Automotive Engineers (SAE) standards in Europe and the 
United States (US), respectively.

Decentralized cooperation mechanisms among vehicles are challenged by rapid 
changes in density and network topology, but there is a broad range of applications of 
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vehicle-to-vehicle cooperation that can be made possible by such mechanisms. In addi-
tion, inter-vehicle cooperation can form the basis for smart social interaction among 
vehicles, instead of restricting the cooperation to mere dissemination or sharing of 
information. For example, in our previous work in [2], as will be explained briefly later, 
a decentralised car parking coordination mechanism called CoPark-WS (short for Co-
operative Car PARKing with Walking and Searching time) was introduced based on 
vehicles cooperating without intervening car parking infrastructure, allowing resolving 
of contention for parking spaces and sharing of advice about occupancy of areas.

However, there is another side to a decentralized cooperation mechanism that can 
limit the benefits of cooperation, which is the selfish behaviour of some vehicles. The 
lack of a centralized authorised unit and the partial knowledge about the surrounding 
environment can provide an opportunity for selfish behaviours to improve one’s own 
profit. Although the Institute of Electrical and Electronics Engineers (IEEE) 1609.2 
standard proposed a security service to protect Wireless Access Vehicular Environ-
ment (WAVE) communication which can protect vehicles from spoofing and eaves-
dropping [3], the detection of specious transmitted information is also required in 
Vehicular Ad hoc NETworks (VANETs) [4].

There are two possible forms of selfish behaviours vehicles can experience in a 
decentralized cooperation mechanism: 

1.	 One is when a vehicle plays a passive role, i.e. benefiting from receiving information 
from other vehicles, while not sending or forwarding useful messages to its neigh-
bours, thereby, limiting the effect of vehicle cooperation or information sharing. 
There are various mechanisms which have been introduced to identify selfish devices 
in Mobile Ad hoc NETworks (MANETs) and VANETs via neighbours monitoring 
the device’s actions and adopting reputation mechanisms, all this to encourage coop-
eration as in [5].

2.	 The other form of misbehaviour, which is more complicated than the first, is related 
to a vehicle sending false information with the objective of deceiving other vehicles 
in order to increase its chance of achieving its goal. For example, in a car park sce-
nario, a vehicle can share false information about car parking space availability in 
a particular area to deceive other vehicles (mis-)leading them to search alternative 
areas, in order to enhance its own chance of getting a parking space in preferred 
areas. This is different from but related to the issues of message tampering and data 
trust in vehicle-to-vehicle communications [6], and false data injection or false event 
notification attacks [7].

Motivated by the need to address selfish behaviours while maintaining the benefits of 
cooperation, this paper aims to investigate the effect of selfish behaviour of vehicles 
looking to park by sending false information as studied within the framework of a 
decentralized car parking coordination mechanism (CoPark-WS).

The novel contributions of this paper are as follows:

•	 We provide a comprehensive analysis of the robustness of the decentralised coop-
erative parking approach (called CoPark-WS) based on extensive simulations, in 
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the case of varying proportions of participating vehicles and in the case of the 
second form of selfish behaviour above (i.e., when there are vehicles sharing false 
information); in particular, we quantitatively study the impact of misleading infor-
mation shared by malicious vehicles (which we call gang vehicles) on a collection 
of vehicles within an area (e.g., a large carpark).

•	 We introduce a novel deception detection mechanism (DDM) to limit the effect of 
such selfish behaviour, using a mechanism to appropriately judge received advice 
messages. We show that DDM comprises a family of approaches (DDM-C, DDM-D 
and DDM-R) that relates to the extent of intervention required.

We believe our work is original in studying the impact of false information in coopera-
tive parking scenarios, and in providing a mechanism to address this problem.

The remainder of this paper is organized as follows. Firstly, we will outline the context 
for cooperative vehicles, explaining key architectures and on-going work that will real-
ize this notion. We will then describe CoPark-WS which relies on the ability of vehicles 
to cooperate via vehicle-to-vehicle exchanges to find parking effectively. Then, we will 
investigate, using extensive simulations, the influence of selfish behaviour in terms of 
vehicles working individually and in a group (as a gang) on CoPark-WS performance—
we provide results to show the impact of fake messages by gang vehicles on parking 
behaviour. After that, a Deception Detection Mechanism (DDM) to ameliorate the situ-
ation is proposed, discussed and investigated—we provide results to show the improve-
ments using DDM. Next, related work is reviewed. Finally, we conclude with future 
work.

Context‑the advent of cooperative vehicles
Communication among vehicles is deemed to potentially increase traffic safety and effi-
ciency [8, 9]. By providing information at long-range, the communication offers to the 
drivers (for non-fully automated vehicles) more time to process it and to react accord-
ingly. For the connected and automated vehicle, it provides a redundant signal and com-
plement the environment understanding outside of the sensors’ view. Despite many 
deployment projects, the adoption of Cooperative Intelligent Transport Systems (C-ITS) 
is still limited. The eCall is the first application available; it has been standardised by the 
European Union after several implementations by car manufacturers and became man-
datory for new vehicles from 31 March 20181. The eCall will automatically send a mes-
sage to the European emergency number in the event of a serious road accident, with 
information related to vehicle dynamics, as well as Global Positioning System (GPS) 
localisation.

In the United States and in Europe, the deployment of this technology depends 
on three progressive steps [10]: (Day 1) Awareness driving using status data (based 
on cooperative awareness and decentralized notification), (Day 2) Sensing driving 
via sensor data (using collective perception), and (Day 3) Cooperative Driving using 
intentions and coordination data (involving coordination or negotiation). These steps 
involve their respective services and use cases. The services relate to supporting 

1  see http://data.europ​a.eu/eli/reg_del/2017/79/oj, consulted 10/10/2019

http://data.europa.eu/eli/reg_del/2017/79/oj
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communication; the use cases describe mobility and safety related applications. Day 
1 applications have been extensively tested in the field and require simple message 
exchange that are standardised. Day 2 and 3 applications use more complex messages 
to extend the sensors’ view of the vehicle or to coordinate themselves. The services 
are still not standardised and several use cases are being developed. The parking use 
case will build on such communication mechanisms, requiring additional standard-
ized messages (not detailed in this paper).

In terms of connected and automated vehicle’s architecture, the communications 
may interact with the system either at the sensing layer or at the decision layer (Fig. 1):

•	 The implementation of the first architecture, in real conditions, is recent. It bene-
fits from the advances in communication devices to support the exchange of large 
quantities of data (such as images and raw sensors’ signals). The exchange at this 
level enables applications such as cooperative perception [11] that relies on the 
fusion of signals from multiple vehicles and/or roadside equipment to provide an 
extended perception for automated driving as well as for a driver, or cooperative 
localisation [12] that relies on the close environment of the considered vehicle to 
provide better localisation.

•	 The second one is widespread. It has been initially described by [13] and is the 
foundation of numerous developments for vehicles acting together (platoon, clus-
ter, merging, etc) as it allows exchange of (small sized) messages between vehicles 
and with the infrastructure to coordinate the movement of vehicles.

Building on the above architectures, one could envision vehicle-to-vehicle (v2v) 
message sets for the purposes of cooperative car parking, which we will detail in the 
next section. The following sections then consider the robustness of such coopera-
tive mechanisms, in the face of fake or misleading messages and anti-social behaviour. 
Our work has broad implications for all such work involving cooperation via v2v mes-
saging standards that are to come. Fake message injection in v2v communication has 
been considered in other road situations, as reviewed in [14], different from coopera-
tive parking as we consider here.

Cooperative car parking
In general, a large number of people stream to work or to shopping areas at similar 
times (e.g., the rush hour). Consequently, a large number of vehicles could be cruis-
ing to find car park spaces at similar places, causing a built up of traffic, and with no 
means of cooperation, cars might compete with one another for similar spaces even 
if there are good alternatives available. Significant time is then used for parking. With 
the possibility for vehicles to ‘chat’ with each other and with infrastructure systems to 
increase their ability to observe their surroundings, eventually, improved safety and 
efficient use of road resources can be achieved. In this section, we describe how vehi-
cle-to-vehicle communication can address the challenge of finding car park spaces 
with a large number of vehicles looking to park using a multiagent algorithm called 
CoPark-WS, first introduced in our previous work in [2].
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Fig. 1  Architecture for the use of communication in connected and automated vehicles, with an exchange 
of information at the sensing level (top, from [11]) and at the decision level (bottom, from [13])
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CoPark-WS aims to provide a decentralized car park allocation mechanism in large 
car parks such as at an airport, mall or even a CBD area, assuming an absence of a cen-
tralized control unit, depending only on vehicle-to-vehicle cooperation. The vehicles 
attempt to reduce the searching time to find parking within acceptable levels of fair-
ness with regard to distance to walk to the target building from the parked car, when a 
large number of vehicles enter the car park at nearly the same time (e.g., at peak hours) 
from different entrances. It is assumed a smart software agent is installed in the vehicles 
and vehicles have sensors to detect the parking spaces next to them, and vehicles have 
GPS navigation capabilities and the agents can cooperate with other agents. Also, it is 
assumed in our investigation that the vehicles start the searching journey with a static 
initial belief about parking occupancy patterns which can be inaccurate with respect to 
the current parking situation.

There are various ways discussed in the literature for predicting parking occupancy 
based on historical data. For example, occupancy can be estimated by receiving informa-
tion from parked vehicles via a Road Side Unit (RSU) at the parking gate or by Floating 
Car Data (FCD). Regardless of the ways of collecting the initial information, in our study, 
we deliberately supposed that the early and the late coming vehicles all have the same 
initial belief about occupancy in order to demonstrate how CoPark-WS can deal with 
the partial and uncertain initial information. In the experiments, the car park area is set 
to be empty initially, for simplicity. The large car park is divided into equal sized areas. It 
is assumed that the number of slots in each area is S.

Lets look at our approach from the perspective of an agent (a vehicle). Let M and O(k) 
represent the total number of areas and the number of lost areas with respect to an 
agent’s belief at time k respectively, where a lost area is an area with no more vacant slots 
according to the agent’s own current knowledge. Note that our approach is approximate 
and works with imperfect knowledge - hence, while vehicles work with the knowledge 
they have, and cooperate accordingly, our approach does not aim to achieve a globally 
optimal solution, but to improve on the situation of no-cooperation, that is, cooperation 
using CoPark-WS is better on average than no cooperation as we showed previously [2].

The vehicle, firstly, looks for an area that could be near to the destination (i.e., the 
building). A vehicle loses the chance to park in an area when the number of parked 
vehicles in the area is found to be S via information received from other vehicles or via 
deference to other competing vehicles closer to the area. Consequently, the vehicle will 
then have to select another area using a heuristic based on our proposed utility function 
(described later) and messages received from other vehicles. If the vehicle thinks that an 
area still has parking lots (based on information it has received from other vehicles and 
on information it gathered itself on the road segments the vehicle has so far traversed), 
the vehicle will keep going towards the target area and on arrival at the target area, starts 
to search for a slot within that area. Also, it is possible for a vehicle to lose when compet-
ing to get a slot in the target area, wherein, the vehicle has to select another area based 
on its recomputing of the utility function (applied to potential target areas), and changes 
its target to go towards a newly selected area.

The details with regards to a vehicle navigating within an area is demonstrated in 
Fig. 2. The list of areas is sorted in ascending order based on the distance to the building 
entry, and initially, an agent selects the first area (nearest to the entry), optimistically, as 
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a target area and goes towards it. In our decentralized approach, each agent adopts the 
broadcast mechanism to communicate with surrounding neighbours.

The first form of cooperation in CoPark-WS is represented by sharing intentions (i.e., 
a selected target area or parking space) through disseminating messages called INFO 
messages. It can be viewed as an extension or a potential addition to range of Coop-
erative Awareness Messages (CAMs) / Basic Safety Messages (BSMs) in Europe and US 
standards respectively. Besides containing a vehicle’s spatial information (GPS informa-
tion), vehicle identifier (ID), it includes the vehicle’s intentions. There are two cases to be 
handled.

•	 Firstly, the agent finds that its own target area is different from that of the sender’s, in 
which case a demand value of its target area i is computed by the following formula: 

(1)Di(k) = MAX{0, (ωi − τi(k)− ρi(k))/ωi}

Fig. 2  The CoPark-WS flow chart: searching an area
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 where ωi is the initial number of slots in area i (which is equal to S in case that 
vehicle had not visited the area before; otherwise, it is equal to the actual number of 
available slots at the visiting time, according to its own historical knowledge at time 
k), τi(k) is the number of vehicles looking to park in the area as determined by the 
agent based on received INFO (Information) messages at k, and ρi(k) is the number 
of occupied slots in the area based on its own scanning of area i.

•	 Secondly, if the agent finds from an INFO message it received that the sender and 
itself have the same target area, the vehicle can determine its likelihood of getting 
a parking space in the target area by comparing the distance between itself and the 
target area, and the distance between the sender and the target area (i.e., via this heu-
ristic). If it finds itself further, it determines if there are enough spaces in the tar-
get area to still accommodate itself if the sender gets there first. In case there is not 
enough, the vehicle then reassesses the available areas based on a utility function 
(given below) and selects another area that has the highest utility value as a new tar-
get area. Note that travel distance instead of Euclidean distance can also be used but 
our simulations here explore the Euclidean distance as a heuristic.

The key idea of computing a utility value is to evaluate areas according to the agent’s 
preferences about distance to the building entry and the number of available areas.

The utility function will involve the availability ratio represented by

In addition, the agent’s preference for an area i with regard to distance to the building, 
which is fixed, and distance to the vehicle’s current position, which varies with time, are 
denoted by weights Ii and Ji(k) , respectively. The utility value of an area i at time k is 
computed as follows:

where α and β are human factors and α + β = 1 ; they are added to model the driver’s 
personality in being bold (and tending to find a car park slot nearer to the building but at 
a higher risk of not finding one), or cautious (and tending to find any car park near to the 
vehicle’s position even though far from the building).

In the case of vehicles already inside their target areas, the cooperation policy is differ-
ent. Instead of contesting for an area in general, the vehicles will each select a particular 
slot and go towards it, sending INFO messages to announce to other vehicles about its 
goal (which is a target parking slot). A vehicle changes its target slot when it detects that 
the slot is occupied or, from an INFO message received, it finds that there is another 
vehicle intending to get to it and is nearer. In the situation where the area still has other 
free slots, the vehicle can select another slot. Otherwise, the vehicle will need to reassess 
the available areas based on the utility function and select an area with the highest utility 
value as its next target, as before.

Vehicles sending advice messages, which is a new type of vehicle-to-vehicle mes-
sage related to CoPark-WS, is the second form of cooperation considered in CoPark-
WS. Advice sharing is a strategy for vehicles to help each other. As mentioned earlier, a 

(2)V (k) =
M − O(k)

M

(3)Ui(k) = α ∗ Di(k) ∗ V (k) ∗ Ii + β ∗ Ji(k) ∗ (1− V (k)) ∗ (ωi/(ωi − ρi(k)))
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vehicle can know the target area of another vehicle when it receives an INFO message 
from that vehicle. Based on its own knowledge, the vehicle might know that the target 
area of the other vehicle is already fully occupied; the vehicle can then send a unicast 
message, called an ADV (advice) message to the other vehicle, informing it that its target 
area is occupied and also suggesting another potential target area to that vehicle. The 
area this vehicle suggests to the other in such a case is the second choice area of this 
vehicle (rather its own first choice, in aiming to reduce contention). The receiving advi-
see vehicle can accept the suggestion, or reject it in case it recognises the suggested area 
is occupied, in which case it can reply to the advisor vehicle about that.

Experimentation
Simulation tool and experiment configuration

We have used an integrated simulation environment, a combination of JADE [15] and 
SUMO [16] programs, for evaluating CoPark-WS’s performance. JADE, which stands 
for Java Agent Development framework, is adopted to implement the agent behaviour 
(assumed to be installed in a vehicle) that makes decisions on behalf of the driver for 
selecting a parking slot, based on cooperation with other agents and on collecting physi-
cal information from attached sensors (e.g., about vacant slots near it). SUMO is used 
to model the road network and basic vehicle behaviour. Furthermore, we connect JADE 
and SUMO through the TraSMAPI interface (Traffic Simulation Manager Application 
Programming Interface) [17].

The connection between SUMO and JADE is based on a client-server approach by 
using the TCP socket protocol for exchanging messages. SUMO is provided with a tool 
called TraCI, which is an interface protocol that enables external applications to access 
and control the simulated transportation system elements such as vehicles, traffic light 
signals, and road sensors. TraSMAPI interacts with SUMO via TraCI. SUMO is used to 
create a car park area scenario and to model the vehicle movements. In addition, SUMO 
represents the server-side that provides real-time data of the running scenario to JADE 
and executes JADE requests; for instance, for changing vehicle routes and speeds. JADE, 
which represents the client-side, provides the agent programming environment for cre-
ating and programming agents corresponding to the “brains” of the vehicles. After estab-
lishing the connection, control will transfer to the listening mode for the client (JADE) 
commands, which is mapped to the permitted TraCI commands. Accordingly, the status 
response message which contains the required information is sent in response to the 
corresponding command. After launching SUMO, the car park scenario is loaded. After 
that, SUMO will change to the listening mode for receiving JADE request messages via 
the predefined port, which is set to 8820. More details of the simulation including source 
code are provided via the project Website.2

A simulated large car park representing a car park of size 1000× 500 m area has been 
used to evaluate CoPark-WS with 120 distributed free parking slots. The default commu-
nication range of a vehicle is set to 300 m. Note that the simulated V2V communications 

2  https​://sites​.googl​e.com/view/alied​anico​de/.

https://sites.google.com/view/aliedanicode/
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could correspond to a real DSRC type V2V communications or 5G/LTE-V2V communi-
cations, but our simulation results are agnostic to this.

The designed car parking scenario attempts to capture the common characteristics of 
a large car park or an urban area (e.g., a CBD area). With the objective to assess CoPark-
WS in various car parking circumstances, the position of the final destination and park 
entrance gates, in experiments, are considered in two car park structures. The first is 
shown in Fig. 3.

The building, representing the final destination, is located on one side of the car park, 
while the car park gates are located on the other side. Moreover, it is assumed that vehi-
cles are entering via the three gates (Gate-1, Gate-2, and Gate-3) in a round robin man-
ner and with IDs according to the entering order. For example, vehicles of ID 1,2, and 3 
would enter via the gates Gate-1, Gate-2 and Gate-3, respectively.

The second car park structure is assumed in the experiments related to gang behav-
iour, as shown in Fig. 9. There are two parking entrances located on the car park area 
border with a distance of 1000 m between them, and the vehicles arriving in even-num-
bered order would enter from one gate, and the others from the second gate, while the 
final destination located on the opposite side in the middle. For the utility function, α 
and β are set to 0.6 and 0.4 respectively, to almost balance the intention of the individual 
between parking near the building or parking near where the vehicle currently is.

Proportion of participating vehicles

In this section, we evaluate the influence of CoPark-WS performance via comput-
ing the average searching time of vehicles looking to park with different percentages of 
equipped vehicles with wireless communication capability, implementing the CoPark-
WS approach. The average searching time can be defined as the average time spent from 
entering the car park till obtaining a parking space. The times of equipped and non-
equipped vehicles, as well as the average searching time for all vehicles, are obtained.

It is assumed that non-equipped vehicles use a greedy algorithm (which we call GD 
(Greedy)) with initial information of locations of car parking spaces.

Fig. 3  The simulated car park area
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Assumptions and settings. In GD approach, there is no cooperation and it depends 
on the driver’s observation to find a parking space. It is assumed that the drivers can 
observe up to a range of 50 m. In addition, vehicles in the GD scenario aim only to 
park near the building entry without regard for the time spent to find a parking space. 
In this scenario, for a penetration rate of X%, i.e., it is assumed that the first X/10 of 
every 10 vehicles of a total of 100 vehicles is equipped with wireless communication 
capabilities and have the ability to cooperate. For example, in a situation where the 
rate is 30%, the first 3 vehicles of every sequence of 10 vehicles entering the park can 
cooperate.

Results. Figure 4 shows the average searching time with different penetration rates 
(i.e., different extents of cooperation), the average of the equipped vehicles (i.e., vehi-
cles which cooperate as they are equipped with devices to do so), the average of the 
non-equipped vehicles (i.e., vehicles which cannot cooperate) and the average over 
all 100 vehicles. It can be seen that the equipped (cooperating) vehicles have a much 
lower average searching time than non-cooperating vehicles. The non-equipped vehi-
cles took consistently longer to search for a parking space due to their selfish behav-
iour in trying to first park as near to the building as possible, unaware that many 
equipped vehicles had already parked there—upon finding those parking lots near the 
building occupied, the non-equipped vehicles then continue to search further. With 
an increasing percentage of equipped vehicles, there is a gradual decrease in the aver-
age searching time for all the vehicles, i.e., having more cooperative vehicles improves 
the situation for all, even the non-cooperating ones, to an extent. With more coop-
eration, the average searching time for the equipped vehicles decreases but only up 
to around 50%, after which the performance is fairly stable. This is because there is 
still a basic level of competition among the vehicles (equipped or not). It can be seen 
above that cooperative parking improves average searching time. The next section 
will study the effects of sending false information, via ADV messages, on the CoPark-
WS approach.

Fig. 4  The average searching time with averages for the equipped vehicles (EQ), non-equipped vehicles 
(non-EQ) and all vehicles using CoPark-WS (total)
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Truthfulness of ADV messages

In this section, we attempt to find an answer to the question: can the vehicles in CoPark-
WS enhance the possibility of finding better car park spaces in their preferred areas by 
deceiving other vehicles through sending incorrect information in ADV messages?

Assumptions and settings. With 80 vehicles implementing CoPark-WS with different 
percentages of lying vehicles, a number of simulation scenarios are executed. Note that, 
in this section, the lying vehicles are working individually and not part of a coalition. A 
lying vehicle’s behaviour is modelled by sending ADV messages with incorrect informa-
tion, i.e., to inform the other vehicles that are attempting to park in the same target area 
as itself that the area is occupied and suggest some other area. In the car park scenario, 
there are 120 parking slots distributed in a manner which gradually decreases in number 
towards the building. The vehicles with even ID numbers are selected as lying vehicles in 
different percentages.

Results. Figure 5 shows the average walking distance to the building entry of the hon-
est vehicles, the lying vehicles and of all 80 parked vehicles, with different percentages 
of lying vehicles. With small proportions of lying vehicles (e.g., 20%), the average walk-
ing distance is similar for all types. The lying vehicles obtain benefits as they constitute 
more of the vehicle population, e.g., 30%, with a sharp drop in walking distance com-
pared to 20% of lying vehicles. But moving up from 40% to 80% of lying vehicles, benefits 
decrease, till there is no more advantage from lying, when most vehicles are deceived 
into parking away from the building.

Figure 6 shows the walking distance of successively parked vehicles with varying num-
bers of lying vehicles. In normal situations, we expect the nearest slots to the building to 
be occupied first and, in time, the slots further away are occupied—the idea is that the 
“early birds get the worms”. However, unfairly, with deceit, further away slots are occu-
pied earlier when we have more lying vehicles, since vehicles which are lied to (i.e., are 
told that slots near the building have been occupied) will end up parking further away. It 
can be seen here that with more lying vehicles, the overall trend is to increase the walk-
ing distances, causing inefficiencies within the whole system.

Fig. 5  The average walking distance to the building, taken over parked honest vehicles (AVG-honest), lying 
vehicles (AVG-lying) and all (honest and lying) vehicles (AVG-all) with 20%, 30%, 40%, 50%, and 80% of lying 
vehicles
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In the previous simulation scenarios, it is assumed that advisees keep the advised 
information, use the information themselves only, and only give advice according to 
their own experiences, i.e., they do not pass on ADV messages they received to other 
vehicles.

In the next scenario, we assume that the advisee can grant advice based on its own 
experience and also what is received from ADV messages (i.e., they pass on advice 
(ADV messages) they received). Figure  7 shows the walking distances of parked 
vehicles sorted in ascending order based on distance to the building entrance, with 
two situations: 30% of lying vehicles are passing on their advice to others, versus not 
passing on the advice they received. It is observed that the effect of untruthful advice 
when passed on leads to more vehicles being deceived and parking away from the 
building and one vehicle could not find a free space even when the number of slots 
(120) exceeds the total number of vehicles (80). The scenes for passing on advice 
(i.e., share) and not share (i.e., save) is given in Fig. 8, showing that passing on bad 
advice can quite radically affect the results, so that a cooperative approach is vulner-
able to unchecked spreading of wrong advice.

Fig. 6  The walking distances of successively parked vehicles of 80 vehicles with 0%, 20%, and 80% of lying 
vehicles

Fig. 7  The walking distances, in ascending order, of 80 parked vehicles, with (30%) lying vehicles and with 
two situations: save/keep advice they get or share the advice they get (passing them on). (Note that for the 
share advice case, one vehicle cannot at all find a parking space)
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The impact of gang behaviour

In this section, we investigate the influence of selfish behaviour of a coalition (which we 
call a gang) of (in particular, self-driving peer-to-peer networked) vehicles that send false 
advice to deceive other vehicles (not in the gang) to get them to avoid going to a given 
chosen area (as chosen by the gang), in turn, enhancing the gang members’ own oppor-
tunity to get better parking spaces closer to the final destination.

Assumptions and settings. The vehicles belonging to the gang accept truthful advice 
just from the gang members and ignoring messages from the others, while those not in 
the gang accept and take the advice of messages from any vehicle. With 80 vehicles in 
total, different gang sizes with different chosen area conditions are implemented. In gen-
eral, in our simulation set up, it is assumed that there are two parking entrances located 
on the car park area border with a distance of 1000 m between them, and the vehicles 
arriving in even-numbered order would enter from one gate, and the others from the 

Fig. 8  The two scenes of parked vehicles with (30%) lying: not sharing (i.e., keeping) advice messages (top), 
and sharing advice messages (bottom). It can be seen that sharing bad advice leads to cars parked further 
away from the final destination
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second gate. Firstly, a gang with 10 members is implemented, comprising vehicles of 
order 20 to 29, which means they enter from both gates and they are not the vehicles 
entering the area early. The gang members lie by giving advice to other non-gang vehi-
cles that the first two areas nearer to the final destination are fully occupied.

Results. Figure  9 shows a screen shot of the vehicles getting a parking space with 
the CoPark-WS algorithm in normal situation without gang members lying, where the 
gang vehicles with id between 20 and 29 are circled in red, and the two chosen areas 
are marked with yellow rectangles with numbers representing the first two favourite 
areas with regard to the distance to the final destination. Figure 10 shows the same sce-
nario but gang members lying. It can be seen that all gang vehicles are parked in the two 

Fig. 9  The scene of parked vehicles in a normal situation

Fig. 10  The scene of parked vehicles with a gang of 10 members
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favourite/chosen areas; there are 14 parking spaces available in the two favourite chosen 
areas. The extra parking slots, i.e., the four parking spaces, are occupied by the vehicles 
coming in later (after all gang members have parked) which were not influenced by any 
false advice.  

Figure 11 shows a similar scenario as in Fig. 10 but with sharing advice so that false 
advice messages of gang members continue to propagate even after the gang members 
have parked. The extra parking slots are still vacant as a result of the continued propaga-
tion of malicious advice even after all gang vehicles have parked.

Figure 12 shows the benefit of forming and being part of a gang which consists of 10 
members by showing the average, maximum, minimum, median, and standard devia-
tion values of the walking distance of the gang vehicles in normal circumstances, which 
means without gang behaviour (which we label as scenario 1), and of the gang vehicles 

Fig. 11  The scene of parked vehicles with 10 gang members and sharing advice condition

Fig. 12  The average, maximum, minimum, median, standard deviation values of the walking distances of 10 
vehicles with IDs from 20 to 29 for gang vehicles in scenarios 1, 2, and 3
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when they collude with the above gang behaviour, in two situations: without (labelled as 
scenario 2) and with vehicles sharing advice (labelled as scenario 3). The gains of gang 
behaviour for individuals in the gang is clearly shown, as demonstrated by the reduced 
maximum, minimum and median values, and for the gang overall, as represented with 
average and standard deviation values. Figure 13 demonstrates the impact of the gang 
on the residual vehicles (normal vehicles), which consist of 70 vehicles, within the same 
situations as in Fig. 12. The effect of increasing the walking distance of non-gang vehicles 
can be observed, without and with sharing advice.

With extending the gang size, a vehicle’s chance to get a parking space nearer to the 
building would be altered. In the simulation, we have gangs of sizes 10, 20, 30, and 40 
members among 80 vehicles streaming into the car park in order of their IDs. The gang 
members’s IDs are between (20–29), (20–39), (20–49) and (20–59) for gang size 10, 20, 
30, 40 members, respectively.

Fig. 13  The average, maximum, minimum, median, standard deviation values of the walking distances of 
70 normal vehicles in scenarios 1, 2, and 3. Note the degrading in performance of non-gang cars due to the 
presence of gang behaviour

Fig. 14  The average, maximum, minimum, median, standard deviation values of the walking distances of the 
vehicles with IDs in the range from 50 to 59 and with various gang sizes: 10, 20, 30, and 40 members
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Figure  14 shows the average, maximum, minimum, median and standard deviation 
value for vehicle IDs (50–59) with different gang sizes as described above. In general, 
the vehicles who are nearer to the gang members tend to get worse car parking (further 
from the final destination building) than the others. As shown, the values in the case 
of gang size 10 is near to the values in the normal (no-gang) situation as a result of the 
relatively large distance between these vehicles (IDs 50–59) and the gang vehicles. The 
walking distance values are generally reduced for vehicles 50–59 with gang behaviour of 
gang size 10 and 20 since the earlier vehicles which are nearer to the gang get bad advice 
and are parked further, so that, consequently, vehicles 50–59, coming in later, tend to 
get better car park spaces nearer to the building (the final destination). However, the 
vehicles 50–59 are badly affected in case of gang size 30 (since then, vehicles 20–49 are 
gang vehicles which are close to vehicles 50–59). Finally, when gang size is 40, vehicles 
50–59 are themselves gang members and so they get the best values (lowered walking 
distances).

Deception detection and intervention
As shown from the preceding sections, sending false information would negatively 
impact on the chances of the normal (e.g., non-gang or truthful) vehicles in getting to 
park in the spaces in the chosen areas (i.e., nearer the building), in both situations of dis-
honest vehicles working: individually, or in a gang. Consequently, vehicles have to take 
into account these situations by verifying the received advice and cooperating with other 
vehicles to reduce the effect of deceitful vehicles.

The DDM approach

Here, we introduce a deception detection mechanism (DDM) to CoPark-WS algorithm 
in order to limit the influence of sending incorrect advice for selfish intents. It is a decen-
tralized approach, which makes it more challenging without complete global knowledge 
of vacant parking spaces and so, there is a need to handle uncertainty. Our approach 
depends on vehicles integrating and validating received advice using our proposed Veri-
fied Function (VF) and a reputation mechanism to reduce the effects of bad vehicles. We 
will explore three DDM versions, namely, DDM-C, DDM-D and DDM-R which denotes 
detection mechanisms with key ideas Confirmation, Direct, and Rating, respectively. 
They differ in the way of handling the suspected vehicles.

At the beginning, the vehicles have to verify the content of received advice messages 
based on a heuristic function called VF, where VF is a linear combination as shown 
below:

where �(t) is a measure of the proportion of the distance between the vehicle itself to 
the target area (to which the received advice message refers) to the distance of the advi-
sor (i.e., the sender of the advice message) to the target area. �(t) =

D1(t)
D2(t)

 where D1(t) is 
the distance between the receiving vehicle (vehicle receiving the advice) and the target 
area and D2(t) is the distance of the advisor to the target area. σ(t) is the occupancy 
state of the current area where the vehicle is currently located, which is equal to the 
ratio of the number of occupied slots to the total size (slots) of the area. Both factors are 

(4)VF(t) = a×�(t)+ b× σ(t)
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computed with regards to current time since their values vary with time. In addition, 
the weights a and b are used to weigh the factors in order to reflect their relative impor-
tance. In the following experiments, both values are set to 0.5.

The objective of the VF function is to weigh the advisor’s distance to the target area rel-
ative to the advisee’s position, since the heuristic we consider here is that the one nearer 
would likely have more knowledge about the target area, and to consider the occupancy 
situation of where the advisee is located, which is used to predict the occupancy situa-
tion of the target area based on the spatial relationship between the areas—based on the 
heuristic: “if it is not busy where I am, it may not be busy where the target area is what-
ever the advice message says and I can distrust a message that says that the target area is 
busy”. Hence, when receiving a message, a vehicle can compute the VF value of the mes-
sage and if it is low or below a threshold, the vehicle could distrust the message.

Figure  15 illustrates the differences in the three DDM mechanisms when receiving 
a message. A message is considered not believable if the VF value is less than a given 
threshold value, and considered believable, otherwise—the higher the threshold, the 
more messages would be considered as bad, that is the more “skeptical” a vehicle is.

In case the VF value is less than a preset threshold value, in DDM-C, the vehicle would 
ignore the advice message (not to go to the target area) from an advisor vehicle, and keep 
going towards the target area. The vehicle will also broadcast a complaint about the advi-
sor vehicle (announcing the vehicle ID of the fake message sender) if it finds that there 
are actually free slots in the target area. Subsequently, the received vehicles would add 
the name of the lying vehicle to its own blacklist, and cooperatively, broadcast the list 
to stop the impact of the bad vehicle on the others. The normal (non-deceitful) vehicles 
would discontinue cooperation with the bad vehicles through rejecting advice from them 
and not giving them advice. In this approach, all vehicles in the blacklist are considered 
“guilty” because they are added just after confirming that they lied. However, there is a 
delay to declaring them to be in the blacklists, especially with a large car park area, as 
the vehicles need to arrive at the target area to discover (and determine for themselves 
if what was said in the advice message was true) and time is needed for announcing the 
blacklists. Consequently, due to the delays, some vehicles might still compute VF values 
as being more than the threshold value for deceitful advisors, and fall victim to them.

However, in the DDM-D method, a vehicle takes a “suspicious” attitude and consid-
ers the advisor as deceitful just when the corresponding VF is less than the threshold 
and inserts the ID into the blacklist (without further verifying as in the case of DDM-
C), and shares this with other vehicles, consequently, reducing the chance of gang 

Fig. 15  The three DDM mechanisms compared, in summary
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members deceiving other vehicles. But at the same time, some honest advisors could 
be wrongly blacklisted for a period of time because the VF is a heuristic (which means 
it is not guaranteed to correctly classify vehicles as deceitful); the advisee vehicle then 
arrives at the target area and might find that it is really fully occupied, and subse-
quently, it has to correct this situation by announcing that the advisor is honest and 
has to remove that advisor from the blacklist (announcing the new blacklist). Hence, 
DDM-C takes the optimistic view of “innocent until proven guilty” and DDM-D takes 
the pessimistic view of “guilty until proven innocent”.

On the other hand, the DDM-R, as shown in Fig. 16, attempts to increase the pos-
sibility of recognizing a bad vehicle before itself arriving at the target area (for veri-
fication) by adopting a rating mechanism. There are three categories for an advisor 
vehicle, which are good, suspicious, and bad. The vehicle classified as good and suspi-
cious can send and receive advice. If a vehicle received an advice from a vehicle (say 
named Vx) and the computed VF value is larger or equal to the threshold value, the 
vehicle Vx will be considered as a good vehicle, adding its ID to the good-list and 
accepting the advice. Otherwise, the vehicles sees Vx as suspicious and a rating value 
of 0.5, inserts it into the blacklist, and still holding on the advice, the vehicle keeps 
going to the target area. While sharing the blacklist among vehicles, a vehicle can 
receive the blacklist of other vehicles (and might get to know what others think about 

Fig. 16  The flow chart of DDM-R algorithm
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Vx), so that Vx’s classification can change to a bad vehicle when it finds that there is 
another vehicle also suspicious about Vx. Then, the vehicle can revise its plan and 
re-route its way in the case of finding out that it has been following the advice of a 
vehicle, now re-classified as bad, i.e., it finds that it is a victim accepting advice from a 
bad vehicle. The other condition where a vehicle can reclassify a suspicious vehicle as 
bad is when the advisee arrives at the target area and discovers that the advice in this 
situation is inaccurate, and before the advisee vehicle parks, it will announce about 
the bad vehicle. Note that our heuristics above are not necessarily fullproof and some 
vehicles might be wrongly reclassified as bad due to dynamic changes in the car park, 
but nevertheless, we investigate such an approach to address deceitful situations.

Experiments with DDM

Experimentally, we have investigated the proposed interventions mechanisms through 
comparing with the scenario without involving DDMs and with sharing advice among 
vehicles.

Assumptions and settings. The vehicles belonging to the gang accept truthful advice 
just from the gang members and ignore messages from the others, while those not in the 
gang accept and take the advice of messages from any vehicle. We experiment with 80 
vehicles in total, 10 of which are gang members. In general, in our simulation set up, as 
before, it is assumed that there are two parking entrances located on the car park area 
border with a distance of 1000 m between them, and the vehicles arriving in even-num-
bered order would enter from one gate, and the others from the second gate.

Results. Figure  17 shows the scenario without a deception detection system. The 
gang consists of ten members, which are circled with red circles, declaring to the 
normal vehicles that areas 1, 2, and 3, which are marked with yellow rectangles are 
fully occupied and proposing other areas which are further from the building (though 

Fig. 17  The scenario of the gang “reserving” three areas (yellow rectangles) by sharing fake advice; this is 
without a deception detection mechanism in use—gang members circled in red and are all right in front of 
the final destination (assumed a building entrance)
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there are vacant slots in areas 2 and 3). Interestingly, Fig. 18 illustrates a similar sce-
nario but with implementing DDM-D. It can be seen that the normal vehicles can 
detect the bad gang vehicles at an early stage and, largely, the gang’s advantage from 
sending fake advice messages is reduced. 

Figure  19 shows the average walking distance (from where a vehicle is parked to 
the entrance of a building, i.e., the final destination) of gang vehicles and the normal 
vehicles in the following circumstances: without a deception detection mechanism, 
and with implementing the three DDM versions (DDM-C, DDM-D, and DDM-R). 
The gang attained the goal of capturing the parking spaces nearer to the building in 
the absence of a DDM with average walking distance equal to 80 m, far less compared 
to normal (non-gang) vehicles, with average distance 395 m. This situation is altered 

Fig. 18  The scenario of the gang “reserving” three areas with sharing fake advice but with DDM-D in place—
gang members circled in red and it is no longer the case that all are right in front of the final destination 
(assumed a building entrance)

Fig. 19  The average walking distance (the lower the better for normal vehicles) of gang and normal vehicles 
without a DDM, and with DDM-C, DDM-D, and DDM-R mechanisms
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by having the normal vehicles employ DDMs, and thereby, reducing the impact of 
gang deceit by allocating the parking spaces in a fairer manner (i.e., allocating the 
parking to who comes first or are nearer). There is an increase in the average walking 
distance for the gang members to 165 m, 172 m, and 200 m with DDM-C, DDM-R, 
and DDM-D, respectively. The normal vehicles obtain the parking slots with reduced 
average walking distances by applying DDMs, in particular DDM-D which recognizes 
the gang members at an early stage.

The arrival time of vehicles is explored in Fig. 20, where the arrival time is a combi-
nation of the time to find parking spaces and the walking time to reach the building. 
There is a decrease in average arrival time of normal vehicles with a DDM imple-
mented compared to without a DDM, since overall, with a DDM, some normal vehi-
cles do not have to circulate so much to find parking spaces. For the gang, a higher 
value is computed in the case without DDM because, even though their walking times 
are reduced, the gang members then need to traverse along the car park area to get 
to the parking spaces nearer the building. DDM-D is similar to without a DDM since 
while gang members are identified, and their effects reduced so that their walking 
time is increased as they park further, their time to park might be reduced as they 
might park sooner. Moreover, more vehicles tend to be classified as gang members 
sooner and perhaps inaccurately in DDM-D than in say DDM-C and DDM-R, so the 
benefits of cooperation might be reduced.

Furthermore, we evaluated the influence of the threshold value of the Verified Func-
tion (VF) on detecting bad vehicles—recall that messages with VF values below the 
threshold are considered bad and are ignored. Figure 21 describes the average walk-
ing time of gang and normal vehicles with DDM-D with different threshold values. 
For normal vehicles, this range of threshold values did not significantly affect per-
formance. For gang vehicles, a threshold of 0.5 yielded the best performance for the 
gang. Higher thresholds tend to cause more messages to be rejected overall, so that 

Fig. 20  The average arrival time of gang and normal vehicles in the cases without a DDM, and with DDM-C, 
DDM-D, and DDM-R mechanisms
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gang members need to compete with everyone else, that is, the benefits of coopera-
tion is reduced.

Related work
There are two approaches related to our deception detection mechanism to highlight. 
First, the false content in a message needs to be identified. Second, social actions of non-
lying vehicles against lying vehicles are required to limit spreading of false messages 
and to discourage such selfish behaviour. With reference to validating the contents of 
received messages, in [4], a multisource filter method is introduced to validate message 
contents and to determine the importance of an event in terms of its proximity to the 
receiver based on the information collected from local sensors, as well as taking into 
account information received from the other vehicles and the RSU. Along similar lines, 
in [18], the Dempster-Shafer theory (DST) is used to combine an array of evidence 
under uncertainty and trust rating lists are shared among vehicles in order to evaluate 
the truthfulness of the vehicle and the information received. In [19], a mechanism is pro-
posed to detect transmitted false information based on tracking the vehicle’s trajectory 
after it has sent a message. The work in [20] proposes a framework to verify and amend 
the received information based on sensor information and cooperation with neighbours. 
However, there is a delay in validating and correcting the information. In [21], false mes-
sages (e.g., a false emergency message) in vehicular ad hoc networks are detected based 
on modelling the traffic flow using observation data aggregated from travelling vehicles, 
and determining if the observed flow is consistent with what would be expected (e.g., as 
a result of an emergency, if it had really occurred). In [22], false location messages from a 
vehicle are detected by estimating the vehicle’s real location, via predicting its trajectory 
using multi-array 5G V2V localization. The second approach related to our work is com-
munity action against malicious vehicles. In [23], the effect of spreading messages about 
events in VANETs is studied, and the authors proposed a voting mechanism based on 
weighing the decisions received from neighbours using the number of hops that convey 

Fig. 21  The average walking distance of gang and normal vehicles in the case of normal vehicles applying 
the DDM-D mechanism with various threshold values: 0.5, 1, 1.5, and 2
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these decisions. In [24], a trust management scheme based on integrating the ratings 
among devices is introduced. In [25], a reputation mechanism in a peer-to-peer file shar-
ing network is proposed to mitigate the number of downloading unauthenticated files; 
the work relies on assigning a global trust value for participants based on their history.

Our work is different from the literature reviewed above in that we investigate the 
cooperation in a dynamic physical environment. The vehicle validates the receiving mes-
sages by having partial knowledge of the surrounding car parking events and a blacklist 
reputation mechanism. In general, misbehaviour detection, including detecting fake or 
erroneous messages, can be based on plausibility and consistency mechanisms, as sur-
veyed in [14], and our work falls into the plausibility mechanism category—our work is 
unique in dealing with misbehaviours in the context of cooperative parking.

The sending of false GPS readings is another factor that can affect the performance 
of CoPark-WS, when sending INFO messages. Indeed, the vehicles can send incorrect 
location information because of errors in computing due to attenuation of the GPS sig-
nals, or intentionally, to improve the chance of acquiring road resources. As in CoPark-
WS, the vehicle can send false GPS data to deceive the other vehicles that it is nearer to 
the target parking space. Both situations can be handled similarly, to account for inac-
curacies in the GPS readings, but we do not address this situation using experiments in 
this paper. In general, the precision of GPS plays a critical role in intelligent transporta-
tion systems and autonomous vehicles [26]. The quality of GPS readings can be in the 
error range of about 15 m which can affect advance driver assistance system and safety 
applications [27]. There have been different approaches to dealing with the GPS inac-
curacies. One approach uses reference/anchor nodes to enhance GPS readings such as 
in [28] which considered the parked autonomous vehicles as anchor nodes; the work 
in [29] applied the Road Side Units in the car parking area as a source to computing 
the searching vehicle positions. The other approach is using data fusion algorithms to 
combine the GPS readings with the information of the attached sensors to vehicles such 
as camera and radar. Furthermore, cooperative localization uses the gathered informa-
tion from other partners and own sensor information to improve the GPS accuracy, for 
example, the work in [27] depends on sharing the surrounding road constraints among 
vehicles. In [30], vehicles share location information of near physical objects, as refer-
ence nodes, to correct the GPS data.

Conclusion
In this paper, we have demonstrated that a deception detection and handling mechanism 
plays an essential role in a decentralized car parking environment, in situations where 
some vehicles may intentionally deceive their car parking competitors by sending false 
information.

Both individual and gang selfish behaviours were assessed against the CoPark-WS 
approach which relies on cooperation among vehicles. Our simulation based experi-
ments showed that sending false advice messages can negatively impact the search 
behaviour, especially for honest vehicles. Consequently, a Deception Detection Mecha-
nism (DDM) was proposed to enhance robust cooperation in CoPark-WS. We note that 
our methods are approximate and tolerant of errors in judging vehicles, and adaptable 
(via threshold values). Our DDM approach consists of two stages: 
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1.	 verifying the received messages based on a proposed heuristic function to judge 
plausibility, and

2.	 applying a reputation mechanism to reduce the effects of false advice messages and 
identifying the deceitful vehicles.

The impact of DDM on limiting the influence of malicious vehicles has been shown 
experimentally.

We note that the DDM approach does increase the number of messages due to the 
need to broadcast the blacklist, as shown in the lower part of Fig.  16. However, as 
in the normal CoPark-WS approach, each broadcast by a vehicle is to surrounding 
neighbours within a set transmission range (e.g., a preset DSRC range), and vehicles 
receiving the blacklist need not immediately re-broadcast the blacklist—hence, the 
sharing is done only opportunistically rather than aiming to share globally; in the 
worse case, even with a large enough transmission range, the broadcast is heard by 
all vehicles within close enough proximity of the broadcaster, and hence, the DDM 
approach is not expected to substantially increase network traffic. Detailed network 
traffic and complexity analysis will be future work.

Future work will also consider the following variations on the experiments we have 
done:

•	 we have used Euclidean distance in our simulations as a heuristic; further work 
could experiment with other distance measures including city-block distance or 
travel distances;

•	 so far, our simulations have considered arrival of vehicles and no vehicles leav-
ing—this may increase the difficulty for later arriving vehicles to find parking; one 
could also consider vehicles leaving the carpark, thereby potentially causing traffic 
congestion, and to study how this would affect parking efficiency;

•	 the impact on search time due to peak hours, time-of-day usage of the car park, 
weekends, and festivals, can be examined, based on real city data; and

•	 the impact of the traffic in the areas leading into the car park can be examined.

Finally, while this work has focused on the specifics of cooperative car parking, our 
framework can be adapted for wider scale cooperation of smart vehicles, and to the 
open world of autonomous and adaptive systems. Future work will consider deception 
detection and intervention mechanisms for a broader range of cooperative behaviours 
for vehicles and other distributed cyber-physical systems. As mentioned, other work 
on plausibility analysis in inter-vehicle communications and to detect misbehaviours 
have been studied [14], and our framework for judging messages from vehicles and 
different forms of blacklisting, ranging from the cautious to the relaxed modes, could 
be explored in other cooperation contexts.
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